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1. Introduction

Let Λ be an Artinian algebra, and let ω and X be finitely generated left Λ-modules. There is a
complex

η : 0→ X
f1
→ ω1

f2
→ ω2

f3
→ · · ·

fi
→ ωi

fi+1
→ · · ·

with each ωi ∈ addω, where addω is the subclass of Λ-modules consisting of all modules isomorphic
to direct summands of finite copies of ω, such that Im fi ↪→ ωi is a left addω-approximation of Im fi,
for all i. Let ηn denote the truncated complex ending ωn obtained from η. Then X is said to have
ω-left approximation dimension n, denoted by l.appω(X) = n, if n is the largest positive integer such
that ηn is exact. If η is exact, then X is said to have infinite ω-left approximation dimension, denoted
by l.app ω(X) = ∞. The ω-left approximation dimension of ΛΛ is just the faithful dimension of ω
defined by Buan and Solberg in [9], denoted by fadimΛω, which is used to describe the number of
non-isomorphism indecomposable complements of an almost cotilting module.

The notion of ω-left approximation dimensions of modules was introduced by Huang [15], which
plays a very important role in homological algebra and relative homological algebra. It is well
known that Wakamatsu tilting modules, (relative) torsionfree modules and modules having generalized
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Gorenstein dimension zero with respect to a Wakamatsu tilting Λ-module are characterized in terms of
left approximation dimensions (see [5, 9, 14, 15]).

In studying the representation theory of finite groups, Broué [8] introduced the concept of stable
equivalences of Morita type, which is a special case of stable equivalences. Surprisingly, to date,
every example of stable equivalences of Morita type of Artinian algebras we known has a Frobenius
functor. This type of stable equivalence of Morita type associated with a Frobenius pair is referred to
by Xi [29] as a stable equivalence of adjoint type. It is well know that two stably equivalent of adjoint
type Artinian algebras share many interesting invariants, such as the rigidity dimension, the extension
dimension, stable Grothendieck groups, the Gorenstein projective dimension of modules, the tilting
module, the Gorenstein projective module, and so on (see [10, 19, 22, 23, 28–30] for details).

The first part of the present paper is devoted to investigating some transfer properties of ω-left
approximation dimensions of modules under stable equivalences of adjoint type of Artinian algebras.
One of our main results is the following theorem.

Theorem A. (Theorem 3.4) Let Λ and Γ be stably equivalent of adjoint type Artinian algebras
induced by bimodules ΛMΓ and ΓNΛ, and let n be a positive integer, and let ω be a Λ-module satisfying
Ext1

Λ(ω,ω) = 0 and fadimΛω ≥ n + 1. For a Λ-module X, we have
(1) l.appωX = n if and only if l.appM⊗ΓN⊗ΛωX = n;
(2) l.appωX = n if and only if l.appM⊗ΓN⊗Λω(M ⊗Γ N ⊗Λ X) = n;
(3) l.appωX = n if and only if l.appN⊗Λω(N ⊗ X) = n.
It is well known that tilting modules play a central role in the tilting theory. The classical concept of

tilting modules was introduced by Brenner and Butler in [7], and Miyashita [20] extended this notion
to modules of finite projective dimension. Wakamatsu [25] further generalized the concept of tilting
modules, allowing for modules of infinite projective dimension. These generalized tilting modules are
commonly referred to as Wakamatsu tilting modules, following the established terminology in [13].
The Wakamatsu tilting conjecture, posed by Beligiannis and Reiten in [6, Chapter III], states that
a Wakamatsu tilting module with finite projective dimension is a tilting module. This conjecture is
significant in the representation theory of Artinian algebras and is closely related to several homological
conjectures, such as the finitistic dimension conjecture, the Nakamaya conjecture conjecture, the
Gorenstein symmetry conjecture, and so on (see [11, 21, 26, 27] for details). Li and Sun [17] proved
that stable equivalences of adjoint type preserve the partial tilting modules. Using Theorem A, we will
investigate invariance properties of Wakamatsu tilting modules that of relative n-torsionfree modules
and obtain the following results.

Theorem B. (Theorem 4.3) Let Λ and Γ be Artinian algebras such that there exists a stable
equivalence of adjoint type between them. Then Λ satisfies the Wakamatsu tilting conjecture if and
only if Γ does.

Theorem C. (Theorem 5.1) Let Λ and Γ be stably equivalent of adjoint type induced by bimodules
ΛMΓ and ΓNΛ, and n a positive integer. Suppose that ω is a Λ-module satisfying Ext1

Λ(ω,ω) = 0 and
fadimΛω ≥ n + 2. For a Λ-module X, we have

(1) X is an ω-n- torsionfree Λ-module if and only if N ⊗Λ X is an N ⊗Λ ω-n-torsionfree Γ-module;
(2) X is an ω-n- torsionfree Λ-module if and only if M ⊗Γ N ⊗Λ X is an ω-n-torsionfree Λ-module.

The paper is organized as follows. In Section 2, we provide preliminary definitions and results.
Sections 3–5 are devoted to the proofs of Theorems A–C.
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2. Preliminaries

In this section, we recall some notations and collect some fundamental results. Throughout this
paper, all rings are Artinian algebras over a commutative Artinian ring R, all modules are finitely
generated left Λ-modules. Let Λ be an Artinian algebra and ω a Λ-module. We use modΛ to denote
the category consisting of all finitely generated Λ-modules and use addω to denote the full subcategory
of modΛ consisting of all modules isomorphic to direct summands of finite copies of ω. And we
denote by genω the full subcategory of modΛ having as objects those modules X such that there is an
epimorphism ω0 → X with ω0 ∈ addω.

A homomorphism f : X → ω0 with ω0 ∈ addω is called a left addω-approximation of X, if
HomΛ(ω0,−) → HomΛ(X,−) is exact in addω. And f is called a left minimal addω-approximation of
X if it is also left minimal, that is, h ∈ EndX is an automorphism whenever f h = f (see [3, 4]).

