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1. Introduction

Let A be an Artinian algebra, and let w and X be finitely generated left A-modules. There is a

complex
fa /3 fi fir1

n: ()—>X£>a)l—>a)2—>---—>a)l-—>---

with each w; € addw, where addw is the subclass of A-modules consisting of all modules isomorphic
to direct summands of finite copies of w, such that Imf; — w; is a left addw-approximation of Imf;,
for all i. Let i, denote the truncated complex ending w, obtained from r. Then X is said to have
w-left approximation dimension n, denoted by l.app,(X) = n, if n is the largest positive integer such
that n, is exact. If n is exact, then X is said to have infinite w-left approximation dimension, denoted
by Lapp ,(X) = oo. The w-left approximation dimension of A is just the faithful dimension of w
defined by Buan and Solberg in [9], denoted by fadimaw, which is used to describe the number of
non-isomorphism indecomposable complements of an almost cotilting module.

The notion of w-left approximation dimensions of modules was introduced by Huang [15], which
plays a very important role in homological algebra and relative homological algebra. It is well
known that Wakamatsu tilting modules, (relative) torsionfree modules and modules having generalized
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Gorenstein dimension zero with respect to a Wakamatsu tilting A-module are characterized in terms of
left approximation dimensions (see [5,9, 14, 15]).

In studying the representation theory of finite groups, Broué [8] introduced the concept of stable
equivalences of Morita type, which is a special case of stable equivalences. Surprisingly, to date,
every example of stable equivalences of Morita type of Artinian algebras we known has a Frobenius
functor. This type of stable equivalence of Morita type associated with a Frobenius pair is referred to
by Xi [29] as a stable equivalence of adjoint type. It is well know that two stably equivalent of adjoint
type Artinian algebras share many interesting invariants, such as the rigidity dimension, the extension
dimension, stable Grothendieck groups, the Gorenstein projective dimension of modules, the tilting
module, the Gorenstein projective module, and so on (see [10, 19,22,23,28-30] for details).

The first part of the present paper is devoted to investigating some transfer properties of w-left
approximation dimensions of modules under stable equivalences of adjoint type of Artinian algebras.
One of our main results is the following theorem.

Theorem A. (Theorem 3.4) Let A and T be stably equivalent of adjoint type Artinian algebras
induced by bimodules My and Ny, and let n be a positive integer, and let w be a A-module satisfying
Extjl\(w, w) = 0 and fadimpyw > n + 1. For a A-module X, we have

(1) Lapp,X = n if and only if 1.app e ng, X = 15

(2) Lapp,X = n if and only if 1.app g, ye, (M & N ®p X) = n;

(3) Lapp,X = n if and only if 1.appyg, ,(N ® X) = n.

It is well known that tilting modules play a central role in the tilting theory. The classical concept of
tilting modules was introduced by Brenner and Butler in [7], and Miyashita [20] extended this notion
to modules of finite projective dimension. Wakamatsu [25] further generalized the concept of tilting
modules, allowing for modules of infinite projective dimension. These generalized tilting modules are
commonly referred to as Wakamatsu tilting modules, following the established terminology in [13].
The Wakamatsu tilting conjecture, posed by Beligiannis and Reiten in [6, Chapter III], states that
a Wakamatsu tilting module with finite projective dimension is a tilting module. This conjecture is
significant in the representation theory of Artinian algebras and is closely related to several homological
conjectures, such as the finitistic dimension conjecture, the Nakamaya conjecture conjecture, the
Gorenstein symmetry conjecture, and so on (see [11,21,26,27] for details). Li and Sun [17] proved
that stable equivalences of adjoint type preserve the partial tilting modules. Using Theorem A, we will
investigate invariance properties of Wakamatsu tilting modules that of relative n-torsionfree modules
and obtain the following results.

Theorem B. (Theorem 4.3) Let A and 1" be Artinian algebras such that there exists a stable
equivalence of adjoint type between them. Then A satisfies the Wakamatsu tilting conjecture if and
only if T does.

Theorem C. (Theorem 5.1) Let A and I be stably equivalent of adjoint type induced by bimodules
AMr and Ny, and n a positive integer. Suppose that w is a A-module satisfying Ext/]\(a), w) = 0 and
fadimyw > n + 2. For a A-module X, we have

(1) X is an w-n- torsionfree A-module if and only if N ® X is an N ®, w-n-torsionfree I'-module;

(2) X is an w-n- torsionfree A-module if and only if M ®r N @5 X is an w-n-torsionfree A-module.

The paper is organized as follows. In Section 2, we provide preliminary definitions and results.
Sections 3-5 are devoted to the proofs of Theorems A—C.
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2. Preliminaries

In this section, we recall some notations and collect some fundamental results. Throughout this
paper, all rings are Artinian algebras over a commutative Artinian ring R, all modules are finitely
generated left A-modules. Let A be an Artinian algebra and w a A-module. We use mod A to denote
the category consisting of all finitely generated A-modules and use addw to denote the full subcategory
of mod A consisting of all modules isomorphic to direct summands of finite copies of w. And we
denote by genw the full subcategory of mod A having as objects those modules X such that there is an
epimorphism wy — X with wy € addw.

A homomorphism f : X — w with wy € addw is called a left addw-approximation of X, if
Homy (wg, —) — Homy (X, —) is exact in addw. And f is called a left minimal addw-approximation of
X if it is also left minimal, that is, 4 € EndX is an automorphism whenever fh = f (see [3,4]).

Lemma 2.1. Let M and w be A-modules and M = M| & M,.

(1) Suppose that f : M — wy is a left addw-approximation of M; then there exists a left minimal
addw-approximation g : M|, — wy, such that w, € addwy.

(2) Lapp, M, > l.app, M.

Proof. (1) See [4, P7, Theorem 2.2].
(2) It follows directly from the definition of the w-left approximation dimension of M and (1). O

We recall the definition of a tilting module and that of a Wakamatsu tilting module. Let n be a
positive integer. Recall from [7] that a A-module w is said to be a n-tilting A-module if the following
conditions are satisfied. (1) w is self-orthogonal, that is, Exti1 (w,w) =0; (2) pdyw = n < oo; (3) there
exists an exact sequence 0 -5 A - wy = w; = -+ = w, = 0 with w; € addw for 0 < i < n.
A A-module w is said to be a tilting module it is an n-tilting A-module for some positive integer n.
Recall from [25] that a A-module w is called a Wakamatsu tilting module if it is self-orthogonal and
fadimyw = oo. And Beligiannis and Reiten in [6, Chapter III] proposed the following conjecture.

Wakamatsu tilting conjecture: Let A be an Artinian algebra. Suppose that w is a Wakamatsu
tilting A-module with pd,w < oo; then w is a tilting A-module.

Let w be a A-module and n a positive integer. The notion of an w-n-torsionfree module was
introduced by Huang in [15] as a non-trivial generalization of the notion of a n-torsionfree module
defined in [1]. We refer the reader to [15] for the original definition; we shall use the following
characterization, which is also proved in [15].

Definition 2.1. Let w be a A-module with fadimyw > n+2. A A-module X is said to be w-n-torsionfree,
if Lapp, X = n.

In case pow =5 A, an w-n-torsionfree module defined above is just an n-torsionfree module defined
in [1]. We use 7 (A) to denote the subcategory of mod A consisting of all w-n-torsionfree A-modules.

Let w be a Wakamatsu tilting A-module with the endomorphism algebra II = Endjyw. Recall
from [2] that a A-module X is said to have generalized Gorenstein dimension zero with respect to w,
denoted by G-dim,X = 0, if the following data is satisfied. (1) X is w-reflexive, that is, the evaluation
map ox : X — Hompe(Homy (X, w), w) via ox(x)(f) = f(x), for any f € Homy (X, w) and x € X, is
an isomorphism; (2) Ext\ (X,w) = 0 = Extl,,(Homa (X, w), w) for any i > 1. We denote by G,(A)

the subcategory of mod A consisting of all modules having generalized Gorenstein dimension zero
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with respect to w. In case \A =5 w, a A-module G having generalized Gorenstein dimension zero
with respect to w is just a A-module having Gorenstein dimension zero defined by Auslander in [1].
Following the terminology of Enoch and Jenda, a module having Gorenstein dimension zero is called
Gorenstein projective [12]. According to [5, Lemma 5.1], a A-module X has generalized Gorenstein
dimension zero with respect to w if and only if X is a w-co-torsionfree A-module with Exti1 X, w) =0.

Definition 2.2. ( [18, Definition 6.1] and [28, Definition 3.2]) Let A and I" be two Artinian algebras,
and let \Mr and N, be finitely generated projective as one-sided modules. A and I' are said to be
symmetrically separably equivalent induced by bimodules » M and Ny, if there exist bimodules 5 Py
and rQr and bimodule isomorphisms

AM @r Np = \Ap © APy and r(N®x M)r = It @r Or

such that (N ® —, M ®r —) and (M @ —, N ®, —) are adjoint pairs.
Furthermore, if P is a projective A-bimodule and Q is a projective I'-bimodule, respectively, then A
and I' are said to be stably equivalent of adjoint type.

Lemma 2.2. [19, Lemma 2.2] Let A and T" be stably equivalent of adjoint type defined as
Definition 2.3. Then

(1) AMr and Ny are projective generators as one-sided modules;

(2) for a A-module X, P ®x X is a projective A-module;

(3) N ®\ — and M ®r — are exact functors and take projective modules to projective modules;

(4) (M ®r =)o (N®—) = ldyjoqs ® (P®A —) and (N ®p =) o (M & —) — Idpoqr © (O ®a —) are
natural isomorphisms.

3. w-left approximation dimensions of modules

In this section, we will investigate the invariant properties of w-left approximation dimensions under
stable equivalences of adjoint type. We begin with the following easy observation.

Lemma 3.1. Let A and T be stably equivalent of adjoint type induced by bimodules x My and rNx and
n a positive integer. For A-modules X and Y, there exists an isomorphism

Ext(N ®, X, N ®, Y) = Ext’.(X, Y).

Proof. By the definition of a stable equivalence of adjoint type, there exist an adjoint pair (M ®r
—,N ®, —) and a A-bimodule isomorphism M ®- N = A @ P, where P is a projective A-bimodule. By
Lemma 2.4(4), we have

Ext{(N®@y X,N®, Y) = Ext{i(M & N®\ X,Y)
= Ext) (X, Y) @ Ext) (P ®x X,Y)
= Exti (X, Y),

because P ®, X is a projective A-module by Lemma 2.4(2). O

Proposition 3.1. Let A and T be stably equivalent of adjoint type induced by bimodules x My and Ny,
and let w be a A-module satisfying Ext}\(w, w) = 0. For a A-module X, we have

l.appyg, (N ® X) > Lapp,,X.

AIMS Mathematics Volume 10, Issue 9, 19994-20009.



19998

Proof. Without loss of generality, we assume that l.app, X = n. Then there exists an exact sequence

0oXbw Bwb. 5w, @D
with each w; € addw, such that Imf; — w; is a left addw-approximation of mf;, for 1 < i < n. Define
T; = Imf;, T,,;,; = Coker(f,), and g; : Imf; — w; for any 1 < i < n. Combining these facts, we obtain
the following exact sequence

0TS w—Tu —0 (320

where g; is a left addw-approximation of T;, for any 1 < i < n. Noting that Ext)(w,w) = 0, then
one gets that Ext) (7,1, w) = 0 for any 0 < i < n, by applying the exact functor Homa(—, w) to the
sequence (3.2i).

Applying the exact functor N ®, — to (3.1) yields an exact sequence in mod I":

0N X ' Neyw "B Neyw =" " " Neyw,  (33)
with N ®, w; € add(N ®, w) and Im(N ®, f;) = N @, T; for each 1 < i < n. and Coker(N ®, f,) =
N ®p Tyt
According to Lemma 3.1, it follows that Ext}(N A Tiv1, N ®p w) = Ext}\(THl,w) = 0, for any
0 < i < n. Thus, we obtain that Im(N ®, f;) — N ®, w; is a left add(N ®, w) -approximation of
Im(N ®, fi). This means Lappyg, ,N ® X > Lapp,X. O

One of the application of Proposition 3.2 is the following.

Corollary 3.1. Let A and T be stably equivalent of adjoint type induced by bimodules x My and Ny,
and let w be a A-module with Ext/l\(a), w) = 0. Then we have

fadimp(N ®, w) > fadimyw.

Proof. By Lemma 2.4(1), we have addrN = addrI’. Then, it is easy to see that Lappyg J° =
l.appyg, V- Thus, by the definition of faithful dimensions of modules and Proposition 3.2, one gets
fadimr(N ® w) = l.appyg, ,I" = l.app,,A = fadimpw. O

The following is the main result of this section.

Theorem 3.1. Let A and T be stably equivalent of adjoint type induced by bimodules x My and N,
and let n be a positive integer, and let w be a A-module satisfying Ext}\(a), w) = 0 and fadimpyw > n+1.
For a A-module X, we have

(1) Lapp,X = n if and only if 1.app e ng, X = 15

(2) Lapp,X = n if and only if 1.app g ne, (M & N ®4 X) = n;

(3) Lapp,X = n if and only if .appyg, ,(N ® X) = n.

To prove this theorem, we first need to establish the following lemma.

Lemma 3.2. Let A and T be stably equivalent of adjoint type induced by bimodules x My and Ny, and
let n be a positive integer, and let w be a A-module satisfying Ext) (w, w) = 0 and fadimyw > n. For a
A-module X, we have

(1) Lapp,X > n if and only if 1.app e ng, X = 15

(2) Lapp,X > n if and only if 1.app g, ye, (M & N ®p X) > n;

(3) L.app,X > n if and only if 1.appyg, ,(N ® X) > n.
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Proof. According to Corollary 3.3, one obtains fadimr(N ®, w) > n and fadimy(M & N ®, w) > n.
(1) Suppose that L.app e e, X = 71; then there exists an exact sequence:

ooxLyvArnh. . Ly

with each Y; € add(M ®r N ®, w), such that each Imf; — Y; is a left add(M ®r N ®, w)-approximation
of Imf;. By Lemma 2.4(4), there is a A-module isomorphism M & N ®, w = w ® P ®, w, where P is
a projective A-bimodule. By Lemma 2.4(2), P ®, w is a projective A-module. Since fadimaw > n and
each Y; € add(w ® P ®, w) by assumption, for any 1 < Y; < n, there exists an exact sequence:
.5 . h P

O—)Yi—l>a)’1—2>a)’2—3>--~£>a);
with each «'. € addw, such that each Imf] — «' is a left addw-approximation of Imf;. Due to [16,
Corollary 3.19], we obtain an exact sequence:

hy 1 hy h3 h

1 2 Lo
0—)X—)(,L)l —>a)269a)1 —> e ®i:1wj+l—i

Rjv1 h

noonn i
—_ e @izlw

n+1-i

with each a)j. € addw such that Imh; — @{le; .1_; 18 a left addw-approximation of Im#;. This
means l.app, X > n.

Conversely, if l.app,,X > n, then we have 1.app ¢ ve, X = 1-2PPpre ve, (M & N @4 X) > Lapp, X >
n, where the first inequality holds from Lemma 2.1(2) and the second inequality from Proposition 3.2
twice.

(2) Assume that Lapp e e, (M & N ®\ X) > n. Since 4X is isomorphic to a direct summand
of (M & N ®, X) by Lemma 2.4(4), we obtain l.app s ye,oX = 7 by Lemma 2.1(2). It follows
from (1) that Lapp, X > n.

Conversely, assume that l.app,, X > n. This result follows immediately from Proposition 3.2.

(3) By Proposition 3.2, one obtains l.appyg, (N ® X) > n, when Lapp,,(X) = n.

Conversely, assume that L.appyg, ,(N ® X) > n. Then we get 1.app ¢, ve, (M & N ®4 X) > n, by
Proposition 3.2. Thus, by (2), we have l.app(X) > n. O

The proof of Theorem 3.4.

Since fadimyw > n+1, by Corollary 3.3, one gets fadimpr(N®, w) > n+1 and fadim,(M®rN®, w) >
n+ 1.

(1) Assume that 1.app e v, X = 7; We have Lapp,X > n by Lemma 3.5(1). If lLapp, X # n,
then l.app,X > n + 1. Since fadimyw > n + 1 by assumption, one has l.app e ye, X = 7+ 1 by
Lemma 3.4(1). This leads to a contradiction. Hence, one has Lapp, X = n.

Conversely, assume that l.app,X = n. By Proposition 3.2 twice, one gets 1.app e ve, (M Or
N ®5 X) > n. Since ,X is isomorphic to a direct summand of (M & N ®, X) by Lemma 2.4(4),
L.app e N X = 7 by Lemma 2.1(2). And hence we have l.app, ye, X = 7. If not, then one
has 1.app /e e, X = 7+ 1. Noting that fadimyw > n + 1, then we obtain Lapp,X > n + 1 by
Lemma 3.5(1), which leads to a contradiction!

(2) By Proposition 3.2 and Lemma 2.1(2), we have lLapp,X < lappye.yg,o(M & N Q4 X) <
1.apP e, vo, o (X)- The result follows directly by Lemma 3.5(2).

(3) Assume that lapp,X = n. Then we have lappyg (N ® X) > n by Proposition 3.2.

If Lappyg,,(N ® X) # n. By Proposition 3.2 again, we have l.app e e oM & N ®y X) >
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l.appyg, (N ®a X) = n+ 1. By Lemma 3.5(1), one has l.app,, X > n + 1. This leads to a contradiction.
Hence we have l.appyg, (N ® X) = n.

Conversely, assume that l.appye, (N ® X) = n. Then we have l.app X < n by Proposition 3.2. On
the other hand, by Proposition 3.2 again, L.app e, ye,o(M & N ® X) > l.appys, (N ®x X) = n. And
hence, by Lemma 3.5(2), we have Lapp,X > n. And so the result follows.

The next corollary follows directly from Theorem 3.4.

Corollary 3.2. Let A and T be stably equivalent of adjoint type induced by bimodules x My and Ny,
and let w be a A-module satisfying Ext,l\(a), w) = 0 and fadimyw = oo. For a A-module X, we have

lapp,, X = Lappyg, ,(N ®a X) = 1.apP 116 nve oM Or N ®a X) = L.aPP e vy X-
4. Wakamatsu tilting conjectures

In this section, we will give some applications of results in Section 3 and further prove that the
Wakamatsu tilting conjecture holds true under stable equivalences of adjoint type.

Proposition 4.1. Let A and T be stably equivalent of adjoint type induced by bimodules x My and N,
and let w be a A-module. If w is a Wakamatsu tilting A-module, then N ®, w is a Wakamatsu tilting
I-module.

Proof. This follows directly from Lemma 3.1 and Corollary 3.3. m|

The following lemma is due to Sun and Zhao.

