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1. Introduction and formulation of the problem

Let Ω is a bounded open set in Rn with a sufficiently smooth boundary ∂Ω and outward facing
unit normal n, let u(x, t) = u. The purpose of this study is to obtain sufficient conditions to prove the
global nonexistence result for initial boundary value problem of wave equation containing the p(x)-bi-
Laplacian operator

∂ttu + ∆x(div(|∆xu|p(x)−2∇xu)) + µ|∂tu|m−2∂tu = b|u|r−2u, x ∈ Ω, t > 0
u = ∆xu = 0, x ∈ ∂Ω, t > 0
u = u0(x) ∈ V(Ω), ∂tu = u1(x) ∈ Lp(x)(Ω), x ∈ Ω, t = 0,

(1.1)

where µ, b are positive constants, the spacesV(Ω) and Lp(x)(Ω) are defined in Definition 1 and (2.1).
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This problem is a mathematical model of wave processes in mathematical physics, taking into
account dissipation and the relationship between the different parameters. Recently, new strongly
nonlinear dissipative wave equations of the hyperbolic type have been intensively considered in
mathematical physics. It should be mentioned that many authors have studied the question of existence,
uniqueness, regularity and blow-up of weak solutions for parabolic and elliptic equations involving the
p(x)-Laplacian view of its applications in the fields of nonlinear elasticity, fluid dynamics, elastic
mechanics etc, see [4, 6, 8, 12, 13, 15–17, 20, 21] and the references therein.

In [2], the author established the existence of weak solutions for p(x, t)-Laplacian equation with
damping term

∂ttu = div(a(x, t)|∇xu|p(x,t)−2∇xu) + α∆xu + b(x, t)u|u|σ(x,t)−2 + f (x, t),

and proved the blow-up of weak solutions with negative initial energy, where α is a nonnegative
constant and a, b, p, σ are given functions. Such equations are usually referred as equations with
nonstandard growth conditions. It is proved the blow-up result of weak solutions with negative initial
energy as well as for certain solutions with positive initial energy to the following equation

∂ttu − div(|∇xu|r(.)−2∇xu) + a∂tu|∂tu|m(.)−2 = bu|u|p(.)−2,

In particular case p(x) = 2, the problem (1.1) is reduced to the Petrovsky type equation
∂ttu + ∆2

xu + µ|∂tu|m−2∂tu = b|u|r−2u
u = ∂u

∂n = 0
u(x, 0) = u0(x), ∂tu(x, 0) = u1(x).

It is studied where, the author established an existence result and proved that the solution continues to
exist globally if m ≥ r and blows up in finite time if m < r and the initial energy is negative. Motivated
by the above work, we obtain the blow-up results of solution to problem (1.1) for nonpositive initial
energy. In order to state our result, we use some ideas introduced in the work of [7, 11, 14].

2. Main results

In this section, we recall some definitions and basic properties about the generalized Sobolev and
Lebesgue spaces with variable exponents. The reader is referred to [3, 5, 9, 10] for more detailes.
Denote

C+(Ω̄) = {p(x) : p(x) ∈ C(Ω̄), p(x) > 2, f or all x ∈ Ω̄},

and
p− = ess inf

x∈Ω̄
p(x), p+ = ess sup

x∈Ω̄
p(x).

Then, the mesurable function
p : Ω̄→ [p−, p+] ⊂ (2,∞),

satisfies the log-Hölder continuity condition

|p(x) − p(y)| ≤
C

ln(e + |x − y|−1)
, f or all x, y ∈ Ω.
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For some λ > 0 the variable exponent Lebesgue space Lp(x)(Ω) is defined as the set of mesurable
functions u : Ω→ R such that Pp(.)(λu) < ∞ with respect to the Luxemburg norm

‖u‖p(x) = inf
{
λ > 0 :

∫
Ω

∣∣∣∣u(x)
λ

∣∣∣∣p(x)
dx < ∞

}
, (2.1)

where
Pp(.)(u) =

∫
Ω

|u(x)|p(x)dx, ‖u‖p(x) := ‖u‖Lp(x)(Ω).

