Research article Special Issues

A coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities: Existence, uniqueness, blow-up and a large-time asymptotic behavior

  • Received: 13 September 2022 Revised: 18 December 2022 Accepted: 05 January 2023 Published: 31 January 2023
  • MSC : 35B37, 35L55, 74D05, 93D15, 93D20

  • In this paper, we consider a coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities. This system is supplemented with initial and mixed boundary conditions. First, we establish the existence and uniqueness results of a weak solution, under suitable assumptions on the variable exponents. Second, we show that the solutions with positive-initial energy blow-up in a finite time. Finally, we establish the global existence as well as the energy decay results of the solutions, using the stable-set and the multiplier methods, under appropriate conditions on the variable exponents and the initial data.

    Citation: Salim A. Messaoudi, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi, Mohammed A. Al-Osta. A coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities: Existence, uniqueness, blow-up and a large-time asymptotic behavior[J]. AIMS Mathematics, 2023, 8(4): 7933-7966. doi: 10.3934/math.2023400

    Related Papers:

  • In this paper, we consider a coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities. This system is supplemented with initial and mixed boundary conditions. First, we establish the existence and uniqueness results of a weak solution, under suitable assumptions on the variable exponents. Second, we show that the solutions with positive-initial energy blow-up in a finite time. Finally, we establish the global existence as well as the energy decay results of the solutions, using the stable-set and the multiplier methods, under appropriate conditions on the variable exponents and the initial data.



    加载中


    [1] S. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells, New York: McGraw-hill, 1959.
    [2] P. Shankar, The eddy structure in stokes flow in a cavity, J. Fluid mech., 250 (1993), 371–383. https://doi.org/10.1017/S0022112093001491 doi: 10.1017/S0022112093001491
    [3] R. Srinivasan, Accurate solutions for steady plane flow in the driven cavity. i. stokes flow, Z. angew. Math. Phys., 46 (1995), 524–545. https://doi.org/10.1007/BF00917442 doi: 10.1007/BF00917442
    [4] V. Meleshko, Steady stokes flow in a rectangular cavity, P. Roy. Soc. A-Math. Phy., 452 (1996), 1999–2022. https://doi.org/10.1098/rspa.1996.0106 doi: 10.1098/rspa.1996.0106
    [5] P. Shankar, M. Deshpande, Fluid mechanics in the driven cavity, Annu. Rev. Fluid Mech., 32 (2000), 93–136. https://doi.org/10.1146/annurev.fluid.32.1.93 doi: 10.1146/annurev.fluid.32.1.93
    [6] N. E. Sevant, M. I. Bloor, M. J. Wilson, Aerodynamic design of a flying wing using response surface methodology, J. Aircraft, 37 (2000), 562–569. https://doi.org/10.2514/2.2665 doi: 10.2514/2.2665
    [7] M. I. Bloor, M. J. Wilson, Method for efficient shape parametrization of fluid membranes and vesicles, Phys. Rev. E, 61 (2000), 4218–4229. https://doi.org/10.1103/PhysRevE.61.4218 doi: 10.1103/PhysRevE.61.4218
    [8] V. Meleshko, Biharmonic problem in a rectangle, In: In fascination of fluid dynamics, Springer, 1998,217–249. https://doi.org/10.1007/978-94-011-4986-0_14
    [9] V. Meleshko, Selected topics in the history of the two-dimensional biharmonic problem, Appl. Mech. Rev., 56 (2003), 33–85. https://doi.org/10.1115/1.1521166 doi: 10.1115/1.1521166
    [10] V. Meleshko, Bending of an elastic rectangular clamped plate: Exact versus 'engineering'solutions, J. Elasticity, 48 (1997), 1–50. https://doi.org/10.1023/A:1007472709175 doi: 10.1023/A:1007472709175
    [11] V. Meleshko, A. Gomilko, Infinite systems for a biharmonic problem in a rectangle, P. Roy. Soc. A Math. Phy., 453 (1997), 2139–2160. https://doi.org/10.1098/rspa.1997.0115 doi: 10.1098/rspa.1997.0115
    [12] S. Antontsev, S. Shmarev, Blow-up of solutions to parabolic equations with nonstandard growth conditions, J. Comput. Appl. Math., 234 (2010), 2633–2645. https://doi.org/10.1016/j.cam.2010.01.026 doi: 10.1016/j.cam.2010.01.026
    [13] S. Antontsev, S. Shmarev, Evolution pdes with nonstandard growth conditions, In: Atlantis studies in differential equations, 2015. https://doi.org/10.2991/978-94-6239-112-3
    [14] B. Guo, W. Gao, Blow-up of solutions to quasilinear hyperbolic equations with p(x, t)-Laplacian and positive initial energy, C. R. Mecanique, 342 (2014), 513–519. https://doi.org/10.1016/j.crme.2014.06.001 doi: 10.1016/j.crme.2014.06.001
    [15] S. A. Messaoudi, O. Bouhoufani, I. Hamchi, M. Alahyane, Existence and blow up in a system of wave equations with nonstandard nonlinearities, Electron. J. Differ. Eq., 2021 (2021), 1–33.
    [16] S. A. Messaoudi, A. A. Talahmeh, M. M. Al-Gharabli, M. Alahyane, On the existence and stability of a nonlinear wave system with variable exponents, Asymptotic Anal., 128 (2022), 211–238. https://doi.org/10.3233/ASY-211704 doi: 10.3233/ASY-211704
    [17] S. H. Park, J. R. Kang, Blow-up of solutions for a viscoelastic wave equation with variable exponents, Math. Method. Appl. Sci., 42 (2019), 2083–2097. https://doi.org/10.1002/mma.5501 doi: 10.1002/mma.5501
    [18] O. Bouhoufani, I. Hamchi, Coupled system of nonlinear hyperbolic equations with variable-exponents: Global existence and stability, Mediterr. J. Math., 17 (2020), 166. https://doi.org/10.1007/s00009-020-01589-1 doi: 10.1007/s00009-020-01589-1
    [19] L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Springer, 2011.
    [20] D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces: Foundations and harmonic analysis, Springer Science & Business Media, 2013.
    [21] K. Agre, M. A. Rammaha, Systems of nonlinear wave equations with damping and source terms, Differ. Integral Equ., 19 (2006), 1235–1270. https://doi.org/10.57262/die/1356050301 doi: 10.57262/die/1356050301
    [22] C. O. Alves, M. M. Cavalcanti, V. N. D. Cavalcanti, M. A. Rammaha, D. Toundykov, On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms, Discrete Cont. Dyn. S, 2 (2009), 583–608. https://doi.org/10.3934/dcdss.2009.2.583 doi: 10.3934/dcdss.2009.2.583
    [23] V. Komornik, Decay estimates for the wave equation with internal damping, In: Control and estimation of distributed parameter systems: Nonlinear phenomena, 1994. https://doi.org/10.1007/978-3-0348-8530-0_14
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(886) PDF downloads(94) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog