This paper was dedicated to researching a class of fractional Kirchhoff wave models involving a logarithmic source and strong damping term. We have proven the local existence and uniqueness of weak solutions through combining contraction mapping theory with Faedo-Galerkin's method. Based on the framework of a potential well and under suitable conditions, an exponential decay estimate of global weak solutions was established. Finally, the result of the finite time blow-up was obtained.
Citation: Aihui Sun, Hui Xu. Decay estimate and blow-up for fractional Kirchhoff wave equations involving a logarithmic source[J]. AIMS Mathematics, 2025, 10(6): 14032-14054. doi: 10.3934/math.2025631
This paper was dedicated to researching a class of fractional Kirchhoff wave models involving a logarithmic source and strong damping term. We have proven the local existence and uniqueness of weak solutions through combining contraction mapping theory with Faedo-Galerkin's method. Based on the framework of a potential well and under suitable conditions, an exponential decay estimate of global weak solutions was established. Finally, the result of the finite time blow-up was obtained.
| [1] |
M. L. Liao, Q. Liu, H. L. Ye, Global existence and blow-up of weak solutions for a class of fractional p-Laplacian evolution equations, Adv. Nonlinear Anal., 9 (2022), 1569–1591. https://doi.org/10.1515/anona-2020-0066 doi: 10.1515/anona-2020-0066
|
| [2] |
T. Boudjeriou, Global existence and blow-up for the fractional p-Laplacian with logarithmic nonlinearity, Adv. Nonlinear Anal., 17 (2020), 1–24. https://doi.org/10.1007/s00009-020-01584-6 doi: 10.1007/s00009-020-01584-6
|
| [3] |
F. G. Zeng, P. Shi, M. Jiang, Global existence and finite time blow-up for a class of fractional $ p $-Laplacian Kirchhoff type equations with logarithmic nonlinearity, AIMS Math., 6 (2021), 2559–2578. https://doi.org/10.3934/math.2021155 doi: 10.3934/math.2021155
|
| [4] |
W. H. Yang, J. Zhou, Global attractors of the degenerate fractional Kirchhoff wave equation with structural damping or strong damping, Adv. Nonlinear Anal., 11 (2022), 993–1029. https://doi.org/10.1515/anona-2022-0226 doi: 10.1515/anona-2022-0226
|
| [5] |
M. L. Liao, Z. Tan, Blow-up and energy decay for a class of wave equations with nonlocal Kirchhoff-type diffusion and weak damping, Math. Method Appl. Sci., 47 (2024), 516–534. https://doi.org/10.1002/mma.9668 doi: 10.1002/mma.9668
|
| [6] |
N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 4-6 (2000), 298–305. https://doi.org/10.1016/S0375-9601(00)00201-2 doi: 10.1016/S0375-9601(00)00201-2
|
| [7] | D. Applebaum, Lévy processes from probability to finance and quantum groups, Notices AMS, 51 (2004), 1336–1347. |
| [8] | L. Caffarelli, Non-local diffusions, drifts and games, Nonlinear Partial Differential Equations: The Abel Symposium 2010, Springer, Berlin, Heidelberg, 2012, 37–52. https://doi.org/10.1007/978-3-642-25361-4_3 |
| [9] |
R. E. Showalter, Nonlinear degenerate evolution equations and partial differential equations of mixed type, SIAM J. Math. Anal., 6 (1975), 25–42. https://doi.org/10.1137/0506004 doi: 10.1137/0506004
|
| [10] | N. H. Tuan, On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type, Discrete Cont. Dyn.-B, 26 (2021). https://doi.org/10.3934/dcdsb.2020354 |
| [11] |
A. S. Carasso, J. G. Sanderson, J. M. Hyman, Digital removal of random media image degradations by solving the diffusion equation backwards in time, SIAM J. Numer. Anal., 15 (1978), 344–367. https://doi.org/10.1137/0715023 doi: 10.1137/0715023
|
| [12] |
T. Caraballo, M. Herrera-Cobos, P. Marín-Rubio, Robustness of nonautonomous attractors for a family of nonlocal reaction–diffusion equations without uniqueness, Nonlinear Dyn., 84 (2016), 35–50. https://doi.org/10.1007/s11071-015-2200-4 doi: 10.1007/s11071-015-2200-4
|
| [13] | G. Kirchhoff, Mechanik, Leipzig: Teubner, 1883. |
| [14] |