The space (Lp(x)(Ω), ||.||p(x)) is separable, uniformly convex, reflexive and its dual space is Lq(x)(Ω)
where 1

p(x) + 1
q(x) = 1, f or all x ∈ Ω.

Morever if u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω) then uv ∈ Ls(x)(Ω) and we have the generalised Hölder’s type
inequality

‖uv‖s(.) ≤ 2‖u‖p(.).‖v‖q(.),
1

s(x)
=

1
p(x)

+
1

q(x)
.

Lemma 1. If p is a mesurable function on Ω then for any u ∈ Lp(x)(Ω) we have

min
(
‖u‖p−

p(x), ‖u‖
p+

p(x)

)
≤ Pp(.)(u) ≤ max

(
‖u‖p−

p(x), ‖u‖
p+

p(x)

)
.

For any nonnegative integer k the variable exponent Sobolev space is defined

Wk,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |α| ≤ K =⇒ Dαu ∈ Lp(x)(Ω)

}
,

endowed with the norm
‖u‖Wk,p(x) =

∑
|α|≤k

|Dαu|Lp(x)(Ω).

Then Wk,p(x)(Ω) is defined as the closure of C∞0 (Ω) with respect to the norm ‖u‖Wk,p(x) . In this way
Lp(x)(Ω),Wk,p(x)(Ω) and Wk,p(x)

0 (Ω) are separable and reflexive Banach spaces.
We shall frequently use the generalized Poincaré’s inequality in W1,p(x)

0 (Ω) given by

∃C > 0, ‖u‖p(x) ≤ C‖∇xu‖p(x), , f or all u ∈ W1,p(x)
0 (Ω).

Definition 1. We define the function space of our problem and its norm as follows

V(Ω) =
{
u|u ∈ W2,p(x)(Ω) ∩W1,p(x)

0 (Ω), |∆xu| ∈ W1,p(x)
0 (Ω)

}
,

with the norm

‖u‖V(Ω) = ‖u‖W1,p(x)
0 (Ω) + ‖u‖W2,p(x)(Ω) + ‖∆xu‖W1,p(x)

0 (Ω).

Lemma 2. [18, Theorem 4.4] Let Ω is a bounded domain with Lipschitz boundary. In the space
X = W2,p(x)(Ω) ∩W1,p(x)

0 (Ω) the norm ‖.‖X and ‖∆x.‖Lp(x)(Ω) are equivalent norms.

Lemma 3. [1, Theorem 5.4] Let Ω be a domain in Rn that has the cone property then for n > p and
p ≤ q ≤ np

n−p there exist the following imbeddings

W2,p(Ω) ∩W1,p
0 (Ω) ↪→ w1,q

0 (Ω) ↪→ Lq(Ω). (2.2)
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Lemma 4. [19, Lemma 2.1] Assume that L(t) is is a twice continuously differentiable function
satisfying {

L′′(t) + L′(t) ≥ C0(t + θ)βL1+α(t), t > 0
L(0) > 0, L′(0) ≥ 0,

where C0, θ > 0, −1 < β ≤ 0, α > 0 are constants. Then L(t) blows up in finite time.

3. Blow up result

Theorem 1. Let u be an energy weak solution to problem (1.1). Suppose that

2 ≤ m ≤ r and 2 ≤ p(x) ≤
2n

n − 2
.

Assume further that

E(0) =
1
2

∫
Ω

|u1|
2dx +

∫
Ω

1
p(x)
|∆xu0|

p(x)dx −
b
r

∫
Ω

|u0|
rdx ≤ 0,

and ∫
Ω

u0u1dx ≥ 0, (3.1)

then the solution u blows up on the finite interval (0, tmax).

Proof. Multiplying Eq (1.1) by ∂tu, and integration by parts over Ω, one has

∂t

∫
Ω

1
2
|∂tu|2dx −

∫
Ω

div(∆x∂tu∇xu)|∆xu|p(x)−2dx

+∂t

∫
Ω

1
p(x)
|∆xu|p(x)dx + µ

∫
Ω

|∂tu|mdx = ∂t

∫
Ω

b
r
|u|rdx.

