Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article

Destruction of solutions for class of wave p(x)bi-Laplace equation with nonlinear dissipation

  • Received: 03 August 2022 Revised: 15 September 2022 Accepted: 22 September 2022 Published: 28 September 2022
  • MSC : 35B35, 35G05, 35Q70, 45D05, 74D99

  • An initial value problem is considered for the nonlinear dissipative wave equation containing the p(x)-bi-Laplacian operator. For this problem, sufficient conditions for the blow-up with nonpositive initial energy of a generalized solution are obtained in finite time where a wide variety of techniques are used.

    Citation: Khaled Zennir, Abderrahmane Beniani, Belhadji Bochra, Loay Alkhalifa. Destruction of solutions for class of wave p(x)bi-Laplace equation with nonlinear dissipation[J]. AIMS Mathematics, 2023, 8(1): 285-294. doi: 10.3934/math.2023013

    Related Papers:

    [1] Salim A. Messaoudi, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi, Mohammed A. Al-Osta . A coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities: Existence, uniqueness, blow-up and a large-time asymptotic behavior. AIMS Mathematics, 2023, 8(4): 7933-7966. doi: 10.3934/math.2023400
    [2] Khaled Kefi, Abdeljabbar Ghanmi, Abdelhakim Sahbani, Mohammed M. Al-Shomrani . Infinitely many solutions for a critical p(x)-Kirchhoff equation with Steklov boundary value. AIMS Mathematics, 2024, 9(10): 28361-28378. doi: 10.3934/math.20241376
    [3] Ahmed Himadan . Well defined extinction time of solutions for a class of weak-viscoelastic parabolic equation with positive initial energy. AIMS Mathematics, 2021, 6(5): 4331-4344. doi: 10.3934/math.2021257
    [4] Sen Ming, Xiaodong Wang, Xiongmei Fan, Xiao Wu . Blow-up of solutions for coupled wave equations with damping terms and derivative nonlinearities. AIMS Mathematics, 2024, 9(10): 26854-26876. doi: 10.3934/math.20241307
    [5] Abdelhamid Mohammed Djaouti, Michael Reissig . Critical regularity of nonlinearities in semilinear effectively damped wave models. AIMS Mathematics, 2023, 8(2): 4764-4785. doi: 10.3934/math.2023236
    [6] Shuhai Zhu . Existence and multiplicity of solutions for a Schrödinger type equations involving the fractional p(x)-Laplacian. AIMS Mathematics, 2023, 8(7): 16320-16339. doi: 10.3934/math.2023836
    [7] Yaxin Zhao, Xiulan Wu . Asymptotic behavior and blow-up of solutions for a nonlocal parabolic equation with a special diffusion process. AIMS Mathematics, 2024, 9(8): 22883-22909. doi: 10.3934/math.20241113
    [8] Xinyue Zhang, Haibo Chen, Jie Yang . Blow up behavior of minimizers for a fractional p-Laplace problem with external potentials and mass critical nonlinearity. AIMS Mathematics, 2025, 10(2): 3597-3622. doi: 10.3934/math.2025166
    [9] Jin Hong, Shaoyong Lai . Blow-up to a shallow water wave model including the Degasperis-Procesi equation. AIMS Mathematics, 2023, 8(11): 25409-25421. doi: 10.3934/math.20231296
    [10] Sen Ming, Jiayi Du, Yaxian Ma . The Cauchy problem for coupled system of the generalized Camassa-Holm equations. AIMS Mathematics, 2022, 7(8): 14738-14755. doi: 10.3934/math.2022810
  • An initial value problem is considered for the nonlinear dissipative wave equation containing the p(x)-bi-Laplacian operator. For this problem, sufficient conditions for the blow-up with nonpositive initial energy of a generalized solution are obtained in finite time where a wide variety of techniques are used.



    Let Ω is a bounded open set in Rn with a sufficiently smooth boundary Ω and outward facing unit normal n, let u(x,t)=u. The purpose of this study is to obtain sufficient conditions to prove the global nonexistence result for initial boundary value problem of wave equation containing the p(x)-bi-Laplacian operator

    {ttu+Δx(div(|Δxu|p(x)2xu))+μ|tu|m2tu=b|u|r2u,xΩ,t>0u=Δxu=0,xΩ,t>0u=u0(x)V(Ω),tu=u1(x)Lp(x)(Ω),xΩ,t=0, (1.1)

    where μ,b are positive constants, the spaces V(Ω) and Lp(x)(Ω) are defined in Definition 1 and (2.1).

    This problem is a mathematical model of wave processes in mathematical physics, taking into account dissipation and the relationship between the different parameters. Recently, new strongly nonlinear dissipative wave equations of the hyperbolic type have been intensively considered in mathematical physics. It should be mentioned that many authors have studied the question of existence, uniqueness, regularity and blow-up of weak solutions for parabolic and elliptic equations involving the p(x)-Laplacian view of its applications in the fields of nonlinear elasticity, fluid dynamics, elastic mechanics etc, see [4,6,8,12,13,15,16,17,20,21] and the references therein.