Lemma 2.1. Let M and ω be Λ-modules and M = M1 ⊕ M2.
(1) Suppose that f : M → ω0 is a left addω-approximation of M; then there exists a left minimal

addω-approximation g : M1 → ω1, such that ω1 ∈ addω0.
(2) l.appωM1 ≥ l.appωM.

Proof. (1) See [4, P7, Theorem 2.2].
(2) It follows directly from the definition of the ω-left approximation dimension of M and (1). □

We recall the definition of a tilting module and that of a Wakamatsu tilting module. Let n be a
positive integer. Recall from [7] that a Λ-module ω is said to be a n-tilting Λ-module if the following
conditions are satisfied. (1) ω is self-orthogonal, that is, Ext≥1

Λ (ω,ω) = 0; (2) pdΛω = n < ∞; (3) there
exists an exact sequence 0 →Λ Λ → ω0 → ω1 → · · · → ωn → 0 with ωi ∈ addω for 0 ≤ i ≤ n.
A Λ-module ω is said to be a tilting module it is an n-tilting Λ-module for some positive integer n.
Recall from [25] that a Λ-module ω is called a Wakamatsu tilting module if it is self-orthogonal and
fadimΛω = ∞. And Beligiannis and Reiten in [6, Chapter III] proposed the following conjecture.

Wakamatsu tilting conjecture: Let Λ be an Artinian algebra. Suppose that ω is a Wakamatsu
tilting Λ-module with pdΛω < ∞; then ω is a tilting Λ-module.

Let ω be a Λ-module and n a positive integer. The notion of an ω-n-torsionfree module was
introduced by Huang in [15] as a non-trivial generalization of the notion of a n-torsionfree module
defined in [1]. We refer the reader to [15] for the original definition; we shall use the following
characterization, which is also proved in [15].

Definition 2.1. Letω be aΛ-module with fadimΛω ≥ n+2. AΛ-module X is said to beω-n-torsionfree,
if l.appωX = n.

In case Λω =Λ Λ, an ω-n-torsionfree module defined above is just an n-torsionfree module defined
in [1]. We use T n

ω(Λ) to denote the subcategory of modΛ consisting of all ω-n-torsionfree Λ-modules.
Let ω be a Wakamatsu tilting Λ-module with the endomorphism algebra Π = EndΛω. Recall

from [2] that a Λ-module X is said to have generalized Gorenstein dimension zero with respect to ω,
denoted by G-dimωX = 0, if the following data is satisfied. (1) X is ω-reflexive, that is, the evaluation
map σX : X → HomΠo(HomΛ(X, ω), ω) via σX(x)( f ) = f (x), for any f ∈ HomΛ(X, ω) and x ∈ X, is
an isomorphism; (2) Exti

Λ(X, ω) = 0 = Exti
Πop(HomΛ(X, ω), ω) for any i ≥ 1. We denote by Gω(Λ)

the subcategory of modΛ consisting of all modules having generalized Gorenstein dimension zero
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with respect to ω. In case ΛΛ =Λ ω, a Λ-module G having generalized Gorenstein dimension zero
with respect to ω is just a Λ-module having Gorenstein dimension zero defined by Auslander in [1].
Following the terminology of Enoch and Jenda, a module having Gorenstein dimension zero is called
Gorenstein projective [12]. According to [5, Lemma 5.1], a Λ-module X has generalized Gorenstein
dimension zero with respect to ω if and only if X is a ω-∞-torsionfree Λ-module with Ext≥1

Λ (X, ω) = 0.

Definition 2.2. ( [18, Definition 6.1] and [28, Definition 3.2]) Let Λ and Γ be two Artinian algebras,
and let ΛMΓ and ΓNΛ be finitely generated projective as one-sided modules. Λ and Γ are said to be
symmetrically separably equivalent induced by bimodules ΛMΓ and ΓNΛ, if there exist bimodules ΛPΛ
and ΓQΓ and bimodule isomorphisms

ΛM ⊗Γ NΛ � ΛΛΛ ⊕ ΛPΛ and Γ(N ⊗Λ M)Γ � ΓΓΓ ⊕Γ QΓ

such that (N ⊗Λ −,M ⊗Γ −) and (M ⊗Γ −,N ⊗Λ −) are adjoint pairs.
Furthermore, if P is a projective Λ-bimodule and Q is a projective Γ-bimodule, respectively, then Λ

and Γ are said to be stably equivalent of adjoint type.

Lemma 2.2. [19, Lemma 2.2] Let Λ and Γ be stably equivalent of adjoint type defined as
Definition 2.3. Then

(1) ΛMΓ and ΓNΛ are projective generators as one-sided modules;
(2) for a Λ-module X, P ⊗Λ X is a projective Λ-module;
(3) N ⊗Λ − and M ⊗Γ − are exact functors and take projective modules to projective modules;
(4) (M ⊗Γ −) ◦ (N ⊗Λ −)→ IdModΛ ⊕ (P⊗Λ −) and (N ⊗Λ −) ◦ (M ⊗Γ −)→ IdModΓ ⊕ (Q⊗Λ −) are

natural isomorphisms.

3. ω-left approximation dimensions of modules

In this section, we will investigate the invariant properties ofω-left approximation dimensions under
stable equivalences of adjoint type. We begin with the following easy observation.

Lemma 3.1. Let Λ and Γ be stably equivalent of adjoint type induced by bimodules ΛMΓ and ΓNΛ and
n a positive integer. For Λ-modules X and Y, there exists an isomorphism

Extn
Γ(N ⊗Λ X,N ⊗Λ Y) � Extn

Λ(X,Y).