So the corresponding energy of solution to (1.1) is defined by

E(t) =
1
2

∫
Ω

|∂tu|2dx +

∫
Ω

1
p(x)
|∆xu|p(x)dx −

b
r

∫
Ω

|u|rdx. (3.2)

In addition

∂tE(t) =

∫
Ω

div(∆x∂tu∇xu)|∆xu|p(x)−2dx − µ
∫

Ω

|∂tu|mdx. (3.3)

Which gives in turn the following energy identity

E(t) + µ

∫ t

0

∫
Ω

|∂tu|mdxds = E(0) +

∫ t

0

∫
Ω

div(∆x∂tu∇xu)|∆xu|p(x)−2dxds. (3.4)

We define the sets
Ω− = {x ∈ Ω : |∆xu| < 1} ,
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and
Ω+ = {x ∈ Ω : |∆xu| ≥ 1} .

So by applying Hölder and Young inequality we arrive at∣∣∣∣∣∫
Ω

div(∆x∂tu∇xu)|∆xu|p(x)−2dx
∣∣∣∣∣

=

∣∣∣∣∣∫
Ω

∇x(∆x∂tu)∇xu|∆xu|p(x)−2dx +

∫
Ω

∆x∂tu∆xu|∆xu|p(x)−2dx
∣∣∣∣∣

≤ ‖∇x(∆x∂tu)‖2.‖∇xu‖ 2p−

4−p−
.‖∆xu‖

p−−2
p−

+ ‖∇x(∆x∂tu)‖2.‖∇xu‖ 2p+

4−p+
.‖∆xu‖

p+−2
p+

+
1
p−
‖∆x∂tu‖

p−

p− +
p− − 1

p−
‖∆xu‖

p−

p− +
1
p+
‖∆x∂tu‖

p+

p+ +
p+ − 1

p−
‖∆xu‖

p+

p+ .

Clearly since 2 ≤ p− ≤ p(x) ≤ p+ ≤ 2n
n−2 then by exploiting lemma 3, we have∣∣∣∣∣∫

Ω

div(∆x∂tu∇xu)|∆xu|p(x)−2dx
∣∣∣∣∣

≤ C0‖∇x(∆x∂tu)‖p− .‖∆xu‖
p−−1
p−

+ C1‖∇x(∆x∂tu)‖p+ .‖∆xu‖
p+−1
p+

+
1
p−
‖∆x∂tu‖

p−

p− +
p− − 1

p−
‖∆xu‖

p−

p−

+
1
p+
‖∆x∂tu‖

p+

p+ +
p+ − 1

p−
‖∆xu‖

p+

p+ .

Because ∂tu is regular and by Young inequality we obtain∣∣∣∣∣∫
Ω

div(∆x∂tu∇xu)|∆xu|p(x)−2dx
∣∣∣∣∣ ≤ k0

(
‖∇x(∆x∂tu)‖p−

p− + ‖∇x(∆xu)‖p−

p−

)
+ k1

(
‖∇x(∆x∂tu)‖p+

p+ + ‖∇x(∆xu)‖p+

p+

)
.

At this step we will assume that

sup
0≤t≤tmax

(
‖∇x(∆x∂tu)‖p−

p− + ‖∇x(∆xu)‖p−

p− + ‖∇x(∆x∂tu)‖p+

p+ + ‖∇x(∆xu)‖p+

p+

)
≤
|E(0)|
ktmax

, (3.5)

where k = max(k0, k1). We notice that estimate (3.5) will be important to prove the blow-up result.
Therfore ∣∣∣∣∣∣

∫ t

0

∫
Ω

div(∆x∂tu∇xu)|∆xu|p(x)−2dxds

∣∣∣∣∣∣ ≤ |E(0)|, 0 ≤ t ≤ tmax.