    In [2], the author established the existence of weak solutions for p(x,t)-Laplacian equation with damping term

    ttu=div(a(x,t)|xu|p(x,t)2xu)+αΔxu+b(x,t)u|u|σ(x,t)2+f(x,t),

    and proved the blow-up of weak solutions with negative initial energy, where α is a nonnegative constant and a,b,p,σ are given functions. Such equations are usually referred as equations with nonstandard growth conditions. It is proved the blow-up result of weak solutions with negative initial energy as well as for certain solutions with positive initial energy to the following equation

    ttudiv(|xu|r(.)2xu)+atu|tu|m(.)2=bu|u|p(.)2,

    In particular case p(x)=2, the problem (1.1) is reduced to the Petrovsky type equation

    {ttu+Δ2xu+μ|tu|m2tu=b|u|r2uu=un=0u(x,0)=u0(x),tu(x,0)=u1(x).

    It is studied where, the author established an existence result and proved that the solution continues to exist globally if mr and blows up in finite time if m<r and the initial energy is negative. Motivated by the above work, we obtain the blow-up results of solution to problem (1.1) for nonpositive initial energy. In order to state our result, we use some ideas introduced in the work of [7,11,14].

    In this section, we recall some definitions and basic properties about the generalized Sobolev and Lebesgue spaces with variable exponents. The reader is referred to [3,5,9,10] for more detailes.

    Denote

    C+(ˉΩ)={p(x):p(x)C(ˉΩ),p(x)>2,for all xˉΩ},

    and

    p=essinfxˉΩp(x), p+=esssupxˉΩp(x).

    Then, the mesurable function

    p:ˉΩ[p,p+](2,),

    satisfies the log-Hölder continuity condition

    |p(x)p(y)|Cln(e+|xy|1),for all x,yΩ.

    For some λ>0 the variable exponent Lebesgue space Lp(x)(Ω) is defined as the set of mesurable functions u:ΩR such that Pp(.)(λu)< with respect to the Luxemburg norm

    (2.1)

    where

    \begin{equation*} \mathcal{P}_{p(.)}( u) = \int_{\Omega }|u(x)|^{p(x)}dx, \quad \Vert u \Vert{}_{p(x)}: = \Vert u \Vert{}_{L^{p(x)}(\Omega)}. \end{equation*}

    The space (L^{p(x)}(\Omega), ||.||_{p(x)}) is separable, uniformly convex, reflexive and its dual space is L^{q(x)}(\Omega) where \frac{1}{p(x)} + \frac{1}{q(x)} = 1, { for \ all\ } x \in \Omega .

    Morever if u \in L^{p(x)}(\Omega) and v \in L^{q(x)}(\Omega) then u v \in L^{s(x)}(\Omega) and we have the generalised Hölder's type inequality

    \begin{equation*} \Vert u v \Vert_{s(.)}\leq 2 \Vert u \Vert_{p(.)}.\Vert v \Vert_{q(.)}, \quad \frac{1}{s(x)} = \frac{1}{p(x)}+\frac{1}{q(x)}. \end{equation*}

    Lemma 1. If p is a mesurable function on \Omega then for any u \in L^{p(x)}(\Omega) we have

    \begin{equation*} \min\left(\Vert u\Vert_{p(x)}^{p-}, \Vert u\Vert_{p(x)}^{p+} \right) \leq \mathcal{P}_{p(.)}( u) \leq \max\left(\Vert u\Vert_{p(x)}^{p-}, \Vert u\Vert_{p(x)}^{p+} \right). \end{equation*}

    For any nonnegative integer k the variable exponent Sobolev space is defined

    \begin{eqnarray} W^{k, p(x)}(\Omega) = \left\{ u \in L^{p(x)}(\Omega ) :| \alpha| \leq K \Longrightarrow D^{\alpha} u \in L^{p(x)}(\Omega ) \right\}, \end{eqnarray}

    endowed with the norm

    \Vert u \Vert_{W^{k, p(x)}} = \sum\limits_{|\alpha|\leq k} |D^{\alpha} u|_{L^{p(x)}(\Omega)}.

    Then W^{k, p(x)}(\Omega) is defined as the closure of C^{\infty} _{0}(\Omega) with respect to the norm \Vert u \Vert_{W^{k, p(x)}} . In this way L^{p(x)}(\Omega), W^{k, p(x)}(\Omega) and W^{k, p(x)}_{0}(\Omega) are separable and reflexive Banach spaces.