Proof. By the definition of a stable equivalence of adjoint type, there exist an adjoint pair (M ⊗Γ
−,N ⊗Λ −) and a Λ-bimodule isomorphism M ⊗Γ N � Λ ⊕ P, where P is a projective Λ-bimodule. By
Lemma 2.4(4), we have

Extn
Γ(N ⊗Λ X,N ⊗Λ Y) � Extn

Λ(M ⊗Γ N ⊗Λ X,Y)
� Extn

Λ(X,Y) ⊕ Extn
Λ(P ⊗Λ X,Y)

� Extn
Λ(X,Y),

because P ⊗Λ X is a projective Λ-module by Lemma 2.4(2). □

Proposition 3.1. Let Λ and Γ be stably equivalent of adjoint type induced by bimodules ΛMΓ and ΓNΛ,
and let ω be a Λ-module satisfying Ext1

Λ(ω,ω) = 0. For a Λ-module X, we have

l.appN⊗Λω(N ⊗ X) ≥ l.appωX.
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Proof. Without loss of generality, we assume that l.appωX = n. Then there exists an exact sequence

0→ X
f1
→ ω1

f2
→ ω2

f3
→ · · ·

fn
→ ωn (3.1)

with each ωi ∈ addω, such that Im fi ↪→ ωi is a left addω-approximation of m fi, for 1 ≤ i ≤ n. Define
Ti = Im fi, Tn+1 = Coker( fn), and gi : Im fi ↪→ ωi for any 1 ≤ i ≤ n. Combining these facts, we obtain
the following exact sequence

0→ Ti
gi
→ ωi → Ti+1 → 0 (3.2i)

where gi is a left addω-approximation of Ti, for any 1 ≤ i ≤ n. Noting that Ext1
Λ(ω,ω) = 0, then

one gets that Ext1
Λ(Ti+1, ω) = 0 for any 0 ≤ i ≤ n, by applying the exact functor HomΛ(−, ω) to the

sequence (3.2i).
Applying the exact functor N ⊗Λ − to (3.1) yields an exact sequence in modΓ:

0→ N ⊗Λ X
N⊗Λ f1
→ N ⊗Λ ω1

N⊗Λ f2
→ N ⊗Λ ω2

N⊗Λ f3
→ · · ·

N⊗Λ fn
→ N ⊗Λ ωn (3.3)

with N ⊗Λ ωi ∈ add(N ⊗Λ ω) and Im(N ⊗Λ fi) � N ⊗Λ Ti for each 1 ≤ i ≤ n. and Coker(N ⊗Λ fn) �
N ⊗Λ Tn+1.

According to Lemma 3.1, it follows that Ext1
Γ(N ⊗Λ Ti+1,N ⊗Λ ω) � Ext1

Λ(Ti+1, ω) = 0, for any
0 ≤ i ≤ n. Thus, we obtain that Im(N ⊗Λ fi) ↪→ N ⊗Λ ωi is a left add(N ⊗Λ ω) -approximation of
Im(N ⊗Λ fi). This means l.appN⊗ΛωN ⊗ X ≥ l.appωX. □

One of the application of Proposition 3.2 is the following.

Corollary 3.1. Let Λ and Γ be stably equivalent of adjoint type induced by bimodules ΛMΓ and ΓNΛ,
and let ω be a Λ-module with Ext1

Λ(ω,ω) = 0. Then we have

fadimΓ(N ⊗Λ ω) ≥ fadimΛω.

Proof. By Lemma 2.4(1), we have addΓN = addΓΓ. Then, it is easy to see that l.appN⊗ΛωΓ =

l.appN⊗ΛωN. Thus, by the definition of faithful dimensions of modules and Proposition 3.2, one gets
fadimΓ(N ⊗Λ ω) = l.appN⊗ΛωΓ ≥ l.appωΛ = fadimΛω. □

The following is the main result of this section.

Theorem 3.1. Let Λ and Γ be stably equivalent of adjoint type induced by bimodules ΛMΓ and ΓNΛ,
and let n be a positive integer, and let ω be aΛ-module satisfying Ext1

Λ(ω,ω) = 0 and fadimΛω ≥ n+1.
For a Λ-module X, we have

(1) l.appωX = n if and only if l.appM⊗ΓN⊗ΛωX = n;
(2) l.appωX = n if and only if l.appM⊗ΓN⊗Λω(M ⊗Γ N ⊗Λ X) = n;
(3) l.appωX = n if and only if l.appN⊗Λω(N ⊗ X) = n.

To prove this theorem, we first need to establish the following lemma.

Lemma 3.2. Let Λ and Γ be stably equivalent of adjoint type induced by bimodules ΛMΓ and ΓNΛ, and
let n be a positive integer, and let ω be a Λ-module satisfying Ext1

Λ(ω,ω) = 0 and fadimΛω ≥ n. For a
Λ-module X, we have

(1) l.appωX ≥ n if and only if l.appM⊗ΓN⊗ΛωX ≥ n;
(2) l.appωX ≥ n if and only if l.appM⊗ΓN⊗Λω(M ⊗Γ N ⊗Λ X) ≥ n;
(3) l.appωX ≥ n if and only if l.appN⊗Λω(N ⊗ X) ≥ n.
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Proof. According to Corollary 3.3, one obtains fadimΓ(N ⊗Λ ω) ≥ n and fadimΛ(M ⊗Γ N ⊗Λ ω) ≥ n.
(1) Suppose that l.appM⊗ΓN⊗ΛωX ≥ n; then there exists an exact sequence:

0→ X
f1
→ Y1

f2
→ Y2

f3
→ · · ·

fn
→ Yn

with each Yi ∈ add(M ⊗Γ N ⊗Λ ω), such that each Im fi → Yi is a left add(M ⊗Γ N ⊗Λ ω)-approximation
of Im fi. By Lemma 2.4(4), there is a Λ-module isomorphism M ⊗Γ N ⊗Λ ω � ω ⊕ P ⊗Λ ω, where P is
a projective Λ-bimodule. By Lemma 2.4(2), P⊗Λ ω is a projective Λ-module. Since fadimΛω ≥ n and
each Yi ∈ add(ω ⊕ P ⊗Λ ω) by assumption, for any 1 ≤ Yi ≤ n, there exists an exact sequence:

0→ Yi
f i
1
→ ωi

1

f i
2
→ ωi

2

f i
3
→ · · ·

f i
n
→ ωi

n

with each ωi
j ∈ addω, such that each Im f i

j ↪→ ω
i
j is a left addω-approximation of Im f i

j . Due to [16,
Corollary 3.19], we obtain an exact sequence:

0→ X
h1
→ ω1

1
h2
→ ω1

2 ⊕ ω
2
1

h3
→ · · ·

h j
→ ⊕

j
i=1ω

i
j+1−i

h j+1
→ · · · →

hn
→ ⊕n

i=1ω
i
n+1−i

with each ωi
j ∈ addω such that Imh j ↪→ ⊕

j
i=1ω

i
j+1−i is a left addω-approximation of Imh j. This

means l.appωX ≥ n.
Conversely, if l.appωX ≥ n, then we have l.appM⊗ΓN⊗ΛωX ≥ l.appM⊗ΓN⊗Λω(M⊗ΓN⊗ΛX) ≥ l.appωX ≥

n, where the first inequality holds from Lemma 2.1(2) and the second inequality from Proposition 3.2
twice.