Consequently by virtue of (3.4) we derive the following estimate for the energy functional

E(t) + µ

∫ t

0

∫
Ω

|∂tu|mdxds ≤ E(0) + |E(0)|. (3.6)
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Suppose that E(0) ≤ 0 then it follows from (3.6) that E(t) ≤ 0. Define the auxiliary function L(t) by
the following formula

L(t) =
1
2

∫
Ω

|u(x, t)|2dx + N
∫ t

0
H(s)ds + N(t + tmax), (3.7)

where N > 0 is to be specified later and H(t) is given by

H(t) = α|E(0)|t − E(t), θ ≥
1

ktmax
. (3.8)

We differentiate (3.8) and use the Eq (3.4) to arrive at

∂tH(t) = µ

∫ t

0
‖∂tu‖mm −

∫ t

0

∫
Ω

div(∆x∂tu∇xu)|∆xu|p(x)−2dx − (1 + θt)E(0). (3.9)

Therfore

∂tH(t) ≥ ‖∂tu‖mm +

(
1

ktmax
− θ

)
E(0). (3.10)

From (3.8) we see that H is a nondecreasing function and

H(0) = −E(0) > 0.

Differentiating (3.7) twice leads to

L′(t) =

∫
Ω

u∂tudx + NH(t) + N

L′′(t) =

∫
Ω

u∂ttudx +

∫
Ω

|∂tu|2dx + N∂tH(t).
(3.11)

It’s clear from (3.1) and (3.11) that

L(0) > 0, ∂tL(0) > 0.

Now, by using Young’s inequality we have∫
Ω

|∆xu|p(x)−2|∇xu||∇x(∆xu)|dx ≤ C
(
‖∇x(∆xu)‖p−

p− + ‖∇x(∆xu)‖p+

p+

)
.

Again Young’s inequality yields∫
Ω

u∂tu|∂tu|m−2dx ≤
βm

m
‖u‖mm +

m − 1
m

β−m/m−1‖∂tu‖mm, (3.12)

where β in an arbitrary nonnegative constant to be specified later. By combining (3.3) and (3.5) we get

µ‖∂tu‖mm = −∂tE(t) −
∫

Ω

div(∆x∂tu∇xu)|∆xu|p(x)−2dx

≤ −∂tE(t) −
E(0)
tmax

≤ ∂tH(t) + αE(0) +
H(0)
tmax

≤ ∂tH(t) +
H(t)
tmax

.

(3.13)
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Inserting (3.13) into (3.12) leads to∫
Ω

u∂tu|∂tu|m−2dx ≤
βm

m
‖u‖mm +

m − 1
m

β−m/m−1
(
∂tH(t) +

H(t)
tmax

)
. (3.14)

By virtue of (3.5) we have

−

(
‖∇x(∆xu)‖p−

Lp− (Ω)
+ ‖∇x(∆xu)‖p+

Lp+ (Ω)

)
≥

E(0)
ktmax

≥ −
H(t)
ktmax

. (3.15)

We define the sets
Ω− = {x ∈ Ω : |u| < 1} ,

and
Ω+ = {x ∈ Ω : |u| ≥ 1} .

So ∫
Ω

|u|mdx =

∫
Ω−

|u|mdx +

∫
Ω+

|u|mdx ≤
∫

Ω−

|u|2dx +

∫
Ω+

|u|rdx. (3.16)

We first note that ∫
Ω

|u|2dx ≤ C0

∫
Ω

(
|u|

2p+

4−p+ dx
) 4−p+

p+

≤ C1

(
1 + ‖∇x∆xu‖

p+

Lp+ (Ω)

)
.

Therfore from (3.15) we have∫
Ω

|u|mdx ≤ ∆x

(
1 + ‖∇x∆xu‖

p−

p− + ‖∇x∆xu‖
p+

p+ + ‖u‖rr
)

≤ ∆x

(
1 +

H(t)
ktmax

+ ‖u‖rr

)
.