    We shall frequently use the generalized Poincaré's inequality in W^{1, p(x)}_{0}(\Omega) given by

    \begin{eqnarray} \exists C > 0, \Vert u \Vert_{p(x)} \leq C \Vert \nabla_x u\Vert_{p(x)}, \quad, { for \ all\ } u \in W^{1, p(x)}_{0}(\Omega). \end{eqnarray}

    Definition 1. We define the function space of our problem and its norm as follows

    \begin{eqnarray} \mathcal{V}(\Omega) = \left\{ u| u \in W^{2, p(x)}(\Omega) \cap W^{1, p(x)}_{0}(\Omega), |\Delta_x u| \in W^{1, p(x)}_{0}(\Omega) \right\}, \end{eqnarray}

    with the norm

    \begin{eqnarray} \Vert u \Vert_{\mathcal{V}(\Omega)} = \Vert u \Vert_{W^{1, p(x)}_{0}(\Omega)} + \Vert u \Vert_{W^{2, p(x)}(\Omega)} + \Vert \Delta_x u \Vert_{W^{1, p(x)}_{0}(\Omega)}. \end{eqnarray}

    Lemma 2. [18,Theorem 4.4] Let \Omega is a bounded domain with Lipschitz boundary. In the space X = W^{2, p(x)}(\Omega) \cap W^{1, p(x)}_{0}(\Omega) the norm \Vert. \Vert _{X} and \Vert \Delta_x. \Vert_{L^{p(x)}(\Omega)} are equivalent norms.

    Lemma 3. [1,Theorem 5.4] Let \Omega be a domain in \mathbb{R}^{n} that has the cone property then for n > p and p \leq q \leq \frac{np}{n-p} there exist the following imbeddings

    \begin{equation} W^{2, p}(\Omega) \cap W^{1, p}_{0}(\Omega) \hookrightarrow w^{1, q} _{0}(\Omega) \hookrightarrow L^{q}(\Omega). \end{equation} (2.2)

    Lemma 4. [19,Lemma 2.1] Assume that L(t) is is a twice continuously differentiable function satisfying

    \begin{eqnarray} \left\{ \begin{array}{ll} L''(t) +L' (t) \geq C_{0}(t+\theta)^{\beta}L^{1+\alpha}(t), \quad t > 0\\ L(0) > 0, L' (0) \geq 0, \end{array} \right. \end{eqnarray}

    where C_{0}, \theta > 0 , -1 < \beta \leq 0 , \alpha > 0 are constants. Then L(t) blows up in finite time.

    Theorem 1. Let u be an energy weak solution to problem (1.1). Suppose that

    \begin{equation*} 2 \leq m \leq r \quad {and} \quad 2 \leq p(x) \leq \frac{2n}{n-2}. \end{equation*}

    Assume further that

    \begin{eqnarray} E(0) = \frac{1}{2}\int_{\Omega}|u_{1}|^{2}dx + \int_{\Omega} \frac{1}{p(x)}|\Delta_x u_{0}|^{p(x)}dx - \frac{b}{r} \int_{\Omega}|u_{0}|^{r}dx \leq 0, \end{eqnarray}

    and

    \begin{eqnarray} \int_{\Omega } u_{0}u_{1}dx \geq 0, \end{eqnarray} (3.1)

    then the solution u blows up on the finite interval (0, t_{max}) .

    Proof. Multiplying Eq (1.1) by \partial_{t}u , and integration by parts over \Omega , one has

    \begin{eqnarray} \partial_{t}\int_{\Omega} \frac{1}{2}|\partial_{t}u |^{2}dx - \int_{\Omega} div(\Delta_x \partial_{t}u \nabla_x u)|\Delta_x u|^{p(x)-2}dx\\+\partial_{t}\int_{\Omega} \frac{1}{p(x)}|\Delta_x u|^{p(x)}dx + \mu \int_{\Omega}|\partial_{t}u |^{m}dx = \partial_{t}\int_{\Omega} \frac{b}{r} |u|^{r}dx. \end{eqnarray}

    So the corresponding energy of solution to (1.1) is defined by

    \begin{eqnarray} E(t) = \frac{1}{2}\int_{\Omega}|\partial_{t}u |^{2}dx + \int_{\Omega} \frac{1}{p(x)}|\Delta_x u|^{p(x)}dx - \frac{b}{r} \int_{\Omega}|u|^{r}dx. \end{eqnarray} (3.2)

    In addition

    \begin{eqnarray} \partial_{t}E(t) = \int_{\Omega} div(\Delta_x \partial_{t}u \nabla_x u)|\Delta_x u|^{p(x)-2}dx - \mu \int_{\Omega}|\partial_{t}u |^{m}dx. \end{eqnarray} (3.3)

    Which gives in turn the following energy identity

    \begin{eqnarray} E(t) + \mu \int_{0}^{t} \int_{\Omega}|\partial_{t}u |^{m}dxds = E(0)+ \int_{0}^{t}\int_{\Omega} div(\Delta_x \partial_{t}u \nabla_x u)|\Delta_x u|^{p(x)-2}dxds. \end{eqnarray} (3.4)

    We define the sets

    \Omega_{-} = \left\{ x \in \Omega: |\Delta_x u| < 1 \right\},

    and

    \Omega_{+} = \left\{ x \in \Omega: |\Delta_x u| \geq 1 \right\}.