(2) Assume that l.appM⊗ΓN⊗Λω(M ⊗Γ N ⊗Λ X) ≥ n. Since ΛX is isomorphic to a direct summand
of Λ(M ⊗Γ N ⊗Λ X) by Lemma 2.4(4), we obtain l.appM⊗ΓN⊗ΛωX ≥ n by Lemma 2.1(2). It follows
from (1) that l.appωX ≥ n.

Conversely, assume that l.appωX ≥ n. This result follows immediately from Proposition 3.2.
(3) By Proposition 3.2, one obtains l.appN⊗Λω(N ⊗Λ X) ≥ n, when l.appω(X) ≥ n.
Conversely, assume that l.appN⊗Λω(N ⊗Λ X) ≥ n. Then we get l.appM⊗ΓN⊗Λω(M ⊗Γ N ⊗Λ X) ≥ n, by

Proposition 3.2. Thus, by (2), we have l.appω(X) ≥ n. □

The proof of Theorem 3.4.
Since fadimΛω ≥ n+1, by Corollary 3.3, one gets fadimΓ(N⊗Λω) ≥ n+1 and fadimΛ(M⊗ΓN⊗Λω) ≥

n + 1.
(1) Assume that l.appM⊗ΓN⊗ΛωX = n; we have l.appωX ≥ n by Lemma 3.5(1). If l.appωX , n,

then l.appωX ≥ n + 1. Since fadimΛω ≥ n + 1 by assumption, one has l.appM⊗ΓN⊗ΛωX ≥ n + 1 by
Lemma 3.4(1). This leads to a contradiction. Hence, one has l.appωX = n.

Conversely, assume that l.appωX = n. By Proposition 3.2 twice, one gets l.appM⊗ΓN⊗Λω(M ⊗Γ
N ⊗Λ X) ≥ n. Since ΛX is isomorphic to a direct summand of Λ(M ⊗Γ N ⊗Λ X) by Lemma 2.4(4),
l.appM⊗ΓN⊗ΛωX ≥ n by Lemma 2.1(2). And hence we have l.appM⊗ΓN⊗ΛωX = n. If not, then one
has l.appM⊗ΓN⊗ΛωX ≥ n + 1. Noting that fadimΛω ≥ n + 1, then we obtain l.appωX ≥ n + 1 by
Lemma 3.5(1), which leads to a contradiction!

(2) By Proposition 3.2 and Lemma 2.1(2), we have l.appωX ≤ l.appM⊗ΓN⊗Λω(M ⊗Γ N ⊗Λ X) ≤
l.appM⊗ΓN⊗Λω(X). The result follows directly by Lemma 3.5(2).

(3) Assume that l.appωX = n. Then we have l.appN⊗Λω(N ⊗ X) ≥ n by Proposition 3.2.
If l.appN⊗Λω(N ⊗ X) , n. By Proposition 3.2 again, we have l.appM⊗ΓN⊗Λω(M ⊗Γ N ⊗Λ X) ≥

AIMS Mathematics Volume 10, Issue 9, 19994–20009.
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l.appN⊗Λω(N ⊗Λ X) ≥ n + 1. By Lemma 3.5(1), one has l.appωX ≥ n + 1. This leads to a contradiction.
Hence we have l.appN⊗Λω(N ⊗ X) = n.

Conversely, assume that l.appN⊗Λω(N ⊗Λ X) = n. Then we have l.appωX ≤ n by Proposition 3.2. On
the other hand, by Proposition 3.2 again, l.appM⊗ΓN⊗Λω(M ⊗Γ N ⊗Λ X) ≥ l.appN⊗Λω(N ⊗Λ X) = n. And
hence, by Lemma 3.5(2), we have l.appωX ≥ n. And so the result follows.

The next corollary follows directly from Theorem 3.4.

Corollary 3.2. Let Λ and Γ be stably equivalent of adjoint type induced by bimodules ΛMΓ and ΓNΛ,
and let ω be a Λ-module satisfying Ext1

Λ(ω,ω) = 0 and fadimΛω = ∞. For a Λ-module X, we have

l.appωX = l.appN⊗Λω(N ⊗Λ X) = l.appM⊗ΓN⊗Λω(M ⊗Γ N ⊗Λ X) = l.appM⊗ΓN⊗ΛωX.

4. Wakamatsu tilting conjectures

In this section, we will give some applications of results in Section 3 and further prove that the
Wakamatsu tilting conjecture holds true under stable equivalences of adjoint type.

Proposition 4.1. Let Λ and Γ be stably equivalent of adjoint type induced by bimodules ΛMΓ and ΓNΛ,
and let ω be a Λ-module. If ω is a Wakamatsu tilting Λ-module, then N ⊗Λ ω is a Wakamatsu tilting
Γ-module.

Proof. This follows directly from Lemma 3.1 and Corollary 3.3. □

The following lemma is due to Sun and Zhao.

Lemma 4.1. [24, Lemma 3.6] Let Λ and Γ be stably equivalent of adjoint type induced by bimodules
ΛMΓ and ΓNΛ. If ω is a tilting Λ-module, then N ⊗Λ ω is a tilting Γ-module.

Lemma 4.2. Let ω be a Wakamatsu tilting Λ-module with an exact sequence

0→ Λ
g0
→ ω0

g1
→ ω1

g2
→ · · ·

gn−1
→ ωn−1

gn
→ ωn → · · · (4.1)

such that Imgi ↪→ ωi is a left addω-approximation of Imgi for all i ≥ 0. And let P be a projective
Λ-module with each Ext1

Λ(Imgi, P) = 0 for all i. If ω ⊕ P is a tilting Λ-module, then ω is so.

Proof. Assume that ω ⊕ P is an n-tilting Λ-module. Then we have pdΛω = pdΛ(ω ⊕ P) = n and a long
exact sequence

0→ Λ
f0
→ T0

f1
→ T1

f2
→ · · ·

fn−1
→ Tn−1

fn
→ Tn → 0 (4.2)

with each Ti ∈ add(ω ⊕ P) for 0 ≤ i < n and Tn ∈ addω, because P is a projective Λ-module.
Define Li = Im( fi) for all i. Then Ln = Tn. Since Ext≥1

Λ (ω⊕ P, ω⊕ P) = 0, we have Ext1
Λ(Li, ω⊕ P) = 0

by dimension shifting, for 1 ≤ i ≤ n. This implies that Li ↪→ Ti is a left add(ω ⊕ P) -approximation of
Im fi, for all 1 ≤ i < n.

Since ω is a Wakamatsu tilting Λ-module with the exact sequence (4.1) by assumption, we can
write Ki = Imgi in the sequence (4.1), for all i. Since Ext1

Λ(ω,ω) = 0, we have Ext1
Λ(Ki, ω) = 0 for all i.

Noting that Ext≥1
Λ (Ki, P) = 0 by assumption, one gets Ext≥1

Λ (Ki, ω ⊕ P) = 0 for any i.
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Since f0 : Λ → T0 is a left add(ω ⊕ P)-approximation of Λ and ω0 ∈ addω ⊂ add(ω ⊕ P), for
g0 : Λ → ω0, there exists α0 : T0 → ω0 such that g0 = α0 f0. This yields the following commutative
diagram with exact rows

0 // Λ
f0 // T0
α0
��

// L1

��

// 0

0 // Λ
g0 // ω0

// K1
// 0

which is both a pullback and a pushout. Thus, one gets an exact sequence

0→ T0 → ω0 ⊕ L1 → K1 → 0,

which splits, because Ext1
Λ(K1, ω ⊕ P) = 0 and T0 ∈ add(ω ⊕ P). Thus, we have K1 ∈ add(ω ⊕ L1).

Decompose K1 as K1 = ω
′
0 ⊕ L′1 with L′1 ∈ addL1 and ω′0 ∈ addω/addL1, where addω/addL1 is

the subclass of addω consisting of all modules without nonzero direct summands that lie in addL1.

By assumption and by Lemma 2.1, there exists an exact sequence 0 → L′1
γ1
→ ω′1

β
→ H2 → 0 with

ω′1 ∈ addω such that γ1 is a left minimal addω-approximation of L′1. Hence, we have the following
commutative diagram with exact rows

0 // L′1
i
��

γ1 // ω′1

t

��

// H2

ω

��

// 0

0 // K1

p
��

g1 // ω1

s
��

// K2

ν

��

// 0

0 // L′1
γ1 // ω′1

// H2
// 0

with pi = IdL′1
, one gets st as an isomorphism, because γ1 is left minimal. It follows that νω is

an isomorphism. Thus, we obtain that p, s and ν are split epic. Therefore, there exists an exact
commutative diagram with split columns

0

��

0

��

0

��
0 // ω′1

��

// Kers

��

// Kerν

��

// 0

0 // K1

p
��

// ω1

s
��

// K2

ν

��

// 0 (4.3)

0 // L′1

��

// ω′1

��

// H2

��

// 0

0 0 0

Thus, we have K2 � H2 ⊕ Kerν and Kers ∈ addω. Noting that Ext1
Λ(K2, ω) = 0 and ω′1 ∈ addω, one

gets the top row in commutative diagram (4.3) split. This implies that Kerν ∈ addω.
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On the other hand, since L′1 ∈ addL1, by Lemma 2.1(1) and assumption, we obtain an exact sequence

0→ L′1
β1
→ T ′1 → L′2 → 0

such that β1 is a minimal left add(ω⊕P)-approximation of L′1 and L′2 ∈ addL2. Notice that ω′1 ∈ addω ⊂
add(ω ⊕ P); we have the following commutative diagram with exact rows:

0 // L′1
β1 // T ′1
α1

��

// L′2

��

// 0

0 // L′1
γ1 // ω′1

// H2
// 0

which is a pullback as well as a pushout. Then, we obtain an exact sequence

0→ T ′1 → ω
′
1 ⊕ L′2 → H2 → 0 (4.4)

Since H2 ∈ addK2, T ′2 ∈ add(ω ⊕ P1) and Ext1
Λ(K2, ω ⊕ P1) = 0, the exact sequence (4.4) splits. So,

H2 ∈ add(ω′1 ⊕ L′2) ⊂ add(ω ⊕ L2). Thus, K2 � H2 ⊕ Kerν ∈ add(ω ⊕ L2).
We inductively prove that Ki ∈ add(ω⊕Li) for 1 ≤ i ≤ n. Therefore, Kn ∈ addω for Ln = ωn ∈ addω.

Thus, one gets that ω is a tilting Λ-module as regards. □

Theorem 4.1. Let Λ and Γ be stably equivalent of adjoint type. Then Λ satisfies the Wakamatsu tilting
conjecture if and only if Γ does.

Proof. Assume that Λ and Γ are stably equivalent of adjoint type induced by bimodules ΛMΓ and
ΓNΛ. That is, there exist projective bimodules ΛPΛ and ΓQΓ and bimodule isomorphisms ΛM ⊗Γ NΛ �
ΛΛΛ ⊕Λ PΛ and ΓN ⊗ ΛMΓ � ΓΓΓ ⊕ ΓQΓ.