Lemma 4.1. [24, Lemma 3.6] Let A and I be stably equivalent of adjoint type induced by bimodules
AMr and rNy. If w is a tilting A-module, then N Q@ w is a tilting I'-module.

Lemma 4.2. Let w be a Wakamatsu tilting A-module with an exact sequence

80 81 82 8n-1 &n
0o A>DwW D W = > W] D Wy = -+ 4.1)

such that Img; — w; is a left addw-approximation of Img; for all i > 0. And let P be a projective
A-module with each Ext\(Img;, P) = 0 for all i. If w ® P is a tilting A-module, then w is so.

Proof. Assume that w @ P is an n-tilting A-module. Then we have pd,w = pd,(w ® P) = n and a long

exact sequence
0-ABn 5SS 5,50 @2

with each 7; € add(w ® P) for 0 < i < n and 7T, € addw, because P is a projective A-module.
Define L; = Im(f;) for all i. Then L, = T,,. Since Exti1 (wdP,wd P) =0, we have Ext}\(L,-, wdP)=0
by dimension shifting, for 1 < i < n. This implies that L; < T; is a left add(w @ P) -approximation of
Imf;, forall1 <i<n.

Since w is a Wakamatsu tilting A-module with the exact sequence (4.1) by assumption, we can
write K; = Img; in the sequence (4.1), for all i. Since Ext}\(w, w) = 0, we have Ext}\(K,-, w) = 0 forall i.
Noting that Ext:'(K;, P) = 0 by assumption, one gets Ext:'(K;, w @ P) = 0 for any i.

AIMS Mathematics Volume 10, Issue 9, 19994-20009.
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Since fy : A — Ty is a left add(w @ P)-approximation of A and wy € addw C add(w @ P), for
8o : A — wy, there exists ay : Typ — wq such that gy = afy. This yields the following commutative
diagram with exact rows

0 A Wy K1 0

which is both a pullback and a pushout. Thus, one gets an exact sequence
05Ty > wydL; » K; — 0,

which splits, because Ext,l\(Kl, w® P)=0and T, € add(w @ P). Thus, we have K; € add(w & L,).
Decompose K, as K; = wj @ L] with L} € addL; and wj € addw/addL,, where addw/addL, is
the subclass of addw consisting of all modules without nonzero direct summands that lie in addL;.

. . Y B .
By assumption and by Lemma 2.1, there exists an exact sequence 0 — L] 5 w| — H, — 0 with
w; € addw such that 7y, is a left minimal addw-approximation of L. Hence, we have the following
commutative diagram with exact rows

0 L, H, 0
ij tL wl]
0 Kl el w1 K2 0

R

0 L= H, 0

with pi = IdL/l, one gets st as an isomorphism, because y; is left minimal. It follows that vw is
an isomorphism. Thus, we obtain that p, s and v are split epic. Therefore, there exists an exact
commutative diagram with split columns

0 0 0
0 w) Kers Kery ———0
0 K] w1 K2 0 (43)
p s v
0—1L o, H, 0
0 0 0

Thus, we have K, = H, @ Kerv and Kers € addw. Noting that Ext,l\(Kz, w) = 0 and w] € addw, one
gets the top row in commutative diagram (4.3) split. This implies that Kerv € addw.
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On the other hand, since L| € addL;, by Lemma 2.1(1) and assumption, we obtain an exact sequence
, P ’ ’
0-L —->T/—-L,—0

such that 8, is a minimal left add(w® P)-approximation of L} and L) € addL,. Notice that w| € addw C
add(w @ P); we have the following commutative diagram with exact rows:

0—L 2o — 1 — 0
;N ’
0—L, > —=H,—0

which is a pullback as well as a pushout. Then, we obtain an exact sequence
0->T -wi®Ll,—>H,—0 4.4)

Since H, € addK,, T; € add(w @ P;) and Ext/l\(Kz, w ® P;) = 0, the exact sequence (4.4) splits. So,
H, € add(w ® L)) C add(w & L,). Thus, K, = H, ® Kerv € add(w & L,).

We inductively prove that K; € add(w®L;) for 1 < i < n. Therefore, K, € addw for L, = w, € addw.
Thus, one gets that w is a tilting A-module as regards. O

Theorem 4.1. Let A and T be stably equivalent of adjoint type. Then A satisfies the Wakamatsu tilting
conjecture if and only if I does.

Proof. Assume that A and I' are stably equivalent of adjoint type induced by bimodules ,Mr and
rNa. That is, there exist projective bimodules 5 P, and rQr and bimodule isomorphisms M ®r Np =
AN ©®p Py and rN @ \Mp = (It & rOr.

Assume that I satisfies the Wakamatsu tilting conjecture. Let w be a Wakamatsu tilting A-module
with pd,w < co. By Proposition 4.1, N ®, w is a Wakamatsu tilting I-module. Since functor N ®, —
is exact and takes projective A-modules to projective I'-modules by Lemma 2.4(3), we have pd (N ®,
w) < pdyw < co. Thus, one obtains that N ®, w is a tilting I'-module by assumption.

According to Lemma 4.2, it follows that M ®- N ®, w is a tilting A-module. By Lemma 2.4(4),
there exists a A-module isomorphism M @ N ® w = w ® P ®, w. Define Py = P ®, w. Then P,
is a projective A-module by Lemma 2.4(2). By Lemma 4.2 again, one gets N ®, (w & P,) is a tilting
I-module, where N ®, P; is projective by Lemma 2.4(3). We claim that N ®, P; € add(N ®, w). In
fact, noting that N ®, w is a tilting ['-module, then, by [26, Lemma 3.3], we have an exact sequence

O0->N®J/WP -C—->D—-0 4.5)

with C € gen(N ®, w) and D € add(N ®, w). On the other hand, since N ®, w and N @, (w @ P,) are
tilting I-modules, one has 0 = ExtZ'(N ® (w® P1), N @ (w ® P1)) = 0 = Extp(N ® w, N ®, w). It
follows that EX'[}(N ®a w, N ®5 Py) = 0, which implies that the exact sequence (4.5) splits. Therefore,
N ®, P; € gen(N ® w). Thus, one gets N ®, P € add(N ®, w) by the projective property of N @, P,
and our claim is obtained.

Since w is a Wakamatsu tilting A-module, there exists an exact sequence

80 81 82 8n-1 &n
O->oA>Dw—ow = > Wyl D W, >+

AIMS Mathematics Volume 10, Issue 9, 19994-20009.



20003

with each w; € addw, such that Img; — w; is a left add,w of Img; for all i > 0. Let K; = Img;, for all .
Since Ext,l\(w, w) = 0 1in the above sequence, we have Ext,l\(Ki, w) = 0 for all i. Thanks to Lemma 3.1,
it follows that Ext}(N R K, N®p w) = Extil(Ki, w) = 0 for each i. Since N ®, P; € add(N ®, w), one
has Ext;' (N ®, K;, N ®, P;) = 0. Hence, we obtain Ext;'(K;, P) = 0 by Lemma 3.1 again. Noting
that w @ P, is a tilting A-module, then, by Lemma 4.3, w is a tilting A-module as regards.

Similarly, we can prove that I satisfies the Wakamatsu tilting conjecture when A does. O

Proposition 4.2. Let A and T be stably equivalent of adjoint type induced by bimodules x My and Ny
and n a positive integer, and let w be a Wakamatsu tilting A-module. If there exists an exact sequence

O>A>wy—>w — - —>w,—0

then Endpw and Endr(N ®, w) are symmetrically separably equivalent.

Proof. Due to Proposition 4.1 twice, it follows that M ®- N ®, w is a Wakamatsu tilting A-module. By
Lemma 2.4(4), there is a A-module isomorphism M®rN®jw = wd (PR, w), where P is a projective A-
bimodule. Define P; = P®, w. Then P; is a projective A-module by Lemma 2.4(2). Since M®r N ®x w
and w are Wakamatsu tilting A-modules, we have Ext}\(w &P, wdP)=0= Ext}\(a), w). Combining
this results, one gets Exti1 (w, P1) = 0. We claim that P, € addw. By assumption and by Lemma 2.1(1),
it is straightforward to verify that there exists an exact sequence

fo fi f2 I
O0-P Swy>w = >w,—0

with w € addw for all 0 < i < n. Let Ty = Cokerf,. Then, we obtain the following exact sequences

0P Bwyo5Ty=0  (4.6)

and
0-T)—>w>W),— > w, -0 4.7

with each w € addw. Noting that Extil (w, Py) = 0, then one gets ExtJ\(TO, P)) = Ext} (w), P;) = 0 by
dimension shifting. This implies the exact sequence (4.6) is split. Thus, wj = P; @ Ty. And the claim
is proved.

Consequently, one obtains M @r N @, w € addw. According to [24, Theorem 3.1], it follows that
Endsw and Endr(N ®, w) are symmetrically separably equivalent. O

As a consequence of Proposition 4.5, we recover a result of [24].

Corollary 4.1. Let T be a tilting A-module. Then EndyT and Endr(N ®5 T) are symmetrically
separably equivalent.