    So by applying Hölder and Young inequality we arrive at

    \begin{eqnarray} \begin{aligned} &\left|\int_{\Omega} div(\Delta_x \partial_{t}u \nabla_x u)|\Delta_x u|^{p(x)-2}dx\right| \\ & = \left|\int_{\Omega} \nabla_x(\Delta_x \partial_{t}u ) \nabla_x u|\Delta_x u|^{p(x)-2}dx + \int_{\Omega} \Delta_x \partial_{t}u \Delta_x u|\Delta_x u|^{p(x)-2}dx \right| \\ & \leq \Vert \nabla_x(\Delta_x \partial_{t}u ) \Vert _{2}.\Vert \nabla_x u \Vert _{ \frac{2p^{-}}{4-p^{-}} }. \Vert \Delta_x u \Vert _{p^{-}}^{p^{-}-2} \\ & + \Vert \nabla_x(\Delta_x \partial_{t}u ) \Vert _{2}.\Vert \nabla_x u \Vert _{\frac{2p^{+}}{4-p^{+}} }. \Vert \Delta_x u \Vert _{p^{+}}^{p^{+}-2} \\ & + \frac{1}{p^{-}}\Vert \Delta_x \partial_{t}u \Vert _{p^{-}}^{p^{-} } + \frac{p^{-}-1}{p^{-}}\Vert \Delta_x u \Vert _{p^{-}}^{p^{-}} +\frac{1}{p^{+}}\Vert \Delta_x \partial_{t}u \Vert _{p^{+}}^{p^{+} } + \frac{p^{+}-1}{p^{-}}\Vert \Delta_x u \Vert _{p^{+}}^{p^{+}}. \end{aligned} \end{eqnarray}

    Clearly since 2 \leq p^{-} \leq p(x) \leq p^{+} \leq \frac{2n}{n-2} then by exploiting lemma 3, we have

    \begin{eqnarray} \begin{aligned} &\left|\int_{\Omega} div(\Delta_x \partial_{t}u \nabla_x u)|\Delta_x u|^{p(x)-2}dx\right| \\ & \leq C_{0} \Vert \nabla_x(\Delta_x \partial_{t}u ) \Vert _{p^{-}}. \Vert \Delta_x u \Vert _{p^{-}}^{p^{-}-1} \\ & + C_{1} \Vert \nabla_x(\Delta_x \partial_{t}u ) \Vert _{p^{+}}. \Vert \Delta_x u \Vert _{p^{+}}^{p^{+}-1} \\ & + \frac{1}{p^{-}}\Vert \Delta_x \partial_{t}u \Vert _{p^{-}}^{p^{-} } + \frac{p^{-}-1}{p^{-}}\Vert \Delta_x u \Vert _{p^{-}}^{p^{-}}\\ & +\frac{1}{p^{+}}\Vert \Delta_x \partial_{t}u \Vert _{p^{+}}^{p^{+} } + \frac{p^{+}-1}{p^{-}}\Vert \Delta_x u \Vert _{p^{+}}^{p^{+}}. \end{aligned} \end{eqnarray}

    Because \partial_{t}u is regular and by Young inequality we obtain

    \begin{eqnarray} \begin{aligned} \left|\int_{\Omega} div(\Delta_x \partial_{t}u \nabla_x u)|\Delta_x u|^{p(x)-2}dx\right| & \leq k_{0} \left(\Vert \nabla_x(\Delta_x \partial_{t}u ) \Vert _{p^{-}}^{p^{-}}+ \Vert \nabla_x(\Delta_x u) \Vert _{p^{-}}^{p^{-}} \right) \\ & + k_{1}\left(\Vert \nabla_x(\Delta_x \partial_{t}u ) \Vert _{p^{+}}^{p^{+} } + \Vert \nabla_x(\Delta_x u) \Vert _{p^{+}}^{p^{+} } \right). \\ \end{aligned} \end{eqnarray}

    At this step we will assume that

    \begin{eqnarray} \sup\limits_{0 \leq t \leq t_{max}}\left(\Vert \nabla_x(\Delta_x \partial_{t}u ) \Vert _{p^{-}}^{p^{-}}+ \Vert \nabla_x(\Delta_x u) \Vert _{p^{-}}^{p^{-}}+ \Vert \nabla_x(\Delta_x \partial_{t}u ) \Vert _{p^{+}}^{p^{+} } + \Vert \nabla_x(\Delta_x u) \Vert _{p^{+}}^{p^{+} } \right) \leq \frac{|E(0)|}{k t_{max}}, \end{eqnarray} (3.5)

    where k = \max(k_{0}, k_{1}) . We notice that estimate (3.5) will be important to prove the blow-up result. Therfore

    \begin{equation*} \left|\int_{0}^{t}\int_{\Omega} div(\Delta_x \partial_{t}u \nabla_x u)|\Delta_x u|^{p(x)-2}dxds\right| \leq |E(0)|, \quad 0 \leq t \leq t_{max}. \end{equation*}