Assume that Γ satisfies the Wakamatsu tilting conjecture. Let ω be a Wakamatsu tilting Λ-module
with pdΛω < ∞. By Proposition 4.1, N ⊗Λ ω is a Wakamatsu tilting Γ-module. Since functor N ⊗Λ −
is exact and takes projective Λ-modules to projective Γ-modules by Lemma 2.4(3), we have pdΓ(N ⊗Λ
ω) ≤ pdΛω < ∞. Thus, one obtains that N ⊗Λ ω is a tilting Γ-module by assumption.

According to Lemma 4.2, it follows that M ⊗Γ N ⊗Λ ω is a tilting Λ-module. By Lemma 2.4(4),
there exists a Λ-module isomorphism M ⊗Γ N ⊗Λ ω � ω ⊕ P ⊗Λ ω. Define P1 = P ⊗Λ ω. Then P1

is a projective Λ-module by Lemma 2.4(2). By Lemma 4.2 again, one gets N ⊗Λ (ω ⊕ P1) is a tilting
Γ-module, where N ⊗Λ P1 is projective by Lemma 2.4(3). We claim that N ⊗Λ P1 ∈ add(N ⊗Λ ω). In
fact, noting that N ⊗Λ ω is a tilting Γ-module, then, by [26, Lemma 3.3], we have an exact sequence

0→ N ⊗Λ P1 → C → D→ 0 (4.5)

with C ∈ gen(N ⊗Λ ω) and D ∈ add(N ⊗Λ ω). On the other hand, since N ⊗Λ ω and N ⊗Λ (ω ⊕ P1) are
tilting Γ-modules, one has 0 = Ext≥1

Γ (N ⊗Λ (ω ⊕ P1),N ⊗Λ (ω ⊕ P1)) = 0 = Ext1
Γ(N ⊗Λ ω,N ⊗Λ ω). It

follows that Ext1
Γ(N ⊗Λ ω,N ⊗Λ P1) = 0, which implies that the exact sequence (4.5) splits. Therefore,

N ⊗Λ P1 ∈ gen(N ⊗Λ ω). Thus, one gets N ⊗Λ P1 ∈ add(N ⊗Λ ω) by the projective property of N ⊗Λ P1,
and our claim is obtained.

Since ω is a Wakamatsu tilting Λ-module, there exists an exact sequence

0→ Λ
g0
→ ω0

g1
→ ω1

g2
→ · · ·

gn−1
→ ωn−1

gn
→ ωn → · · ·
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with each ωi ∈ addω, such that Imgi → ωi is a left addΛω of Imgi for all i ≥ 0. Let Ki = Imgi, for all i.
Since Ext1

Λ(ω,ω) = 0 in the above sequence, we have Ext1
Λ(Ki, ω) = 0 for all i. Thanks to Lemma 3.1,

it follows that Ext1
Γ(N ⊗Λ Ki,N ⊗Λω) � Ext≥1

Λ (Ki, ω) = 0 for each i. Since N ⊗Λ P1 ∈ add(N ⊗Λω), one
has Ext≥1

Λ (N ⊗Λ Ki,N ⊗Λ P1) = 0. Hence, we obtain Ext≥1
Λ (Ki, P1) = 0 by Lemma 3.1 again. Noting

that ω ⊕ P1 is a tilting Λ-module, then, by Lemma 4.3, ω is a tilting Λ-module as regards.
Similarly, we can prove that Γ satisfies the Wakamatsu tilting conjecture when Λ does. □

Proposition 4.2. Let Λ and Γ be stably equivalent of adjoint type induced by bimodules ΛMΓ and ΓNΛ
and n a positive integer, and let ω be a Wakamatsu tilting Λ-module. If there exists an exact sequence

0→ Λ→ ω0 → ω1 → · · · → ωn → 0

then EndΛω and EndΓ(N ⊗Λ ω) are symmetrically separably equivalent.

Proof. Due to Proposition 4.1 twice, it follows that M ⊗Γ N ⊗Λω is a Wakamatsu tilting Λ-module. By
Lemma 2.4(4), there is aΛ-module isomorphism M⊗ΓN⊗Λω � ω⊕(P⊗Λω), where P is a projectiveΛ-
bimodule. Define P1 = P⊗Λω. Then P1 is a projectiveΛ-module by Lemma 2.4(2). Since M⊗ΓN⊗Λω
and ω are Wakamatsu tilting Λ-modules, we have Ext1

Λ(ω⊕ P1, ω⊕ P1) = 0 = Ext1
Λ(ω,ω). Combining

this results, one gets Ext≥1
Λ (ω, P1) = 0. We claim that P1 ∈ addω. By assumption and by Lemma 2.1(1),

it is straightforward to verify that there exists an exact sequence

0→ P1
f0
→ ω′0

f1
→ ω′1

f2
→ · · ·

fn
→ ω′n → 0

with ω′i ∈ addω for all 0 ≤ i ≤ n. Let T0 = Coker f0. Then, we obtain the following exact sequences

0→ P1
f0
→ ω′0 → T0 → 0 (4.6)

and
0→ T0 → ω

′
1 → ω

′
2 → · · · → ω

′
n → 0 (4.7)

with each ω′i ∈ addω. Noting that Ext≥1
Λ (ω, P1) = 0, then one gets Ext1

Λ(T0, P1) � Extn
Λ(ω′n, P1) = 0 by

dimension shifting. This implies the exact sequence (4.6) is split. Thus, ω′0 � P1 ⊕ T0. And the claim
is proved.

Consequently, one obtains M ⊗Γ N ⊗Λ ω ∈ addω. According to [24, Theorem 3.1], it follows that
EndΛω and EndΓ(N ⊗Λ ω) are symmetrically separably equivalent. □

As a consequence of Proposition 4.5, we recover a result of [24].

Corollary 4.1. Let T be a tilting Λ-module. Then EndΛT and EndΓ(N ⊗Λ T ) are symmetrically
separably equivalent.