5. Relative torsionfree modules
In this section, we give some applications of results in Section 3 and Section 4 and prove that the
stable equivalent of adjoint type Artinian algebra preserves relative torsionfree modules and modules

having generalized Gorenstein dimension zero with respect to a Wakamatsu tilting module.
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Theorem 5.1. Let A and T be stably equivalent of adjoint type induced by bimodules x My and N and
let n be a positive integer. Suppose that w is a A-module satisfying Ext}\(a), w) = 0 and fadimyw > n+2.
For a A-module X, we have
(1) X is an w-n- torsionfree A-module if and only if N ®, X is an N @, w-n-torsionfree I'-module;
(2) X is an w-n- torsionfree A-module if and only if M & N ®, X is an w-n-torsionfree A-module;

Proof. Since fadimaw > n+ 2 by assumption, we have fadimr(N ®, w) > n + 2 and fadims (M ®r N ®,
w) > n + 2 by Corollary 3.3. The result follows directly from Theorem 3.4. O

The next corollary is immediate from Theorem 5.1.

Corollary 5.1. Let A and T be stably equivalent of adjoint type induced by bimodules x Mr and Ny,
and let w be a Wakamatsu tilting A-module and X a A-module. Then
(1) X is an w-oco-torsionfree A-module if and only if N ®x X is an N ®, w-oo-torsionfree I'-module.
(2) X is an w-oo-torsionfree A-module if and only if M Qr ®,X is an M Qr N Q4 w-co-torsionfree
I"-module.

Recall that a subcategory C of mod A is called extension-closed if the middle terms of any short
exact sequence 0 — X; — X, — X3 — 0 are in C, provided the end terms X; and X3 are in C.
More detail about the extension closure of the category of modules consisting of relative n-torsionfree
modules can be found in [16]. The following gives the transfer of the extension closedness of a
subcategory of A-modules consisting of w-n-torsionfree modules.

Proposition 5.1. Let A and T be stably equivalent of adjoint type induced by bimodules x My and rNx
and let n be a positive integer, and let w be a A-modules satisfying Ext/l\(w, w) = 0 and fadimyw > n+2.
Then T (M) is closed under extensions if and only if so is T N )-

Proof. Assume that 7(A) is closed under extensions, and let
0—>Y1—>Y2—>Y3—>0 (51)

be an exact sequence in mod I', where Y, and Y3 are N ®p w-n-torsionfree I'-modules. Applying M ®r —
to the sequence (5.1) induces a short exact sequence of A-modules

0—>M®1"Y1—>M®1"Y2—>M®1"Y3—>0.

By Theorem 5.1 (1), one has M ®r Y, and M ®r Y5 are M ®- N ®, w-n-torsionfree A-modules. So, by
Theorem 5.1(2), one gets M Qr Y; and M Qr Y; are w-n-torsionfree A-modules. By assumption, we
obtain that M ®r Y, is a w-n-torsionfree A-module. It follows from Theorem 5.1(1) that N @, M ®r Y,
is an N ®, w-n-torsionfree I'-module. By Theorem 5.1(2) again, we obtain Y, which is also an N ®, w-
n-torsionfree I'-module as regards.

Similarly, we can prove that 7 j(A) is closed under extensions, when 7y, (I') does so. O

Theorem 5.2. Let A and T be stably equivalent of adjoint type induced by bimodules x Mr and Ny,
and let w be a Wakamatsu tilting A-module and X a A-module. Then

(1) X has generalized Gorenstein dimension zero with respect to w if and only if N @ X has
generalized Gorenstein dimension zero with respect to N ®, w.

(2) X has generalized Gorenstein dimension zero with respect to w if and only if M & N ®, X has
generalized Gorenstein dimension zero with respect to M ®r N ®, w.
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Proof. Since w is a Wakamatsu tilting A-module, by Proposition 4.1, one obtains that N ®, w is a
Wakamatsu tilting I-module and M ® N ®, w is a Wakamatsu tilting A-module. According to [5,
Lemma 5.1], a A-module X has generalized Gorenstein dimension zero with respect to a Wakamatsu
tilting A-module w if and only if Extlz\1 (X, w) = 0 and X is an w-oo-torsionfree A-module. This result
follows directly from Lemma 3.1 and Theorem 5.1. O

Let w be a Wakamatsu tilting A-module. Recall from that A-module X is said to have generalized
Gorenstein dimension with respect to w less than or equal to n, denoted by G-dim,X < n, if there is
an exact sequence

0-G, -G,y > ->2G>Gy—»>X-0

with each G; € G,(A). If n is the least nonnegative integer for which such a sequence exists, then
G-dim,(X) = n, and if there is no such », then G-dim,,(X) = oo.

Proposition 5.2. Let A and T be stably equivalent of adjoint type induced by bimodules x My and N,
and let w be a Wakamatsu tilting A-module and X a A-module. Then

G-dim,(X) = G-dimyg, (N ®4 X).

Proof. Without loss of generality, we assume that G-dimyg, (N ®x X) = n. Then there is an exact
sequence in mod A

0-G,—»G,.1—> -G »Gy—>X—-0 (5.2)

such that G; € G,(A) for each 0 < i < n. Applying the exact functor N ®, — to the sequence (5.2)
induces an exact sequence of I'-modules

0—>N®AG,,—>N®AG,1_1—>"'—>N®AG1%N®AG0—>N®AX—>O (53)

with each N ®, G; € Gng,o(I'). This implies G-dimyg, ,(N ®4 X) < n.