    Consequently by virtue of (3.4) we derive the following estimate for the energy functional

    \begin{eqnarray} E(t) + \mu \int_{0}^{t} \int_{\Omega}|\partial_{t}u |^{m}dxds \leq E(0) + |E(0)|. \end{eqnarray} (3.6)

    Suppose that E(0) \leq 0 then it follows from (3.6) that E(t) \leq 0 . Define the auxiliary function L(t) by the following formula

    \begin{equation} L(t) = \frac{1}{2} \int_{\Omega } |u(x, t)|^{2}dx +N \int_{0}^{t} H(s) ds +N(t+t_{max}), \end{equation} (3.7)

    where N > 0 is to be specified later and H(t) is given by

    \begin{equation} H(t) = \alpha |E(0)|t-E(t), \quad \theta \geq \frac{1}{k t_{max}}. \end{equation} (3.8)

    We differentiate (3.8) and use the Eq (3.4) to arrive at

    \begin{equation} \partial_{t}H(t) = \mu \int_{0}^{t}\Vert \partial_t u \Vert_{m}^{m} -\int_{0}^{t} \int_{\Omega} div(\Delta_x \partial_t u \nabla_x u)|\Delta_x u|^{p(x)-2}dx -(1+\theta t) E(0). \end{equation} (3.9)

    Therfore

    \begin{equation} \partial_{t}H(t) \geq \Vert \partial_t u \Vert_{m}^{m} + \left( \frac{1}{k t_{max} } - \theta \right)E(0). \end{equation} (3.10)

    From (3.8) we see that H is a nondecreasing function and

    \begin{equation*} H(0) = -E(0) > 0. \end{equation*}

    Differentiating (3.7) twice leads to

    \begin{eqnarray} \begin{aligned} L' (t)& = \int_{\Omega } u\partial_{t}u dx + N H(t) + N \\ L''(t)& = \int_{\Omega } u\partial_{tt}u dx + \int_{\Omega }|\partial_{t}u |^{2}dx + N \partial_{t}H(t). \end{aligned} \end{eqnarray} (3.11)

    It's clear from (3.1) and (3.11) that

    \begin{eqnarray} L(0) > 0, \quad \partial_{t} L(0) > 0. \end{eqnarray}

    Now, by using Young's inequality we have

    \begin{eqnarray} \begin{aligned} \int_{\Omega }|\Delta_x u|^{p(x)-2}|\nabla_x u| |\nabla_x(\Delta_x u)| dx & \leq C \left( \Vert \nabla_x (\Delta_x u) \Vert _{p^{-}}^{p^{-}} +\Vert \nabla_x (\Delta_x u) \Vert _{p^{+}}^{p^{+}} \right). \end{aligned} \end{eqnarray}

    Again Young's inequality yields

    \begin{equation} \int_{\Omega} u\partial_t u |\partial_t u|^{m-2}dx \leq \frac{\beta ^{m}}{m} \Vert u \Vert _{m}^{m} + \frac{m-1}{m}\beta ^{-m/m-1} \Vert \partial_t u \Vert _{m}^{m}, \end{equation} (3.12)

    where \beta in an arbitrary nonnegative constant to be specified later. By combining (3.3) and (3.5) we get

    \begin{equation} \begin{aligned} \mu \Vert \partial_t u \Vert _{m}^{m} & = -\partial_{t} E(t) - \int_{\Omega} div(\Delta_x \partial_t u \nabla_x u)|\Delta_x u|^{p(x)-2} dx\\ & \leq -\partial_{t}E(t) - \frac{E(0)}{t_{max}}\\ & \leq \partial_{t} H (t) + \alpha E(0) + \frac{H(0)}{t_{\max}} \\ & \leq \partial_{t} H (t) + \frac{H(t)}{t_{\max}}. \end{aligned} \end{equation} (3.13)

    Inserting (3.13) into (3.12) leads to

    \begin{equation} \int_{\Omega} u\partial_t u |\partial_t u|^{m-2}dx \leq \frac{\beta ^{m}}{m} \Vert u \Vert _{m}^{m} + \frac{m-1}{m}\beta ^{-m/m-1} \left( \partial_{t}H(t) + \frac{H(t)}{t_{\max}} \right). \end{equation} (3.14)

    By virtue of (3.5) we have

    \begin{equation} -\left(\Vert \nabla_x (\Delta_x u) \Vert _{L^{p^{-}}(\Omega)}^{p^{-}}+\Vert \nabla_x (\Delta_x u) \Vert _{L^{p^{+}}(\Omega)}^{p^{+}} \right) \geq \frac{E(0)}{kt_{max}} \geq -\frac{H(t)}{kt_{max}}. \end{equation} (3.15)

    We define the sets

    \Omega_{-} = \left\{ x \in \Omega: |u| < 1 \right\},

    and

    \Omega_{+} = \left\{ x \in \Omega: |u| \geq 1 \right\}.