(3.17)

Consequently

L′′(t) + L′(t) =

∫
Ω

u∆x(div(|∆xu|p(x)−2∇xu))dx − µ|∂tu|m−2∂tuu + b|u|rdx

+ ‖∂tu‖22 +

∫
Ω

u∂tudx + NH(t) + N∂tH(t) + N

≥ −C
(
‖∇x(∆xu)‖p−

p− + ‖∇x(∆xu)‖p+

p+

)
− µ

(
βm

m
‖u‖mm +

m − 1
m

β−m/m−1‖∂tu‖mm

)
+ b‖u‖rr

+ ‖∂tu‖22 +

∫
Ω

u∂tudx + NH(t) + N∂tH(t) + N.

(3.18)

Combination of (3.15) and (3.2) leads to∫
Ω

u∂tudx ≤
1
2
‖∂tu‖22 + σ

(
1 + ‖∇x∆xu‖

p−

p−

)
≤

1
2
‖∂tu‖22 + σ

(
1 +

H(t)
ktmax

)
.

(3.19)
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Substituting (3.14), (3.17) and (3.19) into (3.18) we obtain

L′′(t) + L′(t) ≥
(
N −

C
ktmax

− µβ−m/m−1 m − 1
mtmax

− µ∆x
βm

mktmax
−

σ

ktmax

)
H(t)

+
1
2
‖∂tu‖22 +

(
N − µ

m − 1
m

β−m/m−1
)

H′(t)

+

(
b − µ

βm

m
∆x

)
‖u‖rr + N − µ∆x

βm

m
− σ.

(3.20)

Now we pick β so small that

b − µ
βm

m
∆x > 0. (3.21)

Once β is chosen we select N large enough that

N −
C

ktmax
− µβ−m/m−1 m − 1

mtmax
− µ∆x

βm

mktmax
−

σ

ktmax
> 0

N − µ
m − 1

m
β−m/m−1 > 0

N − µ∆x
βm

m
− σ > 0.

(3.22)

Therfore from (3.21) and (3.22) there exists a constant γ such that (3.20) takes the form

L′′(t)L(t) + L′(t)L(t) ≥ γ‖u‖rLr(Ω). (3.23)

Now we use Hölder inequality to estimate the term ‖u‖rLr(Ω) as follows∫
Ω

|u|2dx ≤ |Ω|r−2/r.‖u‖2r

≤ (N(t + tmax))r−2/r
|Ω|r−2/r.‖u‖2r .

(3.24)

Hence
‖u‖rr ≥ |Ω|

2−r/2. (N(t + tmax))2−r/2 .‖u‖r2, (3.25)

and from the definition of L(t) in (3.7) we have

(2L(t))r/2 ≤ ‖u‖r2 +

(
N

∫ t

0
H(s)ds + N(t + tmax)

)r/2

≤ 2r−2/2

‖u‖r2 +

(
N

∫ t

0
H(s)ds + N(t + tmax)

)r/2 . (3.26)

This gives

‖u‖r2 ≥ 2(L(t))r/2 −

(
N

∫ t

0
H(s)ds + N(t + tmax)

)r/2

≥ (L(t))r/2. (3.27)

Combining (3.23) and (3.27) yields

L′′(t) + L′(t) ≥ γ|Ω|2−r/2 (N(t + tmax))2−r/2 (L(t))r/2. (3.28)

We see that the requirements of theorem 1 are satisfied with

− 1 <
2 − r

2
≤ 0, α =

r − 2
2

> 0, C0 = γ|Ω|2−r/2N2−r/2 > 0. (3.29)

Therefore, L blows up in finite time. This completes the proof. �
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4. Conclusions

Let us pass to a survey of the results and methods of proving non-existence and blow-up theorems
applicable to equations of hyperbolic type. Here it is necessary to clarify what is meant by the term
“destruction of the solution”. By this term, we understand the existence of a finite time moment at
which the solution of the evolutionary problem leaves the smoothness class to which this solution
belonged on the interval (0,Tmax) (the smoothness class for which the local solvability theorem
is formulated and proved). Looking ahead, we note that in all problems for nonlinear equations
considered in the literature, the destruction of the solution is accompanied by the inversion of the
norm of the latter to infinity (in the space where we are looking for a solution), however, such behavior
of solution is not at all necessary in the concept of destruction.
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