5. Relative torsionfree modules

In this section, we give some applications of results in Section 3 and Section 4 and prove that the
stable equivalent of adjoint type Artinian algebra preserves relative torsionfree modules and modules
having generalized Gorenstein dimension zero with respect to a Wakamatsu tilting module.
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Theorem 5.1. LetΛ and Γ be stably equivalent of adjoint type induced by bimodules ΛMΓ and ΓNΛ and
let n be a positive integer. Suppose thatω is aΛ-module satisfying Ext1

Λ(ω,ω) = 0 and fadimΛω ≥ n+2.
For a Λ-module X, we have

(1) X is an ω-n- torsionfree Λ-module if and only if N ⊗Λ X is an N ⊗Λ ω-n-torsionfree Γ-module;
(2) X is an ω-n- torsionfree Λ-module if and only if M ⊗Γ N ⊗Λ X is an ω-n-torsionfree Λ-module;

Proof. Since fadimΛω ≥ n+ 2 by assumption, we have fadimΓ(N⊗Λω) ≥ n+ 2 and fadimΛ(M⊗ΓN⊗Λ
ω) ≥ n + 2 by Corollary 3.3. The result follows directly from Theorem 3.4. □

The next corollary is immediate from Theorem 5.1.

Corollary 5.1. Let Λ and Γ be stably equivalent of adjoint type induced by bimodules ΛMΓ and ΓNΛ,
and let ω be a Wakamatsu tilting Λ-module and X a Λ-module. Then

(1) X is an ω-∞-torsionfree Λ-module if and only if N ⊗Λ X is an N ⊗Λ ω-∞-torsionfree Γ-module.
(2) X is an ω-∞-torsionfree Λ-module if and only if M ⊗Γ ⊗ΛX is an M ⊗Γ N ⊗Λ ω-∞-torsionfree

Γ-module.

Recall that a subcategory C of modΛ is called extension-closed if the middle terms of any short
exact sequence 0 → X1 → X2 → X3 → 0 are in C, provided the end terms X1 and X3 are in C.
More detail about the extension closure of the category of modules consisting of relative n-torsionfree
modules can be found in [16]. The following gives the transfer of the extension closedness of a
subcategory of Λ-modules consisting of ω-n-torsionfree modules.

Proposition 5.1. Let Λ and Γ be stably equivalent of adjoint type induced by bimodules ΛMΓ and ΓNΛ
and let n be a positive integer, and letω be aΛ-modules satisfying Ext1

Λ(ω,ω) = 0 and fadimΛω ≥ n+2.
Then T n

ω(Λ) is closed under extensions if and only if so is T n
N⊗Λω

(Γ).

Proof. Assume that T n
ω(Λ) is closed under extensions, and let

0→ Y1 → Y2 → Y3 → 0 (5.1)

be an exact sequence in modΓ, where Y1 and Y3 are N⊗Γω-n-torsionfree Γ-modules. Applying M⊗Γ−
to the sequence (5.1) induces a short exact sequence of Λ-modules

0→ M ⊗Γ Y1 → M ⊗Γ Y2 → M ⊗Γ Y3 → 0.

By Theorem 5.1 (1), one has M ⊗Γ Y1 and M ⊗Γ Y3 are M ⊗Γ N ⊗Λ ω-n-torsionfree Λ-modules. So, by
Theorem 5.1(2), one gets M ⊗Γ Y1 and M ⊗Γ Y3 are ω-n-torsionfree Λ-modules. By assumption, we
obtain that M ⊗Γ Y2 is a ω-n-torsionfree Λ-module. It follows from Theorem 5.1(1) that N ⊗Λ M ⊗Γ Y2

is an N ⊗Λω-n-torsionfree Γ-module. By Theorem 5.1(2) again, we obtain Y2 which is also an N ⊗Λω-
n-torsionfree Γ-module as regards.

Similarly, we can prove that T n
ω(Λ) is closed under extensions, when T n

N⊗Λω
(Γ) does so. □

Theorem 5.2. Let Λ and Γ be stably equivalent of adjoint type induced by bimodules ΛMΓ and ΓNΛ,
and let ω be a Wakamatsu tilting Λ-module and X a Λ-module. Then

(1) X has generalized Gorenstein dimension zero with respect to ω if and only if N ⊗Λ X has
generalized Gorenstein dimension zero with respect to N ⊗Λ ω.

(2) X has generalized Gorenstein dimension zero with respect to ω if and only if M ⊗Γ N ⊗ω X has
generalized Gorenstein dimension zero with respect to M ⊗Γ N ⊗Λ ω.
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Proof. Since ω is a Wakamatsu tilting Λ-module, by Proposition 4.1, one obtains that N ⊗Λ ω is a
Wakamatsu tilting Γ-module and M ⊗Γ N ⊗Λ ω is a Wakamatsu tilting Λ-module. According to [5,
Lemma 5.1], a Λ-module X has generalized Gorenstein dimension zero with respect to a Wakamatsu
tilting Λ-module ω if and only if Ext≥1

Λ (X, ω) = 0 and X is an ω-∞-torsionfree Λ-module. This result
follows directly from Lemma 3.1 and Theorem 5.1. □

Let ω be a Wakamatsu tilting Λ-module. Recall from that Λ-module X is said to have generalized
Gorenstein dimension with respect to ω less than or equal to n, denoted by G-dimωX ≤ n, if there is
an exact sequence

0→ Gn → Gn−1 → · · · → G1 → G0 → X → 0

with each Gi ∈ Gω(Λ). If n is the least nonnegative integer for which such a sequence exists, then
G-dimω(X) = n, and if there is no such n, then G-dimω(X) = ∞.

Proposition 5.2. Let Λ and Γ be stably equivalent of adjoint type induced by bimodules ΛMΓ and ΓNΛ,
and let ω be a Wakamatsu tilting Λ-module and X a Λ-module. Then

G-dimω(X) = G-dimN⊗Λω(N ⊗Λ X).