    So

    \begin{equation} \begin{aligned} \int_{\Omega} |u|^{m}dx & = \int_{\Omega_{-}} |u|^{m}dx + \int_{\Omega_{+}} |u|^{m}dx \leq \int_{\Omega_{-}} |u|^{2}dx + \int_{\Omega_{+}} |u|^{r}dx. \end{aligned} \end{equation} (3.16)

    We first note that

    \begin{equation*} \int_{\Omega} |u|^{2}dx \leq C_{0}\int_{\Omega} \left(|u|^{\frac{2p^{+}}{4-p^{+}}}dx \right)^{\frac{4-p^{+}}{p^{+}}} \leq C_{1} \left(1+ \Vert \nabla_x \Delta_x u \Vert_{L^{p^{+}}(\Omega)}^{p^{+}} \right). \end{equation*}

    Therfore from (3.15) we have

    \begin{equation} \begin{aligned} \int_{\Omega} |u|^{m}dx &\leq \Delta_x \left( 1+\Vert \nabla_x \Delta_x u \Vert_{p^{-}}^{p^{-}} + \Vert \nabla_x \Delta_x u \Vert_{p^{+}}^{p^{+}} + \Vert u\Vert_{r}^{r} \right) \\ & \leq \Delta_x \left( 1+ \frac{H(t)}{kt_{max}} + \Vert u\Vert_{r}^{r} \right). \end{aligned} \end{equation} (3.17)

    Consequently

    \begin{equation} \begin{aligned} L''(t) + L'(t)& = \int_{\Omega } u \Delta_x(div(|\Delta_x u|^{p(x)-2}\nabla_x u))dx - \mu |\partial_t u|^{m-2}\partial_t uu + b |u|^{r}dx\\ &+ \Vert \partial_t u\Vert_{2}^{2} + \int_{\Omega } u\partial_t udx + N H(t) + N \partial_{t}H(t) +N \\ & \geq -C \left(\Vert \nabla_x (\Delta_x u) \Vert _{p^{-}}^{p^{-}}+\Vert \nabla_x (\Delta_x u) \Vert _{p^{+}}^{p^{+}} \right)\\ & - \mu \left( \frac{\beta ^{m}}{m} \Vert u \Vert _{m}^{m} + \frac{m-1}{m}\beta ^{-m/m-1} \Vert \partial_t u \Vert _{m}^{m} \right) + b\Vert u \Vert_{r}^{r} \\ & + \Vert \partial_t u\Vert_{2}^{2} + \int_{\Omega } u\partial_t udx + N H(t) + N\partial_{t} H(t) +N. \\ \end{aligned} \end{equation} (3.18)

    Combination of (3.15) and (3.2) leads to

    \begin{equation} \begin{aligned} \int_{\Omega } u\partial_t udx &\leq \frac{1}{2}\Vert \partial_t u \Vert_{2}^{2}+ \sigma \left( 1+ \Vert \nabla_x \Delta_x u \Vert_{p^{-}}^{p^{-}} \right) \\ & \leq \frac{1}{2}\Vert \partial_t u \Vert_{2}^{2}+ \sigma\left( 1+ \frac{H(t)}{kt_{max}} \right). \end{aligned} \end{equation} (3.19)

    Substituting (3.14), (3.17) and (3.19) into (3.18) we obtain

    \begin{equation} \begin{aligned} L''(t) +L'(t)& \geq \left(N -\frac{C}{kt_{max}} - \mu \beta^{-m/m-1}\frac{m-1}{m t_{max}} - \mu \Delta_x \frac{\beta ^{m}}{m kt_{max}} - \frac{\sigma }{kt_{max}}\right)H(t) \\ & +\frac{1}{2}\Vert \partial_t u\Vert_{2}^{2} + \left( N - \mu \frac{m-1}{m } \beta^{-m/m-1} \right) H'(t) \\ & +\left(b-\mu \frac{\beta ^{m}}{m }\Delta_x \right)\Vert u \Vert_{r}^{r} + N - \mu \Delta_x \frac{\beta ^{m}}{m} - \sigma. \end{aligned} \end{equation} (3.20)

    Now we pick \beta so small that

    \begin{equation} b-\mu \frac{\beta ^{m}}{m }\Delta_x > 0. \end{equation} (3.21)

    Once \beta is chosen we select N large enough that

    \begin{equation} \begin{aligned} N -\frac{C}{kt_{max}} - \mu \beta^{-m/m-1}\frac{m-1}{m t_{max}} - \mu \Delta_x \frac{\beta ^{m}}{m kt_{max}} - \frac{\sigma }{kt_{max}} & > 0 \\ N - \mu \frac{m-1}{m } \beta^{-m/m-1}& > 0 \\ N - \mu \Delta_x \frac{\beta ^{m}}{m} - \sigma & > 0. \end{aligned} \end{equation} (3.22)

    Therfore from (3.21) and (3.22) there exists a constant \gamma such that (3.20) takes the form

    \begin{equation} L''(t) L(t) +L'(t)L(t) \geq \gamma \Vert u \Vert_{L^{r}(\Omega)}^{r}. \end{equation} (3.23)