S. T. Wu, L. Y. Tsai, Blow-up of solutions for some non-linear wave equations of Kirchhoff type with some dissipation, Nonlinear Anal.-Theor., 65 (2006), 243–264. https://doi.org/10.1016/j.na.2004.11.023 doi: 10.1016/j.na.2004.11.023
|
| [15] |
H. Yang, Y. Z. Han, Lifespan of solutions to a hyperbolic type Kirchhoff equation with arbitrarily high initial energy, J. Math. Anal. Appl., 510 (2022), 1–17. https://doi.org/10.1016/j.jmaa.2022.126023 doi: 10.1016/j.jmaa.2022.126023
|
| [16] |
K. Ono, Global existence, decay, and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings, J. Differ. Equations, 137 (1997), 273–301. https://doi.org/10.1006/jdeq.1997.3263 doi: 10.1006/jdeq.1997.3263
|
| [17] |
K. Ono, On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation, Math. Method. Appl. Sci., 20 (1997), 151–177. https://doi.org/10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.0.CO;2-0 doi: 10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.0.CO;2-0
|
| [18] |
Y. Yang, Z. B. Fang, On a semilinear wave equation with Kirchhoff-type nonlocal damping terms and logarithmic nonlinearity, Mediterr. J. Math., 20 (2023), 1–26. https://doi.org/10.1007/s00009-022-02221-0 doi: 10.1007/s00009-022-02221-0
|
| [19] |
J. Li, Y. Z. Han, Global existence and finite time blow-up of solutions to a nonlocal p-Laplace equation, Math. Model. Anal., 24 (2019), 195–217. https://doi.org/10.3846/mma.2019.014 doi: 10.3846/mma.2019.014
|
| [20] |
Y. Yang, J. Li, T. Yu, Qualitative analysis of solutions for a class of Kirchhoff equation with linear strong damping term, nonlinear weak damping term and power-type logarithmic source term, Appl. Numer. Math., 141 (2019), 263–285. https://doi.org/10.1016/j.apnum.2019.01.002 doi: 10.1016/j.apnum.2019.01.002
|
| [21] |
H. Yang, F. Ma, W. Gao, Y. Z. Han, Blow-up properties of solutions to a class of p-Kirchhoff evolution equations, Electron. Res. Arch., 30 (2022), 2663–2680. https://doi.org/10.3934/era.2022136 doi: 10.3934/era.2022136
|
| [22] |
Q. T. Zhao, Y. Cao, Initial boundary value problem of pseudo-parabolic Kirchhoff equations with logarithmic nonlinearity, Math. Method Appl. Sci., 47 (2024), 799–816. https://doi.org/10.1002/mma.9684 doi: 10.1002/mma.9684
|
| [23] |
N. Pan, P. Pucci, B. Zhang, Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian, J. Evol. Equ., 18 (2018), 385–409. https://doi.org/10.1007/s00028-017-0406-2 doi: 10.1007/s00028-017-0406-2
|
| [24] |
K. Enqvist, J. McDonald, Q-balls and baryogenesis in the MSSM, Phys. Lett. B, 425 (1998), 309–321. https://doi.org/10.1016/S0370-2693(98)00271-8 doi: 10.1016/S0370-2693(98)00271-8
|
| [25] |
R. Servadei, E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887–898. https://doi.org/10.1016/j.jmaa.2011.12.032 doi: 10.1016/j.jmaa.2011.12.032
|
| [26] |
M. Q. Xiang, B. L. Zhang, M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian, J. Math. Anal. Appl., 424 (2015), 1021–1041. https://doi.org/10.1016/j.jmaa.2014.11.055 doi: 10.1016/j.jmaa.2014.11.055
|
| [27] |
L. C. Nhan, L. X. Truong, Global solution and blow-up for a class of pseudo p-Laplacian evolution equations with logarithmic nonlinearity, Comput. Math. Appl., 73 (2017), 2076–2091. https://doi.org/10.1016/j.camwa.2017.02.030 doi: 10.1016/j.camwa.2017.02.030
|
| [28] | J. L. Lions, Quelques methods de resolution des problem aux limits nonlinears, Paris: Dunod 1969. |
| [29] |
R. Servadei, E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887–898. https://doi.org/10.1016/j.jmaa.2011.12.032 doi: 10.1016/j.jmaa.2011.12.032
|
| [30] | E. Zeidler, Applied functional analysis, Berlin: Springer, 1995. |
| [31] |
R. Servadei, E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105–2137. https://doi.org/10.3934/dcds.2013.33.2105 doi: 10.3934/dcds.2013.33.2105
|
| [32] |
J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. pura Appl., 146 (1986), 65–96. https://doi.org/10.1007/bf01762360 doi: 10.1007/bf01762360
|