Proof. Without loss of generality, we assume that G-dimN⊗Λω(N ⊗Λ X) = n. Then there is an exact
sequence in modΛ

0→ Gn → Gn−1 → · · · → G1 → G0 → X → 0 (5.2)

such that Gi ∈ Gω(Λ) for each 0 ≤ i ≤ n. Applying the exact functor N ⊗Λ − to the sequence (5.2)
induces an exact sequence of Γ-modules

0→ N ⊗Λ Gn → N ⊗Λ Gn−1 → · · · → N ⊗Λ G1 → N ⊗Λ G0 → N ⊗Λ X → 0 (5.3)

with each N ⊗Λ Gi ∈ GN⊗Λω(Γ). This implies G-dimN⊗Λω(N ⊗Λ X) ≤ n.
From the above step, one obtains G-dimM⊗ΓN⊗Λω(M ⊗Γ N ⊗Λ X) ≤ G-dimN⊗Λω(N ⊗Λ X). By

Lemma 2.4(4), there exists a Λ-module isomorphism M ⊗Γ N ⊗Λ X � X ⊕ P ⊗Λ X, where P is a
projective Λ-bimodule. Define PX = P⊗Λ X. Then PX is a projective Λ-module by Lemma 2.4(2). We
assume that G-dimM⊗ΓN⊗Λω(M ⊗Γ N ⊗Λ X) = m. Thus, there exists an exact sequence

0→ Vm
fm
→ Vm−1

fm−1
→ · · ·

f2
→ V1

f1
→ V0

f0
→ X ⊕ PX → 0 (5.4)

with each Vi ∈ GM⊗ΓN⊗Λω(Λ). By Theorem 5.4(2), one has Vi ∈ Gω(Λ) for any 0 ≤ i ≤ m. Taking
T = ker f0, the sequence (5.4) induces the following exact sequences:

0→ T → V0
f0
→ X ⊕ PX → 0 (5.5)

and

0→ Vm
fm
→ Vm−1

fm−1
→ · · ·

f2
→ V1 → T → 0 (5.6)
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By pullback, we have the following exact commutative diagram:

0

��

0

��
0 // T // L

��

// PX
//

��

0

0 // T // V0

��

// X ⊕ PX
//

��

0

X

��

X

��
0 0

which induces an exact sequences:

0→ T ⊕ PX → V0 → X → 0 (5.7)

because PX is projective. Combining the sequences (5.6) and (5.7), one obtains a long exact sequence

0→ Vm
fm
→ Vm−1

fm−1
→ · · ·

f2
→ V1 ⊕ PX → V0 → X → 0 (5.8)

Noting that PX is projective, we have PX ∈ Gω(Λ). Due to [14, Lemma 5.9], it follows V1⊕PX ∈ Gω(Λ).
Thus, we have G-dimω(X) ≤ m. We thus prove this proposition by the above discussion. □

In case Λω = ΛΛ, the generalized Gorenstein dimension with respect to ω of a Λ-module X is just
the Gorenstein projective dimension of X defined by [1], denoted by G-dim X. Due to Proposition 4.19,
we have the following corollary, which is a result in [19, Corollary 4.5].

Corollary 5.2. Let Λ and Γ be stably equivalent of adjoint type induced by bimodules ΛMΓ and ΓNΛ.
Suppose that X is a Λ-module. Then G-dimX ≤ n if and only if G-dim(N ⊗Λ X) ≤ n.

We conclude with an example to illustrate our results.
Example: Let k be an algebraically closed field. And let Λ and Γ be finite-dimensional k-algebras
given by the following quivers with relations

Λ ·
1

α

⇄
β
·
2

with relation αβαβ = 0

and
Γ ·

1

x
⇄

y
·
2
⟲z with relation xy = xz = zy = z2 − yx = 0.

Then, Λ and Γ are stably equivalent of adjoint type induced by bimodules ΛMΓ and ΓNΛ (see
[19, Example, P581] and [23, Example 1] for details). Note that Λ is a Nakayama algebra, and
indecomposable projective and injective Λ-modules are

P(1) =


1
2
1
2

 , P(2) =


2
1
2
1
2


= I(2) and I(1) =


2
1
2
1

 .
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and S (2) = (2) is a simple Λ-module. Thus, we obtain the minimal injective resolution of P(1):

0→ P(1)→ I(2)→ I(2)→ I(1)→ 0, (5.9)

and the minimal injective resolution of S (2) :

0→ S (2)→ I(2)→ I(1)→ 0. (5.10)

(1) Λ and Γ satisfy the Wakamatsu tilting conjecture.
(2) Let ω = I(1) ⊕ I(2). Then ω is a 2-tilting Λ-module, and N ⊗Λ ω is a 2-tilting Γ-module.
(3) S (2) has generalized Gorenstein dimension zero with respect toω, and N⊗ΛS (2) has generalized

Gorenstein dimension zero with respect to N ⊗Λ ω.

Proof. (1) From the sequence (5.9), one gets idΛΛ = 2 and pdΛI(1) = 2. Similarly, we have idΛΛ =
2. Thus, Λ is a Gorenstein algebra with idΛΛ = idΛΛ = 2. According to [21, Proposition 3.2], a
Wakamatsu tilting Λ-module ω is a tilting module provided idΛΛ < ∞. Thus, one gets Λ satisfying
the Wakamatsu tilting conjecture. Therefore, Γ also satisfying the Wakamatsu tilting conjecture by
Theorem 4.4.

(2) By the definition of tilting modules, we obtain that ω is a 2-tilting Λ-module, since P(2) is a
projective-injective module. And hence, N ⊗Λ ω is a 2-tilting Γ-module by Lemma 2.2.

(3) Noting that ω is a tilting and injective Λ-module, then, from the sequence (5.10), one
gets l.appωS (2) = ∞ and Exti≥1

Λ (S (2), ω) = 0. It follows from [5, Lemma 5.1] that S (2) has generalized
Gorenstein dimension zero with respect to ω. By Theorem 5.4, N ⊗Λ S (2) has generalized Gorenstein
dimension zero with respect to N ⊗Λ ω. □

6. Conclusions

In this study, we mainly show that ω-left approximation dimensions of modules, Wakamatsu tilting
modules, Wakamatsu tilting conjectures, relative n-torsionfree modules, and generalized Gorenstein
dimensions of modules are preserved under the stable equivalences of adjoint type. In future work, we
will study those invariants hold under symmetric separable equivalences.
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