    Now we use Hölder inequality to estimate the term \Vert u \Vert_{L^{r}(\Omega)}^{r} as follows

    \begin{equation} \begin{aligned} \int_{\Omega } |u|^{2}dx &\leq |\Omega|^{r-2/r}.\Vert u\Vert_{r}^{2}\\ & \leq \left(N(t+t_{max})\right)^{r-2/r}|\Omega|^{r-2/r}.\Vert u\Vert_{r}^{2}. \end{aligned} \end{equation} (3.24)

    Hence

    \begin{equation} \Vert u\Vert_{r}^{r} \geq |\Omega|^{2-r/2}.\left(N(t+t_{max})\right)^{2-r/2}.\Vert u\Vert_{2}^{r}, \end{equation} (3.25)

    and from the definition of L(t) in (3.7) we have

    \begin{equation} \begin{aligned} (2L(t))^{r/2} &\leq \Vert u\Vert_{2}^{r} + \left(N \int_{0}^{t}H(s) ds + N(t+t_{max}) \right)^{r/2} \\ & \leq 2^{r-2/2}\left( \Vert u\Vert_{2}^{r} + \left(N \int_{0}^{t}H(s) ds +N(t+t_{max}) \right)^{r/2} \right). \end{aligned} \end{equation} (3.26)

    This gives

    \begin{equation} \Vert u\Vert_{2}^{r} \geq 2 (L(t))^{r/2} - \left( N\int_{0}^{t}H(s) ds +N(t+t_{max}) \right)^{r/2} \geq (L(t))^{r/2}. \end{equation} (3.27)

    Combining (3.23) and (3.27) yields

    \begin{equation} L''(t) + L'(t) \geq \gamma |\Omega|^{2-r/2}\left(N(t+t_{max})\right)^{2-r/2}(L(t))^{r/2}. \end{equation} (3.28)

    We see that the requirements of theorem 1 are satisfied with

    \begin{equation} -1 < \frac{2-r}{2} \leq 0, \quad \alpha = \frac{r-2}{2} > 0, \quad C_{0} = \gamma |\Omega|^{2-r/2}N^{2-r/2} > 0. \end{equation} (3.29)

    Therefore, L blows up in finite time. This completes the proof.

    Let us pass to a survey of the results and methods of proving non-existence and blow-up theorems applicable to equations of hyperbolic type. Here it is necessary to clarify what is meant by the term "destruction of the solution". By this term, we understand the existence of a finite time moment at which the solution of the evolutionary problem leaves the smoothness class to which this solution belonged on the interval (0, T_{max}) (the smoothness class for which the local solvability theorem is formulated and proved). Looking ahead, we note that in all problems for nonlinear equations considered in the literature, the destruction of the solution is accompanied by the inversion of the norm of the latter to infinity (in the space where we are looking for a solution), however, such behavior of solution is not at all necessary in the concept of destruction.

    The researchers would like to thank the Deanship of Scientific Research, Qassim University for funding the publication of this project.

    The authors declare there is no conflict of interest.