From the above step, one obtains G-dimyg.yg,w(M ®r N &) X) < G-dimpg,,(N ®4 X). By
Lemma 2.4(4), there exists a A-module isomorphism M @ N ®, X = X & P ®, X, where P is a
projective A-bimodule. Define Px = P ®, X. Then Py is a projective A-module by Lemma 2.4(2). We
assume that G-dimyg,ne,w(M & N ®5 X) = m. Thus, there exists an exact sequence

05V, BV, Bvi iy Sxer,—0 (4

with each V; € Gy ng,w(A). By Theorem 5.4(2), one has V; € G,(A) for any 0 < i < m. Taking
T = ker fj, the sequence (5.4) induces the following exact sequences:

0T >V B XePy—0  (55)

and
05V BV, S Bvisrs0 (6

AIMS Mathematics Volume 10, Issue 9, 19994-20009.
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By pullback, we have the following exact commutative diagram:

0 0
0 T L Py 0
|
0 T Vo X&Py——=0
X X
0 0

which induces an exact sequences:

because Py is projective. Combining the sequences (5.6) and (5.7), one obtains a long exact sequence

Oﬁvmﬁ)vm—lf’i)lzvl@PX_)VO—)X—)O (58)
Noting that Py is projective, we have Px € G,(A). Due to [14, Lemma 5.9], it follows V,® Py € G, (A).
Thus, we have G-dim,,(X) < m. We thus prove this proposition by the above discussion. O

In case pw = A A, the generalized Gorenstein dimension with respect to w of a A-module X is just
the Gorenstein projective dimension of X defined by [1], denoted by G-dim X. Due to Proposition 4.19,
we have the following corollary, which is a result in [19, Corollary 4.5].

Corollary 5.2. Let A and T be stably equivalent of adjoint type induced by bimodules x My and rN.
Suppose that X is a A-module. Then G-dimX < n if and only if G-dim(N @, X) < n.

We conclude with an example to illustrate our results.
Example: Let k be an algebraically closed field. And let A and I" be finite-dimensional k-algebras
given by the following quivers with relations

(07
A : 2 ; with relation afaB =0
B

and

r i O ; O, withrelation xy=xz=zy=2"—yx=0.
y

Then, A and I' are stably equivalent of adjoint type induced by bimodules M and N, (see

[19, Example, P581] and [23, Example 1] for details). Note that A is a Nakayama algebra, and

indecomposable projective and injective A-modules are

2

P(1) = ,P(Q2) = =12) and I(1)=

N =N =
N = N =
—_—N = N

AIMS Mathematics Volume 10, Issue 9, 19994-20009.
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and S(2) = (2) is a simple A-module. Thus, we obtain the minimal injective resolution of P(1):
0-P1)>IR2)—>12)—> I(1) -0, (5.9)
and the minimal injective resolution of S (2) :
0-82)—-12)—-I(1)—0. (5.10)

(1) A and T satisfy the Wakamatsu tilting conjecture.

(2) Let w = I(1) ® I(2). Then w is a 2-tilting A-module, and N ®, w is a 2-tilting I'-module.

(3) S (2) has generalized Gorenstein dimension zero with respect to w, and N®, S (2) has generalized
Gorenstein dimension zero with respect to N ®, w.

Proof. (1) From the sequence (5.9), one gets idaA = 2 and pd, /(1) = 2. Similarly, we have idA, =
2. Thus, A is a Gorenstein algebra with idp\A = idA, = 2. According to [21, Proposition 3.2], a
Wakamatsu tilting A-module w is a tilting module provided idyA < co. Thus, one gets A satisfying
the Wakamatsu tilting conjecture. Therefore, I" also satisfying the Wakamatsu tilting conjecture by
Theorem 4.4.

(2) By the definition of tilting modules, we obtain that w is a 2-tilting A-module, since P(2) is a
projective-injective module. And hence, N ®, w is a 2-tilting I'-module by Lemma 2.2.

(3) Noting that w is a tilting and injective A-module, then, from the sequence (5.10), one
gets Lapp,,S(2) = oo and Extif1 (5 (2), w) = 0. It follows from [5, Lemma 5.1] that S (2) has generalized
Gorenstein dimension zero with respect to w. By Theorem 5.4, N ®, S(2) has generalized Gorenstein
dimension zero with respect to N ®, w. O

6. Conclusions

In this study, we mainly show that w-left approximation dimensions of modules, Wakamatsu tilting
modules, Wakamatsu tilting conjectures, relative n-torsionfree modules, and generalized Gorenstein
dimensions of modules are preserved under the stable equivalences of adjoint type. In future work, we
will study those invariants hold under symmetric separable equivalences.
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