    [1] R. A. Adams, Sobolev spaces, Academic press, 1975.
    [2] S. Antontsev, Wave equation with p(x, t)-Laplacian and damping term: blow-up of solutions, C. R. Mecanique, 339 (2011), 751–755. http://doi.org/10.1016/j.crme.2011.09.001 doi: 10.1016/j.crme.2011.09.001
    [3] A. Benaissa, D. Ouchenane, Kh. Zennir, Blow up of positive initial-energy solutions to systems of nonlinear wave equations with degenerate damping and source terms, Nonlinear studies, 19 (2012), 523–535.
    [4] K. Bouhali, F. Ellaggoune, Viscoelastic wave equation with logarithmic non-linearities in \mathbb{R}^n, J. Part. Diff. Eq., 30 (2017), 47–63. http://doi.org/10.4208/jpde.v30.n1.4 doi: 10.4208/jpde.v30.n1.4
    [5] A. Braik, Y. Miloudi, Kh. Zennir, A finite-time Blow-up result for a class of solutions with positive initial energy for coupled system of heat equations with memories, Math. Method. Appl. Sci., 41 (2018), 1674–1682. http://doi.org/10.1002/mma.4695 doi: 10.1002/mma.4695
    [6] H. Di, Y. Shang, X. Peng, Blow-up phenomena for a pseudo-parabolic equation with variable exponents, Appl. Math. Lett., 64 (2017), 67–73. http://doi.org/10.1016/j.aml.2016.08.013 doi: 10.1016/j.aml.2016.08.013
    [7] L. Diening, P. Harjulehto, P. Hasto, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-18363-8
    [8] A. El Khalil, M. Laghzal, D. M. Alaoui, A. Touzani, Eigenvalues for a class of singular problems involving p(x)-Biharmonic operator and q(x)-Hardy potential, Adv. Nonlinear Anal., 9 (2020), 1130–1144. http://doi.org/10.1515/anona-2020-0042 doi: 10.1515/anona-2020-0042
    [9] D. E. Edmunds, J. Rakosnik, Sobolev embedding with variable Exponent, Stud. Math., 143 (2000), 267–293. https://doi.org/10.4064/sm-143-3-267-293 doi: 10.4064/sm-143-3-267-293
    [10] X. L. Fan, J. S. Shen, D. Zhao, Sobolev embedding theorems for spaces W^{m, p(x)}(\Omega) , J. Math. Anal. Appl., 262 (2001), 749–760. http://doi.org/10.1006/jmaa.2001.7618 doi: 10.1006/jmaa.2001.7618
    [11] Q. Gao, F. Li, Y. Wang, Blow-up of the solution for higher-order Kirchhoff-type equations with nonlinear dissipation, Central Eur. J. Math., 9 (2011), 686–698. http://doi.org/10.2478/s11533-010-0096-2 doi: 10.2478/s11533-010-0096-2
    [12] M. K. Hamdani, N. T. Chung, D. D. Repovs, New class of sixth-order nonhomogeneous p(x)-Kirchhoff problems with sign-changing weight functions, Adv. Nonlinear Anal., 10 (2021), 1117–1131. http://doi.org/10.1515/anona-2020-0172 doi: 10.1515/anona-2020-0172
    [13] S. Inbo, Y.-H. Kim, Existence of solutions and positivity of the infimum eigenvalue for degenerate elliptic equations with variable exponents, Conference Publications, 2013 (2013), 695–707. http://doi.org/10.3934/proc.2013.2013.695 doi: 10.3934/proc.2013.2013.695
    [14] M. Kafini, M. I. Mustafa, A blow-up result to a delayed Cauchy viscoelastic problem, J. Integral Equ. Appl., 30 (2018), 81–94. http://doi.org/10.1216/JIE-2018-30-1-81 doi: 10.1216/JIE-2018-30-1-81
    [15] M. Liao, Non-global existence of solutions to pseudo-parabolic equations with variable exponents and positive initial energy, C. R. Mecanique, 347 (2019), 710–715. http://doi.org/10.1016/j.crme.2019.09.003 doi: 10.1016/j.crme.2019.09.003
    [16] D. Ouchenane, Kh. Zennir, M. Bayoud, Global nonexistence of solutions to system of nonlinear viscoelastic wave equations with degenerate damping and source terms, Ukr. Math. J., 65 (2013), 723–739. https://doi.org/10.1007/s11253-013-0809-3 doi: 10.1007/s11253-013-0809-3
    [17] I. D. Stircu, An existence result for quasilinear elliptic equations with variable exponents, Annals of the University of Craiova-Mathematics and Computer Science Series, 44 (2017), 299–316.
    [18] A. Zang, Y. Fu, Interpolation inequalities for derivatives in variable exponent Lebesgue–Sobolev spaces, Nonlinear Anal. Theor., 69 (2008), 3629–3636. https://doi.org/10.1016/j.na.2007.10.001 doi: 10.1016/j.na.2007.10.001
    [19] Y. Zhou, A blow-up result for a nonlinear wave equation with damping and vanishing initial energy in \mathbb{R}^{n} , Appl. Math. Lett., 18 (2005), 281–286. https://doi.org/10.1016/j.aml.2003.07.018 doi: 10.1016/j.aml.2003.07.018
    [20] Kh. Zennir, Growth of solutions with positive initial energy to system of degenerately damped wave equations with memory, Lobachevskii J. Math., 35 (2014), 147–156. https://doi.org/10.1134/S1995080214020139 doi: 10.1134/S1995080214020139
    [21] Kh. Zennir, T. Miyasita, Lifespan of solutions for a class of pseudo-parabolic equation with weak-memory, Alex. Eng. J., 59 (2020), 957–964. https://doi.org/10.1016/j.aej.2020.03.016 doi: 10.1016/j.aej.2020.03.016
  • This article has been cited by:

    1. Abderrazak Chaoui, Manal Djaghout, Galerkin mixed finite element method for parabolic p-biharmonic equation with memory term, 2024, 81, 2254-3902, 495, 10.1007/s40324-023-00337-1
    2. Mohammad Shahrouzi, Asymptotic behavior of solutions for a nonlinear viscoelastic higher-order p(x)-Laplacian equation with variable-exponent logarithmic source term, 2023, 29, 1405-213X, 10.1007/s40590-023-00551-x
    3. Bingzhi Sun, Existence of solutions for nonlinear problems involving mixed fractional derivatives with p(x)-Laplacian operator, 2024, 57, 2391-4661, 10.1515/dema-2024-0045
    4. Nebi Yılmaz, Erhan Pişkin, Global existence and decay of solutions for a delayed m-Laplacian equation with logarithmic term in variable-exponent Sobolev spaces, 2024, 38, 0354-5180, 8157, 10.2298/FIL2423157Y
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2064) PDF downloads(153) Cited by(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog