Research article

A coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities: Existence, uniqueness, blow-up and a large-time asymptotic behavior

Salim A. Messaoudi ${ }^{1}$, Mohammad M. Al-Gharabli ${ }^{2,3}$, Adel M. Al-Mahdi ${ }^{2,3, *}$ and Mohammed A. Al-Osta ${ }^{3,4}$
${ }^{1}$ Department of Mathematics and Statistics, University of Sharjah, United Arab Emirates
${ }^{2}$ The Preparatory Year Program, King Fahd University of Petroleum \& Minerals, Dhahran 31261, Saudi Arabia
${ }^{3}$ The Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
${ }^{4}$ Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
* Correspondence: Email: almahdi@kfupm.edu.sa.

Abstract

In this paper, we consider a coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities. This system is supplemented with initial and mixed boundary conditions. First, we establish the existence and uniqueness results of a weak solution, under suitable assumptions on the variable exponents. Second, we show that the solutions with positive-initial energy blow-up in a finite time. Finally, we establish the global existence as well as the energy decay results of the solutions, using the stable-set and the multiplier methods, under appropriate conditions on the variable exponents and the initial data.

Keywords: biharmonic equations; blow-up; coupled system; global existence; variable exponent; stability
AMS Classification: 35B37, 35L55, 74D05, 93D15, 93D20

1. Introduction

The biharmonic equation, besides providing a benchmark problem for various analytical and numerical methods, arises in many practical applications. For example, the bending behavior of a thin elastic rectangular plate, as might be encountered in ship design and manufacture, or the equilibrium
of an elastic rectangle, can be formulated in terms of the two-dimensional biharmonic equation, e.g., Timoshenko \& Woinowsky-Krieger [1]. Also, Stokes flow of a viscous fluid in a rectangular cavity under the influence of the motion of the walls, can be described in terms of the solution of this equation, e.g., Pan and Acrivos (1967), Shankar [2], Srinivasan [3], Meleshko [4] or Shankar and Deshpande [5]. A more recent application of the biharmonic equation has been in the area of geometric and functional design, where it has been used as a mapping to produce efficient mathematical descriptions of surfaces in physical space, e.g., Sevant et al. [6] and Bloor and Wilson [7]. Interest in solutions of the biharmonic equation and their mathematical properties go back over 130 years, and comprehensive reviews of this work have been given by Meleshko [8, 9]. In his review article, he concentrates upon the method of superposition in which the solution is described in terms of a sum of separable solutions of the biharmonic equation. In another work, Meleshko [4] obtained some results for Stokes flow in a rectangular cavity in which the solution is based upon the sum of terms consisting of the product of exponential and sinusoidal functions, where the coefficients in the series are determined from the requirement that the prescribed boundary conditions are satisfied, and Meleshko [10] described the work which has been done in trying to solve this problem, e.g., Meleshko and Gomilko [11]. Other physical phenomena like flows of electro-rheological fluids, fluids with temperature dependent viscocity, filtration processes through a porous media, image processing and thermorheological fluids give rise to mathematical models of hyperbolic, parabolic and biharmonic equations with variable exponents of nonlinearity. More details can also be found in references [12,13]. Recently, the hyperbolic equations with nonlinearities of variable exponents type had received a considerable amount of attention. We refer the reader to [14-17] and the references therein. Only few works concerning coupled systems of wave equations in the variable-exponents case have been found in the literature. For examples, Bouhoufani and Hamchi [18] obtained the global existence of a weak solution and established decay rates of the solutions, in a bounded domain, of a coupled system of nonlinear hyperbolic equations with variable-exponents. Messaoudi et al. [15] studied a system of wave equations with nonstandard nonlinearities and proved a theorem of existence and uniqueness of a weak solution, established a blow-up result for certain solutions with positive-initial energy and gave some numerical applications for their theoretical results. In [16], Messaoudi et al. considered the following system

$$
\begin{align*}
u_{t t}-\Delta u+\left|u_{t}\right|^{m(x)-2} u_{t}+f_{1}(u, v) & =0 \text { in } \Omega \times(0, T), \\
v_{t t}-\Delta v+\left|v_{t}\right|^{r(x)-2} v_{t}+f_{2}(u, v) & =0 \text { in } \Omega \times(0, T), \tag{1.1}
\end{align*}
$$

with initial and Dirichlet-boundary conditions (here, f_{1} and f_{2} are the coupling terms introduced in (1.3). The authors proved the existence of global solutions, obtained explicit decay rate estimates under suitable assumptions on the variable exponents m, r and p and presented some numerical tests. In this work, we consider the following initial-boundary-value problem

$$
\begin{cases}u_{t t}+\Delta^{2} u+\left|u_{t}\right|^{m(x)-2} u_{t}=f_{1}(u, v) & \text { in } \Omega \times(0, T), \tag{1.2}\\ v_{t t}-\Delta v+\mid v_{t} t^{r(x)-2} v_{t}=f_{2}(u, v) & \text { in } \Omega \times(0, T), \\ u=v=\frac{\partial u}{\partial \eta}=0 & \text { on } \partial \Omega \times(0, T), \\ u(0)=u_{0} \text { and } u_{t}(0)=u_{1} & \text { in } \Omega, \\ v(0)=v_{0} \text { and } v_{t}(0)=v_{1} & \text { in } \Omega,\end{cases}
$$

where Ω is a smooth and bounded domain of $\mathbb{R}^{n},(n=1,2,3)$, the exponents m and r are continuous functions on $\bar{\Omega}$ satisfying some conditions to be specified later, $\frac{\partial u}{\partial \eta}$ denotes the external normal
derivatives of u on the boundary $\partial \Omega$ and the coupling terms f_{1} and f_{2} are given as follows: for all $x \in \bar{\Omega}$ and $(u, v) \in \mathbb{R}^{2}$,

$$
\begin{equation*}
f_{1}(x, u, v)=\frac{\partial}{\partial u} F(x, u, v) \text { and } f_{2}(x, u, v)=\frac{\partial}{\partial v} F(x, u, v), \tag{1.3}
\end{equation*}
$$

with

$$
\begin{equation*}
F(x, u, v)=a|u+v|^{p(x)+1}+2 b|u v|^{\frac{p(x)+1}{2}}, \tag{1.4}
\end{equation*}
$$

where $a, b>0$ are two positive constants and p is a given continuous function on $\bar{\Omega}$ satisfying the condition (H.2) (below).

2. Preliminaries

This section presents some material needed to prove the main result. Let $q: \Omega \longrightarrow[1, \infty)$ be a continuous function. We define the Lebesgue space with a variable exponent by

$$
L^{q(\cdot)}(\Omega)=\left\{f: \Omega \longrightarrow \mathbb{R} \text { measurable in } \Omega: \varrho_{q(\cdot)}(\lambda f)<+\infty, \text { for some } \lambda>0\right\},
$$

where

$$
\varrho_{q(.)}(f)=\int_{\Omega}|f(x)|^{q(x)} d x
$$

Lemma 2.1. [13, 19] If $1<q^{-} \leq q(x) \leq q^{+}<+\infty$ holds then, for any $f \in L^{q(.)}(\Omega)$,

$$
\min \left\{\|f\|_{q(.)}^{q^{-}},\|f\|_{q(.)}^{q^{+}}\right\} \leq \varrho_{q(.)}(f) \leq \max \left\{\|f\|_{q(.)}^{q^{-}},\|f\|_{q(.)}^{q^{+}}\right\}
$$

where

$$
q^{-}=e s s \inf _{x \in \Omega} q(x) \text { and } q^{+}=e s s \sup _{x \in \Omega} q(x) .
$$

Lemma 2.2. (Embedding property [20]) Let $q: \bar{\Omega} \longrightarrow[1, \infty)$ be a measurable function and $k \geq 1$ be an integer. Suppose that r is a log-Hölder continuous function on Ω, such that, for all $x \in \Omega$, we have

$$
\begin{cases}k \leq q^{-} \leq q(x) \leq q^{+}<\frac{n r(x)}{n-k r(x)}, & \text { if } r^{+}<\frac{n}{k}, \\ k \leq q^{-} \leq q^{+}<\infty, & \text { if } r^{+} \geq \frac{n}{k}\end{cases}
$$

Then, the embedding $W_{0}^{k, r(.)}(\Omega) \hookrightarrow L^{q(\cdot)}(\Omega)$ is continuous and compact.
Throughout this paper, we denote by \mathcal{V} the following space

$$
\mathcal{V}=\left\{u \in H^{2}(\Omega): u=\frac{\partial u}{\partial \eta}=0 \text { on } \partial \Omega\right\}=H_{0}^{2}(\Omega) .
$$

So, \mathcal{V} is a separable Hilbert space endowed with the inner product and norm, respectively,

$$
(w, z)_{\mathcal{V}}=\int_{\Omega} \Delta w \Delta z d x \text { and }\|w\|_{\mathcal{V}}=\|\Delta w\|_{2}
$$

where $\|\Delta w\|_{k}=\|\Delta w\|_{L^{k}(\Omega)}$.
We assume the following hypotheses:
(H.1) The exponents m and r are continuous on $\bar{\Omega}$ such that

$$
\begin{array}{ll}
2 \leq m(x), & \text { if } n=1,2, \tag{2.1}\\
2 \leq m_{1} \leq m(x) \leq m_{2} \leq 6, & \text { if } n=3
\end{array}
$$

and

$$
\begin{array}{ll}
2 \leq r(x), & \text { if } n=1,2, \tag{2.2}\\
2 \leq r_{1} \leq r(x) \leq r_{2} \leq 6, & \text { if } n=3,
\end{array}
$$

for all $x \in \bar{\Omega}$, where

$$
m_{1}=\inf _{x \in \bar{\Omega}} m(x), m_{2}=\sup _{x \in \bar{\Omega}} m(x), r_{1}=\inf _{x \in \bar{\Omega}} r(x) \text { and } r_{2}=\sup _{x \in \bar{\Omega}} r(x) .
$$

(H.2) The variable exponent p is a given continuous function on $\bar{\Omega}$ such that

$$
\begin{array}{ll}
3 \leq p^{-} \leq p(x) \leq p^{+}<+\infty, & \text { if } n=1,2, \tag{2.3}\\
p(x)=3, & \text { if } n=3,
\end{array}
$$

for all $x \in \bar{\Omega}$.

3. Existence of weak solution

In this section, we prove the local existence of the solutions of (1.2). For this purpose, we introduce the definition of a weak solution for system (1.2). We multiply the first equation in (1.2) by $\Phi \in C_{0}^{\infty}(\Omega)$ and the second equation by $\Psi \in C_{0}^{\infty}(\Omega)$, integrate each result over Ω, use Green's formula and the boundary conditions to obtain the following definition:

Definition 3.1. Let $\left(u_{0}, v_{0}\right) \in \mathcal{V} \times H_{0}^{1}(\Omega),\left(u_{1}, v_{1}\right) \in L^{2}(\Omega) \times L^{2}(\Omega)$. Any pair of functions (u, v), such that

$$
\left\{\begin{array}{l}
u \in L^{\infty}([0, T) ; \mathcal{V}), v \in L^{\infty}\left([0, T) ; H_{0}^{1}(\Omega)\right), \tag{3.1}\\
u_{t} \in L^{\infty}\left([0, T) ; L^{2}(\Omega)\right) \cap L^{m(.)}(\Omega \times(0, T)), \\
v_{t} \in L^{\infty}\left([0, T) ; L^{2}(\Omega)\right) \cap L^{r(.)}(\Omega \times(0, T)),
\end{array}\right.
$$

is called a weak solution of (1.2) on $[0, T)$, if

$$
\left\{\begin{array}{l}
\frac{d}{d t} \int_{\Omega} u_{t} \Phi d x+\int_{\Omega} \Delta u \Delta \Phi d x+\int_{\Omega}\left|u_{t}\right|^{m(x)-2} u_{t} \Phi d x \\
=\int_{\Omega} f_{1} \Phi d x \\
\frac{d}{d t} \int_{\Omega} v_{t} \Psi d x+\int_{\Omega} \nabla v \nabla \Psi d x+\int_{\Omega}\left|v_{t}\right|^{r(x)-2} v_{t} \Psi d x \\
=\int_{\Omega} f_{2} \Psi d x, \\
u(0)=u_{0}, u_{t}(0)=u_{1}, v(0)=v_{0}, v_{t}(0)=v_{1}
\end{array}\right.
$$

for a.e. $t \in(0, T)$ and all test functions $\Phi \in \mathcal{V}$ and $\Psi \in H_{0}^{1}(\Omega)$. Note that $C_{0}^{\infty}(\Omega)$ is dense in \mathcal{V} and in $H_{0}^{1}(\Omega)$ as well. In addition, the spaces $\mathcal{V}, H_{0}^{1}(\Omega) \subset L^{m(.)}(\Omega) \cap L^{r(.)}(\Omega)$, under the conditions (H.1) and (H.2).

In order to establish an existence result of a local weak solution for the system (1.2); we, first, consider the following auxiliary problem:

$$
\begin{cases}u_{t t}+\Delta^{2} u+u_{t}\left|u_{t}\right|^{m(x)-2}=f(x, t) & \text { in } \Omega \times(0, T), \tag{S}\\ v_{t t}-\Delta v+v_{t}\left|v_{t}\right|^{r(x)-2}=g(x, t) & \text { in } \Omega \times(0, T), \\ u=v=\frac{\partial u}{\partial \eta}=0 & \text { on } \partial \Omega \times(0, T), \\ u(0)=u_{0}, u_{t}(0)=u_{1}, v(0)=v_{0}, v_{t}(0)=v_{1} & \text { in } \Omega,\end{cases}
$$

for given $f, g \in L^{2}(\Omega \times(0, T))$ and $T>0$.
We have the following theorem of existence and uniqueness for Problem (S).
Theorem 3.1. Let $n=1,2,3$ and $\left(u_{0}, v_{0}\right) \in \mathcal{V} \times H_{0}^{1}(\Omega),\left(u_{1}, v_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$. Assume that assumptions (H.1) and (H.2) hold. Then, the problem (S) admits a unique weak solution on $[0, T)$.
Proof. Let $\left\{\omega_{j}\right\}_{j=1}^{\infty}$ be an orthogonal basis of \mathcal{V} and define, for all $k \geq 1,\left(u^{k}, v^{k}\right)$ a sequence in $\mathcal{V}_{k}=$ $\operatorname{span}\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{k}\right\} \subset \mathcal{V}$, given by

$$
u^{k}(x, t)=\Sigma_{j=1}^{k} a_{j}(t) \omega_{j}(x) \text { and } v^{k}(t)=\Sigma_{j=1}^{k} b_{j}(t) \omega_{j}(x)
$$

for all $x \in \Omega$ and $t \in(0, T)$ and solves the following approximate problem:

$$
\left\{\begin{array}{l}
\int_{\Omega} u_{t t}^{k}(x, t) \omega_{j} d x+\int_{\Omega} \Delta u^{k}(x, t) \Delta \omega_{j} d x+\int_{\Omega}\left|u_{t}^{k}(x, t)\right|^{m(x)-2} u_{t}^{k}(x, t) \omega_{j} d x \tag{k}\\
=\int_{\Omega} f(x, t) \omega_{j}, \\
\int_{\Omega} v_{t t}^{k}(x, t) \omega_{j} d x+\int_{\Omega} \nabla v^{k}(x, t) \nabla \omega_{j} d x+\int_{\Omega}\left|v_{t}^{k}(x, t)\right|^{r(x)-2} v_{t}^{k}(x, t) \omega_{j} d x \\
=\int_{\Omega} g(x, t) \omega_{j},
\end{array}\right.
$$

for all $j=1,2, \ldots, k$, with

$$
\begin{align*}
u^{k}(0) & =u_{0}^{k}=\Sigma_{i=1}^{k}\left\langle u_{0}, \omega_{i}\right\rangle \omega_{i}, u_{t}^{k}(0)=u_{1}^{k}=\Sigma_{i=1}^{k}\left\langle u_{1}, \omega_{i}\right\rangle \omega_{i} \\
v^{k}(0) & =v_{0}^{k}=\sum_{i=1}^{k}\left\langle v_{0}, \omega_{i}\right\rangle \omega_{i}, v_{t}^{k}(0)=v_{1}^{k}=\Sigma_{i=1}^{k}\left\langle v_{1}, \omega_{i}\right\rangle \omega_{i}, \tag{3.2}
\end{align*}
$$

such that

$$
\begin{array}{r}
u_{0}^{k} \longrightarrow u_{0} \text { and } v_{0}^{k} \longrightarrow v_{0} \text { in } H_{0}^{1}(\Omega), \\
u_{1}^{k} \longrightarrow u_{1} \text { and } v_{1}^{k} \longrightarrow v_{1} \operatorname{in} L^{2}(\Omega) \tag{3.3}
\end{array}
$$

For any $k \geq 1$, problem $\left(S_{k}\right)$ generates a system of k nonlinear ordinary differential equations. The ODE standard existence theory assures the existence of a unique local solution $\left(u^{k}, \nu^{k}\right)$ for $\left(S_{k}\right)$ on [$0, T_{k}$), with $0<T_{k} \leq T$. Next, we have to show that $T_{k}=T, \forall k \geq 1$. Multiplying $\left(S_{k}\right)_{1}$ and $\left(S_{k}\right)_{2}$ by $a_{j}^{\prime}(t)$ and $b_{j}^{\prime}(t)$, respectively, and then summing each result over $j=1, \ldots, k$, we obtain, for all $0<t \leq T_{k}$,

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left[\int_{\Omega}\left(\left|u_{t}^{k}(x, t)\right|^{2}+\left(\Delta u^{k}\right)^{2}(x, t)\right) d x\right]+\int_{\Omega}\left|u_{t}^{k}(x, t)\right|^{m(x)} d x \\
& =\int_{\Omega} f(x, t) u_{t}^{k}(x, t) d x \tag{3.4}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left[\int_{\Omega}\left(\left|v_{t}^{k}(x, t)\right|^{2}+\left|\nabla v^{k}\right|^{2}(x, t)\right) d x\right]+\int_{\Omega}\left|v_{t}^{k}(x, t)\right|^{r(x)} d x \\
& =\int_{\Omega} g(x, t) v_{t}^{k}(x, t) d x \tag{3.5}
\end{align*}
$$

The addition of (3.4) and (3.5), and then the integration of the result, over $(0, t)$, lead to

$$
\begin{align*}
& \frac{1}{2}\left[\left\|u_{t}^{k}(t)\right\|_{2}^{2}+\left\|u^{k}(t)\right\|_{\mathcal{V}}^{2}+\left\|v_{t}^{k}(t)\right\|_{2}^{2}+\left\|\nabla v^{k}(t)\right\|_{2}^{2}\right] \\
& +\int_{0}^{t} \int_{\Omega}\left(\left|u_{t}^{k}(x, s)\right|^{m(x)}+\left|v_{t}^{k}(x, s)\right|^{r(x)}\right) d x d s \\
& =\frac{1}{2}\left[\left\|u_{1}^{k}\right\|_{2}^{2}+\left\|u_{0}^{k}\right\|_{\mathcal{V}}^{2}+\left\|v_{1}^{k}\right\|_{2}^{2}+\left\|\nabla v_{0}^{k}\right\|_{2}^{2}\right] \tag{3.6}\\
& +\int_{0}^{t} \int_{\Omega}\left[f(x, s) u_{t}^{k}(x, s)+g(x, s) v_{t}^{k}(x, s)\right] d x d s
\end{align*}
$$

Using Young's inequality and the convergence (3.3), then Eq (3.6) becomes, for some $C>0$,

$$
\begin{aligned}
& \frac{1}{2}\left[\left\|u_{t}^{k}(t)\right\|_{2}^{2}+\left\|v_{t}^{k}(t)\right\|_{2}^{2}+\left\|u^{k}(t)\right\|_{V}^{2}+\left\|\nabla v^{k}(t)\right\|_{2}^{2}\right] \\
& +\int_{0}^{T_{k}} \int_{\Omega}\left(\left|u_{t}^{k}(x, s)\right|^{m(x)}+\left|v_{t}^{k}(x, s)\right|^{r(x)}\right) d x d s \\
& \leq C+\varepsilon \int_{0}^{T_{k}}\left(\left\|u_{t}^{k}(s)\right\|_{2}^{2}+\left\|v_{t}^{k}(s)\right\|_{2}^{2}\right) d s \\
& +C_{\varepsilon} \int_{0}^{T} \int_{\Omega}\left(|f(x, s)|^{2}+|g(x, s)|^{2}\right) d x d s .
\end{aligned}
$$

Using the fact that $f, g \in L^{2}(\Omega \times(0, T))$ and choosing $\varepsilon=\frac{1}{4 T}$, we infer

$$
\begin{align*}
& \frac{1}{2} \sup _{\left(0, T_{k}\right)}\left[\left\|u_{t}^{k}\right\|_{2}^{2}+\left\|v_{t}^{k}\right\|_{2}^{2}+\left\|u^{k}\right\|_{V}^{2}+\left\|\nabla v^{k}\right\|_{2}^{2}\right]+\int_{0}^{T_{k}} \int_{\Omega}\left(\left|u_{t}^{k}(x, s)\right|^{m(x)}+\left|v_{t}^{k}(x, s)\right|^{r(x)}\right) d x d s \\
& \leq C_{\varepsilon}+T \varepsilon \sup _{\left(0, T_{k}\right)}\left(\left\|u_{t}^{k}\right\|_{2}^{2}+\left\|v_{t}^{k}\right\|_{2}^{2}\right) \\
& \leq C_{T} \tag{3.7}
\end{align*}
$$

where $C_{T}>0$ is a constant depending on T only. Consequently, the solution $\left(u^{k}, v^{k}\right)$ can be extended to $(0, T)$, for any $k \geq 1$. In addition, we have

$$
\left\{\begin{array}{l}
\left(u^{k}\right) \text { is bounded in } L^{\infty}((0, T), \mathcal{V}), \\
\left(v^{k}\right) \text { is bounded in } L^{\infty}\left((0, T), H_{0}^{1}(\Omega)\right), \\
\left(u_{t}^{k}\right) \text { is bounded in } L^{\infty}\left((0, T), L^{2}(\Omega)\right) \cap L^{m(.)}(\Omega \times(0, T)), \\
\left(v_{t}^{k}\right) \text { is bounded in } L^{\infty}\left((0, T), L^{2}(\Omega)\right) \cap L^{r(.)}(\Omega \times(0, T)) .
\end{array}\right.
$$

Therefore, we can extract two subsequences, denoted by $\left(u^{l}\right)$ and $\left(v^{l}\right)$, respectively, such that, when $l \rightarrow \infty$, we have

$$
\left\{\begin{array}{l}
u^{l} \rightarrow u \text { weakly } * \text { in } L^{\infty}((0, T), \mathcal{V}) \\
v^{l} \rightarrow v \text { weakly } * \text { in } L^{\infty}\left((0, T), H_{0}^{1}(\Omega)\right) \\
u_{t}^{l} \rightarrow u_{t} \text { weakly } * \text { in } L^{\infty}\left((0, T), L^{2}(\Omega)\right) \text { and weakly in } L^{m(.)}(\Omega \times(0, T)), \\
v_{t}^{l} \rightarrow v_{t} \text { weakly } * \text { in } L^{\infty}\left((0, T), L^{2}(\Omega)\right) \text { and weakly in } L^{r(.)}(\Omega \times(0, T))
\end{array}\right.
$$

Under the assumptions (H.1) and (H.2) and using similar ideas and arguments as in [[15], Theorem 3.2, p.6], one can see that

$$
\begin{aligned}
\left|u_{t}^{l}\right|^{m(.)-2} u_{t}^{l} \rightarrow\left|u_{t}\right|^{m(.)-2} u_{t} \text { weakly in } L^{\frac{m()}{m(.)-1}}(\Omega \times(0, T)), \\
\left|v_{t}^{l}\right|^{r(.)-2} v_{t}^{l} \rightarrow\left|v_{t}\right|^{\left.r^{(.)}\right)-2} v_{t} \text { weakly in } L^{\frac{r(0)}{(r)-1}}(\Omega \times(0, T))
\end{aligned}
$$

and establish that (u, v) satisfies the two differential equations in (S), on $\Omega \times(0, T)$.
To handle the initial conditions, we follow the same procedures as in [15], and we easily conclude that (u, v) satisfies the initial conditions. For the uniqueness, Assume that (S) has two weak solutions $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$, in the sense of Definition 3.1. Let $(\Phi, \Psi)=\left(u_{1 t}-u_{2 t}, v_{1 t}-v_{2 t}\right)$, then $(u, v)=\left(u_{1}-u_{2}, v_{1}-v_{2}\right)$ satisfies the following identities, for all $t \in(0, T)$,

$$
\begin{align*}
& \frac{d}{d t}\left[\int_{\Omega}\left(\left|u_{t}\right|^{2}+(\Delta u)^{2}\right) d x\right] \\
& +2 \int_{\Omega}\left(\left|u_{1 t}\right|^{m(x)-2} u_{1 t}-\left|u_{2 t}\right|^{m(x)-2} u_{2 t}\right)\left(u_{1 t}-u_{2 t}\right) d x=0 \tag{3.8}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{d}{d t}\left[\int_{\Omega}\left(\left|v_{t}\right|^{2}+|\nabla v|^{2}\right) d x\right] \\
& +2 \int_{\Omega}\left(\left|v_{1 t}\right|^{r(x)-2} v_{1 t}-\left|v_{2 t}\right|^{r(x)-2} v_{2 t}\right)\left(v_{1 t}-v_{2 t}\right) d x=0 \tag{3.9}
\end{align*}
$$

Integrating (3.8) and (3.9) over ($0, t$), with $t \leq T$, we obtain

$$
\begin{equation*}
\left\|u_{t}\right\|_{2}^{2}+\|u\|_{\mathcal{V}}^{2}+2 \int_{0}^{t} \int_{\Omega}\left(\left|u_{1 t}\right|^{m(x)-2} u_{1 t}-\left|u_{2 t}\right|^{m(x)-2} u_{2 t}\right)\left(u_{1 t}-u_{2 t}\right) d x d \tau=0 \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|v_{t}\right\|_{2}^{2}+\|\nabla v\|_{2}^{2}+2 \int_{0}^{t} \int_{\Omega}\left(\left|v_{1 t}\right|^{r(x)-2} v_{1 t}-\left|v_{2 t}\right|^{r(x)-2} v_{2 t}\right)\left(v_{1 t}-v_{2 t}\right) d x d \tau=0 \tag{3.11}
\end{equation*}
$$

But we have, for all $x \in \Omega, Y, Z \in \mathbb{R}$ and $q(x) \geq 2$,

$$
\begin{equation*}
\left(|Y|^{q(x)-2} Y-|Z| Z^{q(x)-2}\right)(Y-Z) \geq 0 \tag{3.12}
\end{equation*}
$$

then, estimates (3.10) and (3.11) yield

$$
\left\|u_{t}\right\|^{2}+\|u\|_{V}^{2}=\left\|v_{t}\right\|^{2}+\|\nabla v\|_{2}^{2}=0
$$

Thus, $u_{t}(., t)=v_{t}(., t)=0$ and $u(., t)=v(., t)=0$, for all $t \in(0, T)$. Thanks to the boundary conditions, we conclude $u=v=0$ on $\Omega \times(0, T)$, which proves the uniqueness of the solution. Therefore, (u, v) is the unique local solution of (S), in the sense of Definition 3.1, having the regularity (3.1).

Lemma 3.1. Let $y \in L^{\infty}((0, T), \mathcal{V})$ and $z \in L^{\infty}\left((0, T), H_{0}^{1}(\Omega)\right)$. Then

$$
\begin{equation*}
f_{1}(y, z), f_{2}(y, z) \in L^{2}(\Omega \times(0, T)) \tag{3.13}
\end{equation*}
$$

Proof. From (1.3) and (1.4), we have, for all $(u, v) \in \mathbb{R}^{2}$,

$$
\begin{equation*}
f_{1}(u, v)=(p(x)+1)\left[a|u+v|^{p(x)-1}(u+v)+b u|u|^{\frac{p(x)-3}{2}}|v|^{\frac{p(x)+1}{2}}\right] \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2}(u, v)=(p(x)+1)\left[a|u+v|^{p(x)-1}(u+v)+b v|v|^{\frac{p(x)-3}{2}}|u|^{\frac{p(x)+1}{2}}\right] . \tag{3.15}
\end{equation*}
$$

Let $y \in L^{\infty}((0, T), \mathcal{V})$ and $z \in L^{\infty}\left((0, T), H_{0}^{1}(\Omega)\right)$. Applying Young's inequality and the Sobolev embedding, we obtain, for all $t \in(0, T)$ and some $C_{1}, C_{2}>0$, the following results:

$$
\begin{align*}
& \int_{\Omega}\left|f_{1}(y, z)\right|^{2} d x \leq 2\left[a^{2} \int_{\Omega}|y+z|^{2 p(x)} d x+b^{2} \int_{\Omega}|y|^{p(x)-1}|z|^{p(x)+1} d x\right] \\
& \leq C_{0}\left[\int_{\Omega}|y+z|^{2 p^{+}} d x+\int_{\Omega}|y+z|^{2 p^{-}} d x+\int_{\Omega}|y|^{3(p(x)-1)} d x+\int_{\Omega}|z|^{\frac{3}{2}(p(x)+1)} d x\right] \tag{3.16}
\end{align*}
$$

where $C_{0}=2 \max \left\{a^{2}, 3 b^{2}\right\}>0$. By the embeddings, we have for $n=1,2$,

$$
1<\frac{3}{2}\left(p^{-}+1\right) \leq \frac{3}{2}\left(p^{+}+1\right) \leq 2 p^{+} \leq 3\left(p^{+}-1\right)<\infty
$$

since $3 \leq p^{-} \leq p(x) \leq p^{+}<\infty$. Therefore, estimate (3.16) leads to

$$
\begin{align*}
& \int_{\Omega}\left|f_{1}(y, z)\right|^{2} d x \\
& \leq C_{1}\left[\|\nabla(y+z)\|_{2}^{2 p^{+}}+\|\nabla(y+z)\|_{2}^{2 p^{-}}+\|\Delta y\|_{2}^{3\left(p^{+}-1\right)}+\|\Delta y\|_{2}^{3\left(p^{-}-1\right)}\right] \\
& +C_{1}\left[\|\nabla z\|_{2}^{\frac{3}{2}\left(p^{+}+1\right)}+\|\nabla z\|_{2}^{\frac{3}{2}\left(p^{-}+1\right)}\right]<+\infty \tag{3.17}
\end{align*}
$$

where $C_{1}=C_{0} C_{e}$.

- For $n=3$, we use the embedding $H_{0}^{1}(\Omega)$ in $L^{6}(\Omega)$ to obtain (3.17), since $p \equiv 3$ on $\bar{\Omega}$.

So, under the assumption (H.2), we have

$$
\int_{\Omega}\left|f_{1}(y, z)\right|^{2} d x<\infty
$$

and similarly

$$
\int_{\Omega}\left|f_{2}(y, z)\right|^{2} d x<\infty
$$

for all $t \in(0, T)$. Which completes the proof.
Corollary 3.1. There exists a unique (u, v) solution of the problem:

$$
\begin{cases}u_{t t}+\Delta^{2} u+\mid u_{t} t^{m(x)-2} u_{t}=f_{1}(y, z), & \text { in } \Omega \times(0, T), \tag{R}\\ v_{t t}-\Delta v+\left|v_{t}\right|^{r(x)-2} v_{t}=f_{2}(y, z), & \text { in } \Omega \times(0, T), \\ u=v=\frac{\partial u}{\partial \eta}=0 & \text { on } \partial \Omega \times(0, T), \\ u(0)=u_{0} \text { and } u_{t}(0)=u_{1} & \text { in } \Omega, \\ v(0)=v_{0} \text { and } v_{t}(0)=v_{1}, & \text { in } \Omega,\end{cases}
$$

in the sense of Definition 3.1 and having the regularity 3.1.
Proof. A combination of Theorem 3.1 and Lemma 3.1 implies this corollary.
Now, consider the following Banach spaces

$$
A_{T}=\left\{w \in L^{\infty}((0, T), \mathcal{V}) / w_{t} \in L^{\infty}\left((0, T), L^{2}(\Omega)\right)\right\}
$$

equipped with the norm:

$$
\|w\|_{A_{T}}^{2}=\sup _{(0, T)}\|w\|_{V}^{2}+\sup _{(0, T)}\left\|w_{t}\right\|_{2}^{2}
$$

and

$$
B_{T}=\left\{w \in L^{\infty}\left((0, T), H_{0}^{1}(\Omega)\right) / w_{t} \in L^{\infty}\left((0, T), L^{2}(\Omega)\right)\right\}
$$

equipped with the norm:

$$
\|w\|_{B_{T}}^{2}=\sup _{(0, T)}\|\nabla w\|_{2}^{2}+\sup _{(0, T)}\left\|w_{t}\right\|_{2}^{2}
$$

and define a map $F: A_{T} \times B_{T}: \longrightarrow A_{T} \times B_{T}$ by $F(y, z)=(u, v)$.
Lemma 3.2. F maps $D(0, d)$ into itself where

$$
D(0, d)=\left\{(w, w) \in A_{T} \times B_{T} \text { such that }\|(w, w)\|_{A_{T} \times B_{T}} \leq d\right\} .
$$

Proof. Let (y, z) be in $D(0, d)$ and (u, v) be the corresponding solution of problem (R) (i.e., $F(y, z)=$ $(u, v))$. Taking $(\Phi, \Psi)=\left(u_{t}, v_{t}\right)$ in Definition 3.1 and integrating each identity over $(0, t)$, we obtain, for all $t \leq T$,

$$
\begin{align*}
& \frac{1}{2}\left[\left\|u_{t}\right\|_{2}^{2}-\left\|u_{1}\right\|_{2}^{2}+\|\Delta u\|_{2}^{2}-\left\|\Delta u_{0}\right\|_{2}^{2}\right]+\int_{0}^{t} \int_{\Omega}\left|u_{t}(x, s)\right|^{m(x)} d x d s \\
& =\int_{0}^{t} \int_{\Omega} u_{t} f_{1}(y, z) d x d s \tag{3.18}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{2}\left[\left\|v_{t}\right\|_{2}^{2}-\left\|v_{1}\right\|_{2}^{2}+\|\nabla v\|_{2}^{2}-\left\|\nabla v_{0}\right\|_{2}^{2}\right]+\int_{0}^{t} \int_{\Omega}\left|v_{t}(x, s)\right|^{r(x)} d x d s \\
& =\int_{0}^{t} \int_{\Omega} v_{t} f_{2}(y, z) d x d s \tag{3.19}
\end{align*}
$$

The addition of (3.18) and (3.19) lead to

$$
\begin{aligned}
& \frac{1}{2}\left[\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}+\|\Delta u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right] \\
& \leq \frac{1}{2}\left[\left\|u_{1}\right\|_{2}^{2}+\left\|v_{1}\right\|_{2}^{2}+\left\|\Delta u_{0}\right\|_{2}^{2}+\left\|\nabla v_{0}\right\|_{2}^{2}\right] \\
& +\int_{0}^{t}\left(\left|\int_{\Omega} u_{t} f_{1}(y, z) d x\right|+\left|\int_{\Omega} v_{t} f_{2}(y, z) d x\right|\right) d s
\end{aligned}
$$

for all $t \in(0, T)$. Therefore,

$$
\begin{align*}
& \sup _{0 \leq t \leq T}\left(\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}+\|u\|_{\mathcal{V}}^{2}+\|\nabla v\|_{2}^{2}\right) \\
& \leq \gamma+2 \sup _{0 \leq t \leq T} \int_{0}^{t}\left(\left|\int_{\Omega} u_{t} f_{1}(y, z) d x\right|+\left|\int_{\Omega} v_{t} f_{2}(y, z) d x\right|\right) d \tau \tag{3.20}
\end{align*}
$$

where $\gamma=\left\|u_{1}\right\|_{2}^{2}+\left\|v_{1}\right\|_{2}^{2}+\left\|u_{0}\right\|_{\mathcal{V}}^{2}+\left\|\nabla v_{0}\right\|_{2}^{2}$. Under the assumption (2.3) and applying Young's inequality and the Sobolev embedding (Lemma 2.2), we obtain for all $t \in(0, T)$,

$$
\begin{align*}
& \left|\int_{\Omega} u_{t} f_{1}(y, z) d x\right| \leq\left(p^{+}+1\right)\left[a \int_{\Omega}\left|u_{t}\right||y+z|^{p(x)} d x+b \int_{\Omega}\left|u_{t}\right| \cdot|y|^{\frac{p(x)-1}{2}}|z|^{\frac{p(x)+1}{2}} d x\right] \\
& \leq\left(p^{+}+1\right)\left[\frac{\varepsilon(a+b)}{2} \int_{\Omega}\left|u_{t}\right|^{2} d x+\frac{2 a}{\varepsilon} \int_{\Omega}|y+z|^{2 p(x)} d x+\frac{2 b}{\varepsilon} \int_{\Omega}|y|^{p(x)-1}|z|^{p(x)+1} d x\right] \\
& \leq c_{1}\left[\frac{\varepsilon}{2}\left\|u_{t}\right\|_{2}^{2}+C_{\varepsilon}\left(\int_{\Omega}|y+z|^{2 p^{+}}+\int_{\Omega}|y+z|^{2 p^{-}}+\int_{\Omega}|y|^{3(p(x)-1)}+\int_{\Omega}|z|^{\frac{3}{3}(p(x)+1)}\right)\right] \\
& \leq c_{2}\left[\varepsilon\left\|u_{t}\right\|_{2}^{2}+\|\Delta y\|_{2}^{p^{-}}+\|\nabla z\|_{2}^{2 p^{-}}+\|\Delta y\|_{2}^{2 p^{+}}+\|\nabla z\|_{2}^{p^{+}}\right] \\
& +c_{2}\left[\|\Delta y\|_{2}^{3\left(p^{-}-1\right)}+\|\Delta y\|_{2}^{3\left(p^{+}-1\right)}+\|\nabla z\|_{2}^{\frac{3}{2}\left(p^{-}+1\right)}+\|\nabla z\|_{2}^{\frac{3}{2}\left(p^{+}+1\right)}\right], \tag{3.21}
\end{align*}
$$

where $\varepsilon, c_{1}, c_{2}$ are positive constants. Likewise, we get

$$
\begin{align*}
\left|\int_{\Omega} v_{t} f_{2}(y, z) d x\right| & \leq\left(p^{+}+1\right)\left[a \int_{\Omega}\left|v_{t}\right||y+z|^{p(x)} d x+b \int_{\Omega}\left|v_{t}\right| \cdot|z|^{\frac{p(x)-1}{2}}|y|^{\frac{p(x)+1}{2}} d x\right] \\
& \leq c_{2}\left[\varepsilon\left\|v_{t}\right\|_{2}^{2}+\|\Delta y\|_{2}^{2 p^{-}}+\|\nabla z\|_{2}^{2 p^{-}}+\|\Delta y\|_{2}^{p^{+}}+\|\nabla z\|_{2}^{2 p^{+}}\right] \\
& +c_{2}\left[\|\nabla z\|_{2}^{3\left(p^{-}-1\right)}+\|\nabla z\|_{2}^{3\left(p^{+}-1\right)}+\|\Delta y\|_{2}^{\frac{3}{2}\left(p^{-}+1\right)}+\|\Delta y\|_{2}^{\frac{3}{2}\left(p^{+}+1\right)}\right] . \tag{3.22}
\end{align*}
$$

Combining (3.21) and (3.22), yields

$$
\sup _{(0, T)} \int_{0}^{t}\left(\left|\int_{\Omega} u_{t} f_{1}(y, z) d x\right|+\left|\int_{\Omega} v_{t} f_{2}(y, z) d x\right|\right) d s \leq \varepsilon T c_{2}\|(u, v)\|_{A_{T} \times B_{T}}^{2}
$$

$$
\begin{align*}
& +2 T c_{2}\left(\|(y, z)\|_{A_{T} \times B_{T}}^{2 p^{-}}+\|(y, z)\|_{A_{T} \times B_{T}}^{2 p^{+}}\right) \\
& +T c_{2}\left(\|(y, z)\|_{A_{T} \times B_{T}}^{3\left(p^{-}-1\right)}+\|(y, z)\|_{A_{T} \times B_{T}}^{3\left(p^{+}-1\right)}+\|(y, z)\|_{A_{T} \times B_{T}}^{\frac{3}{2}\left(p^{-}+1\right)}+\|(y, z)\|_{A_{T} \times B_{T}}^{\frac{3}{2}\left(p^{+}+1\right)}\right) . \tag{3.23}
\end{align*}
$$

By substituting (3.23) into (3.20), we obtain, for some $c_{3}>0$,

$$
\begin{align*}
& \frac{1}{2}\|(u, v)\|_{A_{T} \times B_{T}}^{2} \leq \gamma_{0}+\varepsilon T c_{3}\|(u, v)\|_{A_{T} \times B_{T}}^{2} \\
& +2 T c_{3}\left(\|(y, z)\|_{A_{T} \times B_{T}}^{2 p^{-}}+\|(y, z)\|_{A_{T} \times B_{T}}^{2 p^{+}}\right) \\
& +T c_{3}\left(\|(y, z)\|_{A_{T} \times B_{T}}^{3\left(p^{p}-1\right)}+\|(y, z)\|_{A_{T} \times B_{T}}^{\left(p^{+}-1\right)}+\|(y, z)\|_{A_{T} \times B_{T}}^{\frac{3}{2\left(p^{-}+1\right)}}+\|(y, z)\|_{A_{T} \times B_{T}}^{\frac{3}{2}\left(p^{+}+1\right)}\right) . \tag{3.24}
\end{align*}
$$

Choosing ε such that $\varepsilon T c_{3}=\frac{1}{4}$ and recalling that $\|(y, z)\|_{A_{T} \times B_{T}} \leq d$, for some $d>1$ (large enough), inequality (3.24) implies

$$
\begin{aligned}
& \|(u, v)\|_{A_{T} \times B_{T}}^{2} \leq 4 \gamma_{0}+8 T c_{3}\left(\|(y, z)\|_{A_{T} \times B_{T}}^{2 p^{-}}+\|(y, z)\|_{T_{T^{+} \times B_{T}}^{2 p^{+}}}^{23}\right) \\
& +4 T c_{3}\left(\|(y, z)\|_{A_{T} \times B_{T}}^{3\left(p^{-}-1\right)}+\|(y, z)\|_{A_{T} \times B_{T}}^{3\left(p^{+}-1\right)}+\|(y, z)\|_{A_{T} \times B_{T}}^{\frac{3}{(p++1)}}+\|(y, z)\|_{A_{T} \times B_{T}}^{\frac{3}{2}\left(p^{+}+1\right)}\right) \\
& \leq 4 \gamma_{0}+T c_{4} d^{3\left(p^{+}-1\right)}, c_{4}>0,
\end{aligned}
$$

So, if we take d such that $d^{2} \gg 4 \gamma_{0}$ and $T \leq T_{0}=\frac{d^{2}-4 \gamma_{0}}{c_{4} d^{3}\left(p^{+}-1\right)}$, we find

$$
4 \gamma_{0}+T c_{4} d^{3\left(p^{+}-1\right)} \leq d^{2}
$$

Therefore,

$$
\|(u, v)\|_{A_{T} \times B_{T}}^{2} \leq d^{2}
$$

Thus, F maps $D(0, d)$ to $D(0, d)$.
Lemma 3.3. $F: D(0, d) \longrightarrow D(0, d)$ is a contraction.
Proof. Let $\left(y_{1}, z_{1}\right)$ and $\left(y_{2}, z_{2}\right)$ be in $D(0, d)$ and set $\left(u_{1}, v_{1}\right)=F\left(y_{1}, z_{1}\right)$ and $\left(u_{2}, v_{2}\right)=F\left(y_{2}, z_{2}\right)$. Clearly, $(U, V)=\left(u_{1}-u_{2}, v_{1}-v_{2}\right)$ is a weak solution of the following system

$$
\begin{cases}U_{t t}+\Delta^{2} U+\left|u_{1 t}\right|^{m(x)-2} u_{1 t}-\left|u_{2 t}\right|^{m(x)-2} u_{2 t} & \\ =f_{1}\left(y_{1}, z_{1}\right)-f_{1}\left(y_{2}, z_{2}\right) & \text { in } \Omega \times(0, T), \\ V_{t t}-\Delta V+\left|v_{1 t^{r}(x)-2} v_{1 t}-\left|v_{2 t}\right|^{r(x)-2} v_{2 t}\right. & \\ =f_{2}\left(y_{1}, z_{1}\right)-f_{2}\left(y_{2}, z_{2}\right) & \text { in } \Omega \times(0, T), \\ U=V=0 & \text { on } \partial \Omega \times(0, T), \\ (U(0), V(0))=\left(U_{t}(0), V_{t}(0)\right)=(0,0) & \text { in } \Omega,\end{cases}
$$

in the sense of Definition 3.1. So, taking $(\Phi, \Psi)=\left(U_{t}, V_{t}\right)$, in this definition, using Green's formula together with the boundary conditions and then, integrating each result over ($0, t$), we obtain, for a.e. $t \leq T$,

$$
\frac{1}{2}\left(\left\|U_{t}\right\|_{2}^{2}+\|\Delta U\|_{2}^{2}\right)+\int_{0}^{t} \int_{\Omega}\left(u_{1 t}\left|u_{1 t}\right|^{m(x)-2}-u_{2 t}\left|u_{2 t}\right|^{m(x)-2}\right) U_{t} d x d s
$$

$$
\leq \int_{0}^{t} \int_{\Omega}\left|f_{1}\left(y_{1}, z_{1}\right)-f_{1}\left(y_{2}, z_{2}\right)\right|\left|U_{t}\right| d x d s
$$

and

$$
\begin{aligned}
& \frac{1}{2}\left(\left\|V_{t}\right\|_{2}^{2}+\|\nabla V\|_{2}^{2}\right)+\int_{0}^{t} \int_{\Omega}\left(v_{1 t}\left|v_{1 t}\right|^{r(x)-2}-v_{2 t}\left|v_{2 t}\right|^{r(x)-2}\right) V_{t} d x d s \\
& \leq \int_{0}^{t} \int_{\Omega}\left|f_{2}\left(y_{1}, z_{1}\right)-f_{2}\left(y_{2}, z_{2}\right)\right|\left|V_{t}\right| d x d s
\end{aligned}
$$

Under the condition (H.2), using Hölder's inequality and inequality (3.12), these two estimates give, for $n=1,2,3$,

$$
\begin{equation*}
\left\|U_{t}\right\|_{2}^{2}+\|U\|_{V}^{2} \leq 4 \int_{0}^{t}\left\|U_{t}\right\|_{2}\left\|f_{1}\left(y_{1}, z_{1}\right)-f_{1}\left(y_{2}, z_{2}\right)\right\|_{2} d s \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|V_{t}\right\|_{2}^{2}+\|\nabla V\|_{2}^{2} \leq 4 \int_{0}^{t}\left\|V_{t}\right\|_{2}\left\|f_{2}\left(y_{1}, z_{1}\right)-f_{2}\left(y_{2}, z_{2}\right)\right\|_{2} d s \tag{3.26}
\end{equation*}
$$

The addition of (3.25) and (3.26) imply

$$
\begin{align*}
& \left\|U_{t}\right\|_{2}^{2}+\left\|V_{t}\right\|_{2}^{2}+\|U\|_{\mathcal{V}}^{2}+\|\nabla V\|_{2}^{2} \leq 4 \int_{0}^{t}\left\|U_{t}\right\|_{2}\left\|f_{1}\left(y_{1}, z_{1}\right)-f_{1}\left(y_{2}, z_{2}\right)\right\|_{2} d s \\
& +4 \int_{0}^{t}\left\|V_{t}\right\|_{2}\left\|f_{2}\left(y_{1}, z_{1}\right)-f_{2}\left(y_{2}, z_{2}\right)\right\|_{2} d s \tag{3.27}
\end{align*}
$$

for all $t \in(0, T)$. Now, we estimate the terms:

$$
\left\|f_{1}\left(y_{1}, z_{1}\right)-f_{1}\left(y_{2}, z_{2}\right)\right\|_{2} \text { and }\left\|f_{2}\left(y_{1}, z_{1}\right)-f_{2}\left(y_{2}, z_{2}\right)\right\|_{2}
$$

Using appropriate algebraic inequalities (see [21]), we obtain for two constants $C_{1}, C_{2}>0$ and for all $x \in \Omega$ and $t \in(0, T)$,

$$
\begin{equation*}
\int_{\Omega}\left|f_{1}\left(y_{1}, z_{1}\right)-f_{1}\left(y_{2}, z_{2}\right)\right|^{2} d x \leq I_{1}+I_{2}+I_{3}+I_{4} \tag{3.28}
\end{equation*}
$$

where

$$
\begin{aligned}
I_{1}= & C_{1} \int_{\Omega}\left|y_{1}-y_{2}\right|^{2}\left(\left|y_{1}\right|^{2(p(x)-1)}+\left|z_{1}\right|^{2(p(x)-1)}\right) d x \\
& +C_{1} \int_{\Omega}\left|y_{1}-y_{2}\right|^{2}\left(\left|y_{2}\right|^{2(p(x)-1)}+\left|z_{2}\right|^{2(p(x)-1)}\right) d x \\
I_{2}= & C_{1} \int_{\Omega}\left|z_{1}-z_{2}\right|^{2}\left(\left|y_{1}\right|^{2(p(x)-1)}+\left|z_{1}\right|^{2(p(x)-1)}\right) d x \\
& +C_{1} \int_{\Omega}\left|z_{1}-z_{2}\right|^{2}\left(\left|y_{1}\right|^{2(p(x)-1)}+\left|z_{2}\right|^{2(p(x)-1)}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& I_{3}=C_{2} \int_{\Omega}\left|z_{1}-z_{2}\right|^{2}\left|y_{1}\right|^{p(x)-1}\left(\left|z_{1}\right|^{p(x)-1}+\left|z_{2}\right|^{p(x)-1}\right) d x \\
& I_{4}=C_{2} \int_{\Omega}\left|y_{1}-y_{2}\right|^{2}\left|z_{2}\right|^{p(x)+1}\left(\left|y_{1}\right|^{p(x)-3}+\left|y_{2}\right|^{p(x)-3}\right) d x
\end{aligned}
$$

By using Hölder's and Young's inequalities and the Sobolev embedding (Lemma 2.2), we get the following estimate for a typical term in I_{1} and I_{2},

$$
\begin{align*}
& \int_{\Omega}\left|y_{1}-y_{2}\right|^{2}\left|y_{1}\right|^{2(p(x)-1)} d x \leq 2\left(\int_{\Omega}\left|y_{1}-y_{2}\right|^{6} d x\right)^{\frac{1}{3}}\left(\int_{\Omega}\left|y_{1}\right|^{3(p(x)-1)}\right)^{\frac{2}{3}} \\
& \left.\leq C\left\|y_{1}-y_{2}\right\|_{6}^{2}\left[\left(\int_{\Omega}\left|y_{1}\right|^{3\left(p^{+}-1\right)} d x\right)^{\frac{2}{3}}+\left(\int_{\Omega}\left|y_{1}\right|^{3\left(p^{-}-1\right.}\right) d x\right)^{\frac{2}{3}}\right] \\
& \leq C\left\|\Delta\left(y_{1}-y_{2}\right)\right\|_{2}^{2}\left(\left\|y_{1}\right\|_{3\left(p^{+}-1\right)}^{2\left(p^{+}-1\right)}+\left\|y_{1}\right\|_{3\left(p^{-}-1\right)}^{2\left(p^{-}-1\right)}\right) \\
& \leq C\|\Delta Y\|_{2}^{2}\left(\left\|\Delta y_{1}\right\|_{2}^{2\left(p^{+}-1\right)}+\left\|\Delta y_{1}\right\|_{2}^{2\left(p^{-}-1\right)}\right) \\
& \leq C\|\Delta Y\|_{2}^{2}\left(\left\|\left(y_{1}, z_{1}\right)\right\|_{A_{T} \times B_{T}}^{2\left(p^{+}-1\right)}+\left\|\left(y_{1}, z_{1}\right)\right\|_{A_{T} \times B_{T}}^{2\left(p^{-}-1\right)}\right), \tag{3.29}
\end{align*}
$$

since

- $1 \leq 3\left(p^{-}-1\right) \leq 3\left(p^{+}-1\right)<\infty$, when $n=1,2$.
- $1 \leq 3\left(p^{-}-1\right)=3\left(p^{+}-1\right)=6=\frac{2 n}{n-2}$, when $n=3$.

Likewise, we obtain

$$
\begin{equation*}
\int_{\Omega}\left|z_{1}-z_{2}\right|^{2}\left|y_{2}\right|^{2(p(x)-1)} d x \leq C\|\nabla Z\|_{2}^{2}\left(\left\|\left(y_{2}, z_{2}\right)\right\|_{A_{T} \times B_{T}}^{2\left(p^{+}-1\right)}+\left\|\left(y_{2}, z_{2}\right)\right\|_{A_{T} \times B_{T}}^{2\left(p^{-}-1\right)}\right) . \tag{3.30}
\end{equation*}
$$

Since $\left(y_{1}, z_{1}\right),\left(y_{2}, z_{2}\right) \in D(0, d)$ and $d>1$, estimates (3.29) and (3.30) lead to

$$
I_{1} \leq C\|\Delta Y\|_{2}^{2} d^{2\left(p^{+}-1\right)} \text { and } I_{2} \leq C\|\nabla Z\|_{2}^{2} d^{2\left(p^{+}-1\right)}
$$

Hence,

$$
\begin{equation*}
I_{1}+I_{2} \leq C d^{2\left(p^{+}-1\right)}\left(\|\Delta Y\|_{2}^{2}+\|\nabla Z\|_{2}^{2}\right) \tag{3.31}
\end{equation*}
$$

Similarly, a typical term in I_{3} can be handled as follows

$$
\begin{aligned}
& \int_{\Omega}\left|z_{1}-z_{2}\right|^{2}\left|y_{1}\right|^{p(x)-1}\left|z_{1}\right|^{p(x)-1} d x \\
& \leq 2\left(\int_{\Omega}\left|z_{1}-z_{2}\right|^{6} d x\right)^{\frac{1}{3}}\left(\int_{\Omega}\left|y_{1}\right|^{\frac{3}{2}(p(x)-1)}\left|z_{1}\right|^{\frac{3}{2}(p(x)-1)}\right)^{\frac{2}{3}} \\
& \leq C\left\|z_{1}-z_{2}\right\|_{6}^{2}\left[\left(\int_{\Omega}\left|y_{1}\right|^{\frac{3}{2}(p(x)-1)} d x\right)^{\frac{2}{3}}+\left(\int_{\Omega}\left|z_{1}\right|^{\frac{3}{2}(p(x)-1)} d x\right)^{\frac{2}{3}}\right] \\
& \leq C\left\|\nabla\left(z_{1}-z_{2}\right)\right\|_{2}^{2}\left(\left\|y_{1}\right\|_{\frac{3}{2}\left(p^{+}-1\right)}^{\left(p^{+}-1\right)}+\left\|y_{1}\right\|_{\frac{3}{2}\left(p^{-}-1\right)}^{\left(p^{-}-1\right)}+\left\|z_{1}\right\|_{\frac{3}{2}\left(p^{+}-1\right)}^{\left(p^{+}-1\right)}+\left\|z_{1}\right\|_{\frac{3}{2}\left(p^{p}-1\right)}^{\left(p^{-}-1\right)}\right) \\
& \leq C\left\|\nabla\left(z_{1}-z_{2}\right)\right\|_{2}^{2}\left(\left\|\Delta y_{1}\right\|_{2}^{\left(p^{+}-1\right)}+\left\|\Delta y_{1}\right\|_{2}^{\left(p^{-}-1\right)}+\left\|\nabla z_{1}\right\|_{2}^{\left(p^{+}-1\right)}+\left\|\nabla z_{1}\right\|_{2}^{\left(p^{-}-1\right)}\right) \\
& \leq 2 C\|\nabla Z\|_{2}^{2}\left(\left\|\left(y_{1}, z_{1}\right)\right\|_{A_{T} \times B_{T}}^{\left(p^{+}-1\right)}+\left\|\left(y_{1}, z_{1}\right)\right\|_{A_{T} \times B_{T}}^{\left(p^{-}-1\right)}\right),
\end{aligned}
$$

since

- $1 \leq \frac{3}{2}\left(p^{-}-1\right) \leq \frac{3}{2}\left(p^{+}-1\right)<\infty$, when $n=1,2$.
- $1 \leq \frac{3}{2}\left(p^{-}-1\right)=\frac{3}{2}\left(p^{+}-1\right)=6=\frac{2 n}{n-2}$, when $n=3$.

Therefore,

$$
\begin{equation*}
I_{3} \leq C d^{p^{+}-1}\|\nabla Z\|_{2}^{2} \tag{3.32}
\end{equation*}
$$

since $\left(y_{1}, z_{1}\right),\left(y_{2}, z_{2}\right) \in D(0, d)$. Using the same arguments, a typical term in I_{4}, can be estimated as follows:
Case 1: If $n=1,2$, we have $3 \leq p^{-} \leq p^{+}<\infty$. So,

$$
\begin{aligned}
& \int_{\Omega}\left|y_{1}-y_{2}\right|^{2}\left|z_{2}\right|^{p(x)+1}\left|y_{1}\right|^{p(x)-3} d x \\
& \leq 2\left(\int_{\Omega}\left|y_{1}-y_{2}\right|^{3} d x\right)^{\frac{2}{3}}\left(\int_{\Omega}\left|z_{2}\right|^{3(p(x)+1)}\left|y_{1}\right|^{3(p(x)-3)}\right)^{\frac{1}{3}} \\
& \leq C\left\|y_{1}-y_{2}\right\|_{3}^{2}\left[\left(\int_{\Omega}\left|z_{2}\right|^{6(p(x)+1)} d x\right)^{\frac{1}{3}}+\left(\int_{\Omega}\left|y_{1}\right|^{6(p(x)-3)} d x\right)^{\frac{1}{3}}\right] \\
& \leq C\|\Delta Y\|_{2}^{2}\left(\left\|\nabla z_{2}\right\|_{2}^{2\left(p^{+}+1\right)}+\left\|\nabla z_{2}\right\|_{2}^{2\left(p^{p}+1\right)}+\left\|\Delta y_{1}\right\|_{2}^{2\left(p^{+}-3\right)}+\left\|\Delta y_{1}\right\|_{2}^{2\left(p^{-}-3\right)}\right) \\
& \leq 4 C\|\Delta Y\|_{2}^{2} d^{2\left(p^{+}+1\right)},
\end{aligned}
$$

since $\left(y_{1}, z_{1}\right),\left(y_{2}, z_{2}\right) \in D(0, d)$ and $d>1$.
Case 2: If $n=3$, then $p \equiv 3$ on $\bar{\Omega}$. Hence,

$$
\begin{aligned}
\int_{\Omega}\left|y_{1}-y_{2}\right|^{2}\left|z_{2}\right|^{p(x)+1}\left|y_{1}\right|^{p(x)-3} d x & =\int_{\Omega}\left|y_{1}-y_{2}\right|^{2}\left|z_{2}\right|^{4} d x \\
& \leq C\left(\int_{\Omega}\left|y_{1}-y_{2}\right|^{6} d x\right)^{\frac{1}{3}}\left(\int_{\Omega}\left|z_{2}\right|^{6} d x\right)^{\frac{2}{3}} \\
& \leq C\left\|y_{1}-y_{2}\right\|_{6}^{2} \cdot\left\|z_{2}\right\|_{6}^{4} \\
& \leq C\|\Delta Y\|_{2}^{2} \cdot\left\|\left(y_{2}, z_{2}\right)\right\|_{A_{T} \times B_{T}}^{4} .
\end{aligned}
$$

So, for all $t \in(0, T)$, we deduce that

$$
\begin{equation*}
I_{4} \leq C\|\Delta Y\|_{2}^{2} d^{2\left(p^{+}+1\right)} . \tag{3.33}
\end{equation*}
$$

Finally, by substituting (3.31)-(3.33) in (3.28), the following can be obtained

$$
\begin{equation*}
\int_{\Omega}\left|f_{1}\left(y_{1}, z_{1}\right)-f_{1}\left(y_{2}, z_{2}\right)\right|^{2} d x \leq C d^{2\left(p^{+}+1\right)}\left(\|\Delta Y\|_{2}^{2}+\|\nabla Z\|_{2}^{2}\right) \tag{3.34}
\end{equation*}
$$

for all $t \in(0, T)$. Similarly, we get

$$
\begin{equation*}
\int_{\Omega}\left|f_{2}\left(y_{1}, z_{1}\right)-f_{2}\left(y_{2}, z_{2}\right)\right|^{2} d x \leq C d^{2\left(p^{+}+1\right)}\left(\|\Delta Y\|_{2}^{2}+\|\nabla Z\|_{2}^{2}\right) . \tag{3.35}
\end{equation*}
$$

Now, we use (3.34) and (3.35) in (3.27) to obtain

$$
\|(u, v)\|_{A_{T} \times B_{T}}^{2} \leq C d^{2\left(p^{+}+1\right)} \sup _{(0, T)} \int_{0}^{t}\left(\|\Delta Y(s)\|_{2}^{2}+\|\nabla Z(s)\|_{2}^{2}\right) d s
$$

$$
\leq C d^{2\left(p^{+}+1\right)} T\|(Y, Z)\|_{A_{T} \times B_{T}}^{2}
$$

Hence, if we take T small enough, we get for, $0<\gamma<1$,

$$
\|(u, v)\|_{A_{T} \times B_{T}}^{2} \leq \gamma\|(Y, Z)\|_{A_{T} \times B_{T}}^{2} .
$$

Thus,

$$
\left\|K\left(y_{1}, z_{1}\right)-K\left(y_{2}, z_{2}\right)\right\|_{A_{T} \times B_{T}}^{2} \leq \gamma\left\|\left(y_{1}, z_{1}\right)-\left(y_{2}, z_{2}\right)\right\|_{A_{T} \times B_{T}}^{2} .
$$

This proves that $F: D(0, d) \longrightarrow D(0, d)$ is a contraction.
Theorem 3.2. Let $n=1,2,3$. Under the assumptions (H.1) and (H.2) and for any $\left(u_{0}, v_{0}\right) \in \mathcal{V} \times$ $H_{0}^{1}(\Omega),\left(u_{1}, v_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ the problem (1.2) admits a unique weak solution (u,v), in the sense of Definition 3.1, having the regularity (3.1), for T small enough.

Proof. The above Lemmas and the Banach-fixed-point theorem guarantee the existence of a unique $(u, v) \in D(0, d)$, such that $F(u, v)=(u, v)$, which is a local weak solution of (1.2).

Remark 3.1. From the definitions (1.3) and (1.4), one can easily see that, for all $(u, v) \in \mathbb{R}^{2}$,

$$
\begin{equation*}
u f_{1}(x, u, v)+v f_{2}(x, u, v)=(p(x)+1) F(x, u, v) \tag{3.36}
\end{equation*}
$$

We, also, have the following results.
Lemma 3.1. [22] There exist $C_{1}, C_{2}>0$ such that, for all $x \in \bar{\Omega}$ and $(u, v) \in \mathbb{R}^{2}$, we have

$$
\begin{equation*}
C_{1}\left(|u|^{p(x)+1}+|v|^{p(x)+1}\right) \leq F(x, u, v) \leq C_{2}\left(|u|^{p(x)+1}+|v|^{p(x)+1}\right) \tag{3.37}
\end{equation*}
$$

Corollary 3.2. For all $x \in \bar{\Omega}$ and $(u, v) \in \mathbb{R}^{2}$, we have

$$
\begin{equation*}
C_{1}(\zeta(u)+\zeta(v)) \leq \int_{\Omega} F(x, u, v) d x \leq C_{2}(\zeta(u)+\zeta(v)) \tag{3.38}
\end{equation*}
$$

where

$$
\zeta(u)=\int_{\Omega}|u|^{p(x)+1} d x \text { and } \zeta(v)=\int_{\Omega}|v|^{p(x)+1} d x .
$$

Now, we introduce the energy functional associated with our problem

$$
\begin{equation*}
E(t)=\frac{1}{2}\left(\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}+\|\Delta u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)-\int_{\Omega} F(x, u, v) d x \tag{3.39}
\end{equation*}
$$

for all $t \in[0, T)$. A direct computation implies, for a.e. $t \in(0, T)$,

$$
\begin{equation*}
E^{\prime}(t)=-\int_{\Omega}\left|u_{t}\right|^{m(x)} d x-\int_{\Omega}\left|v_{t}\right|^{\prime(x)} d x \leq 0 \tag{3.40}
\end{equation*}
$$

4. Blow-up result

In this section, our goal is to prove that any solution of Problem (1.2) blows-up in some finite time T^{*}, if

$$
\begin{equation*}
\max \left\{m^{+}, r^{+}\right\}<p^{-} \text {and } 0<E(0)<E_{1}, \tag{4.1}
\end{equation*}
$$

where

$$
\begin{gather*}
E_{1}=\left(\frac{1}{2}-\frac{1}{p^{-}+1}\right) \gamma_{1}^{2}, \quad \gamma_{1}=\left(d_{*}\left(p^{-}+1\right)\right)^{\frac{1}{1-p^{-}}}, \tag{4.2}\\
d_{*}=\left(\sqrt{2^{\left(p^{-+1)}\right.}} a+2 b\right) c_{*}^{p^{-}+1}
\end{gather*}
$$

and c_{*} is a positive constant, which comes from the Sobolev embedding.
Remark 4.1. The following well-known inequalities are needed in the proof of the lemmas.
(1) For $A, B \geq 0$ and $d \geq 1$, we have

$$
\begin{equation*}
(A+B)^{d} \leq 2^{d-1}\left(A^{d}+B^{d}\right) . \tag{4.3}
\end{equation*}
$$

(2) For $z \geq 0,0<\delta \leq 1$ and $a>0$, we have

$$
\begin{equation*}
z^{\delta} \leq z+1 \leq\left(1+\frac{1}{a}\right)(z+a) . \tag{4.4}
\end{equation*}
$$

(3) For $X, Y \geq 0, \delta>0$ and $\frac{1}{\lambda}+\frac{1}{\beta}=1$, Young's inequality gives

$$
\begin{equation*}
X Y \leq \frac{\delta^{\lambda}}{\lambda} X^{\lambda}+\frac{\delta^{-\beta}}{\beta} Y^{\beta} . \tag{4.5}
\end{equation*}
$$

(4) The embedding Lemma 2.2, Hölder's and Young's inequalities and (4.3) imply that

$$
\begin{equation*}
\|u+v\|_{p()+1} \leq \sqrt{2} c_{*}\left[\left(\|\Delta u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)\right]^{1 / 2} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u v\|_{\frac{p(0+1}{2}} \leq c_{*}^{2}\left(\|\Delta u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right) . \tag{4.7}
\end{equation*}
$$

Lemma 4.1. For any solution (u, v) of the system (1.2), with initial energy

$$
\begin{equation*}
E(0)<E_{1} \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{1}<\left(\left\|\Delta u_{0}\right\|_{2}^{2}+\left\|\nabla v_{0}\right\|_{2}^{2}\right)^{1 / 2} \leq \frac{1}{\sqrt{2} c_{*}}, \tag{4.9}
\end{equation*}
$$

there exists $\gamma_{2}>\gamma_{1}$ such that

$$
\begin{equation*}
\gamma_{2} \leq\left(\|\Delta u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)^{1 / 2}, \forall t \in[0, T) . \tag{4.10}
\end{equation*}
$$

Proof. Let $\gamma=\left(\|\Delta u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)^{1 / 2}$, then using (3.39), we have

$$
\begin{equation*}
E(t) \geq \frac{1}{2} \gamma^{2}-\int_{\Omega} F(x, u, v) d x \tag{4.11}
\end{equation*}
$$

The use of Lemma 2.1, (4.6) and (4.7) leads to

$$
\begin{align*}
\int_{\Omega} F(x, u, v) d x= & a \int_{\Omega}|u+v|^{p(x)+1} d x+2 b \int_{\Omega}|u v|^{\frac{p(x)+1}{2}} d x \\
\leq & a \max \left\{\|u+v\|_{p(\cdot)+1}^{p^{-+1}},\|u+v\|_{p_{p(,+1}}^{p^{+1}}\right\} \\
& +2 b \max \left\{\|u v\|_{\frac{p^{-}(l)+1}{2}}^{2},\|u v\|_{\frac{p^{+(l)+1}}{2}}^{p^{+}}\right\} \tag{4.12}\\
\leq & a \max \left\{\left(\sqrt{2} c_{*} \gamma\right)^{p^{-+1}},\left(\sqrt{2} c_{*} \gamma\right)^{p^{+}+1}\right\} \\
& +2 b \max \left\{\left(c_{*} \gamma\right)^{p^{-+1}},\left(c_{*} \gamma\right)^{p^{+}+1}\right\} .
\end{align*}
$$

Combining (4.11) and (4.12), we obtain

$$
\begin{align*}
E(t) \geq & \frac{1}{2} \gamma^{2}-a \max \left\{\left(\sqrt{2} c_{*} \gamma\right)^{p^{-}+1},\left(\sqrt{2} c_{*} \gamma\right)^{p^{+}+1}\right\} \tag{4.13}\\
& -2 b \max \left\{\left(c_{*} \gamma\right)^{p^{-+1}},\left(c_{*} \gamma\right)^{p^{+}+1}\right\} .
\end{align*}
$$

For γ in $\left[0, \frac{1}{\sqrt{2} c_{*}}\right]$, one can easily check that

$$
c_{*}^{2} \gamma^{2} \leq 2 c_{*}^{2} \gamma^{2} \leq 1
$$

Consequently, we have

$$
\left(\sqrt{2} c_{*} \gamma\right)^{p^{-+1}} \geq\left(\sqrt{2} c_{*} \gamma\right)^{p^{+}+1} \text { and }\left(c_{*} \gamma\right)^{p^{-+1}} \geq\left(\sqrt{2} c_{*} \gamma\right)^{p^{+}+1}
$$

Thus, (4.13) reduces to

$$
E(t) \geq \frac{1}{2} \gamma^{2}-\left(\sqrt{2^{\left(p^{-}+1\right)}} a+2 b\right) c_{*}^{p^{-}+1} \gamma^{p^{-}+1}
$$

If we set

$$
h(\gamma)=\frac{1}{2} \gamma^{2}-k \gamma^{p^{-}+1}, \text { where } k=\left(\sqrt{2^{\left(p^{-}+1\right)}} a+2 b\right) c_{*}^{p^{p^{+}}},
$$

then

$$
\begin{equation*}
E(t) \geq h(\gamma), \text { for all } \gamma \in\left[0, \frac{1}{\sqrt{2} c_{*}}\right] \tag{4.14}
\end{equation*}
$$

It is clear that h is strictly increasing on $\left[0, \gamma_{1}\right)$ and strictly decreasing on $\left[\gamma_{1},+\infty\right)$. Since $E(0)<$ E_{1} and $E_{1}=h\left(\gamma_{1}\right)$, then, we can find $\gamma_{2}>\gamma_{1}$ such that $h\left(\gamma_{2}\right)=E(0)$. But,

$$
\alpha_{0}=\left(\left\|\Delta u_{0}\right\|_{2}^{2}+\left\|\nabla v_{0}\right\|_{2}^{2}\right)^{1 / 2}
$$

therefore, by (4.14), we get

$$
h\left(\gamma_{2}\right)=E(0) \geq h\left(\gamma_{0}\right) .
$$

This implies that $\gamma_{0} \geq \gamma_{2}$. Hence, $\gamma_{2} \in\left(\gamma_{1}, \frac{1}{\sqrt{2} c_{*}}\right]$. To prove (4.10), we assume that there is a $t_{0} \in[0, T)$ such that

$$
\left(\left\|\Delta u\left(., t_{0}\right)\right\|_{2}^{2}+\left\|\nabla v\left(., t_{0}\right)\right\|_{2}^{2}\right)^{1 / 2}<\gamma_{2} .
$$

Since $\left(\|\Delta u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)^{1 / 2}$ is continuous and $\gamma_{2}>\gamma_{1}, t_{0}$ can be selected so that

$$
\left[\left\|\Delta u\left(., t_{0}\right)\right\|_{2}^{2}+\left\|\nabla v\left(., t_{0}\right)\right\|_{2}^{2}\right]^{1 / 2}>\gamma_{1} .
$$

Using (4.14) and the fact that h is decreasing on $\left[\gamma_{1}, \frac{1}{\sqrt{2} c_{*}}\right]$, we obtain

$$
E\left(t_{0}\right) \geq h\left(\left(\left\|\Delta u\left(., t_{0}\right)\right\|_{2}^{2}+\left\|\nabla v\left(., t_{0}\right)\right\|_{2}^{2}\right)^{1 / 2}\right)>h\left(\gamma_{2}\right)=E(0)
$$

which contradicts the fact that $E(t) \leq E(0)$, for all $t \in[0 . T)$. Thus, (4.10) is established.
Lemma 4.2. Let $\mathcal{H}(t)=E_{1}-E(t)$, for all $t \in[0, T)$. Then, we have

$$
\begin{equation*}
0<\mathcal{H}(0) \leq \mathcal{H}(t) \leq \int_{\Omega} F(x, u, v) d x, \text { for all } t \in[0, T) \tag{4.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega} F(x, u, v) d x \geq d_{*} \gamma_{2}^{p^{-+1}} \tag{4.16}
\end{equation*}
$$

Proof. Using (3.40), (4.8) and (4.11), we have

$$
\begin{equation*}
0<E_{1}-E(0)=H(0) \leq H(t) \leq E_{1}-\frac{1}{2} \gamma^{2}+\int_{\Omega} F(x, u, v) d x \tag{4.17}
\end{equation*}
$$

From the fact that $h\left(\gamma_{1}\right)=\frac{1}{2} \gamma_{1}^{2}-d_{*} \gamma_{1}^{p^{-}+1}=E_{1}$, we have

$$
E_{1}-\frac{1}{2} \gamma_{1}^{2}=-d_{*} \gamma_{1}^{p^{-+1}}
$$

then since $\gamma \geq \gamma_{2}>\gamma_{1}$, we obtain

$$
\mathcal{H}(t) \leq-d_{*} \gamma_{1}^{p^{-}+1}+\int_{\Omega} F(x, u, v) d x \leq \int_{\Omega} F(x, u, v) d x
$$

Thus, (4.15) is established. To establish (4.16), we use (4.15) to obtain

$$
E(0) \geq \frac{1}{2} \gamma^{2}-\int_{\Omega} F(x, u, v) d x
$$

which implies,

$$
\int_{\Omega} F(x, u, v) d x \geq \frac{1}{2} \gamma^{2}-E(0) .
$$

But $E(0)=h\left(\gamma_{2}\right)$ and $\gamma \geq \gamma_{2}$, so

$$
\int_{\Omega} F(x, u, v) d x \geq \frac{1}{2} \gamma_{2}^{2}-h\left(\gamma_{2}\right)=d_{*} \gamma_{2}^{p^{-}+1}
$$

Lemma 4.3. There exist $C_{3}, C_{4}, C_{5}>0$ such that any solution of (1.2) satisfies

$$
\begin{gather*}
\|u\|_{p^{-+1}}^{p^{p+1}}+\|v\|_{p^{-}+1}^{p^{-}+1} \leq C_{3}(\zeta(u)+\zeta(v)), \tag{4.18}\\
\int_{\Omega}|u|^{m(x)} d x \leq C_{4}\left[(\zeta(u)+\zeta(v))^{\frac{m^{+}}{p^{+}+1}}+(\zeta(u)+\zeta(v))^{\frac{m^{-}}{p^{-}+1}}\right] \tag{4.19}
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{\Omega}|\nu|^{r(x)} d x \leq C_{5}\left[(\zeta(u)+\zeta(v))^{\frac{r^{+}}{p^{-}+1}}+(\zeta(u)+\zeta(v))^{\frac{r^{-}}{p^{-}+1}}\right], \tag{4.20}
\end{equation*}
$$

where $\zeta(u)$ and $\zeta(v)$ are defined in Corollary 3.2.
Proof. We define the following partition of Ω

$$
\Omega_{+}=\{x \in \Omega /|u(x, t)| \geq 1\} \text { and } \Omega_{-}=\{x \in \Omega /|u(x, t)|<1\} .
$$

The properties of $p($.$) and Hölder's inequality imply that, for some c_{1}>0$,

$$
\begin{aligned}
\zeta(u) & =\int_{\Omega_{+}}|u|^{p(x)+1} d x+\int_{\Omega_{-}}|u|^{p(x)+1} d x \\
& \geq \int_{\Omega_{+}}|u|^{p^{-+1}} d x+\int_{\Omega_{-}}|u|^{p^{+}+1} d x \\
& \geq \int_{\Omega_{+}}|u|^{p^{-+1}} d x+c_{1}\left(\int_{\Omega_{-}}|u|^{p^{-}+1} d x\right)^{\frac{p^{+}+1}{p^{-+1}}} .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\zeta(u) \geq \int_{\Omega_{+}}|u|^{p^{-}+1} d x \text { and }\left(\frac{\zeta(u)}{c_{1}}\right)^{\frac{p^{-}+1}{p^{p+1}}} \geq \int_{\Omega_{-}}|u|^{p^{-}+1} d x \tag{4.21}
\end{equation*}
$$

Use (4.21) to obtain, for some $c_{2}>0$.

$$
\begin{aligned}
\|u\|_{p^{-+1}}^{p^{-}+1} & \leq \zeta(u)+c_{2}(\zeta(u))^{\frac{p^{-+1}}{p^{++1}}} \\
& \leq \zeta(u)+\zeta(v)+c_{2}(\zeta(u)+\zeta(v))^{\frac{p^{-}+1}{p^{+}+1}} \\
& =(\zeta(u)+\zeta(v))\left[1+c_{2}(\zeta(u)+\zeta(v))^{\frac{p^{--}}{p^{+}+1}}\right] .
\end{aligned}
$$

Recalling (3.38) and (4.15), we deduce that

$$
\begin{equation*}
0<\mathcal{H}(0) \leq \mathcal{H}(t) \leq C_{2}(\zeta(u)+\zeta(v)) \tag{4.22}
\end{equation*}
$$

Therefore,

$$
\|u\|_{p^{-+1}}^{p^{-+1}} \leq(\zeta(u)+\zeta(v))\left[1+c_{2}\left(\mathcal{H}(0) / C_{2}\right)^{\frac{p^{--p}}{p^{+}+p^{+}}}\right] \leq c(\zeta(u)+\zeta(v)) .
$$

Similarly, we arrive at

$$
\|v\|_{p^{-+1}}^{p^{-+1}} \leq c(\zeta(u)+\zeta(v)) .
$$

Therefore, (4.18) is established. To establish (4.19), we recall that $p^{-} \geq \max \left\{m^{+}, r^{+}\right\}$, to conclude that

$$
\begin{aligned}
\int_{\Omega}|u|^{m(x)} d x & \leq \int_{\Omega_{+}}|u|^{m^{+}} d x+\int_{\Omega_{-}}|u|^{m^{-}} d x \\
& \leq c\left(\int_{\Omega_{+}}|u|^{p^{-}+1} d x\right)^{\frac{m^{+}}{p^{-+1}}}+c\left(\int_{\Omega_{-}}|u|^{p^{-}+1} d x\right)^{\frac{m^{-}}{p^{-+1}}} \\
& \leq c\left(\|u\|_{p^{-+1}}^{m^{+}}+\|u\|_{p^{-+1}}^{m^{-}}\right), c>0 .
\end{aligned}
$$

Using similar calculations as above, we obtain (4.19) and (4.20).
Lemma 4.4. Let $\mathcal{G}(t)=\mathcal{H}^{1-\sigma}(t)+\varepsilon \int_{\Omega}\left(u u_{t}+v v_{t}\right) d x, t>0$, where $\varepsilon>0$ to be fixed later. Then, there exists $\rho>0$, such that

$$
\begin{equation*}
\mathcal{G}^{\prime}(t) \geq \varepsilon \rho\left(\mathcal{H}(t)+\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}+\zeta(u)+\zeta(v)\right) \tag{4.23}
\end{equation*}
$$

and hence,

$$
\mathcal{G}(t) \geq \mathcal{G}(0)>0, \text { for } t>0,
$$

where

$$
\begin{equation*}
0<\sigma \leq \min \left\{\frac{p^{-}-m^{+}+1}{\left(p^{-}+1\right)\left(m^{+}-1\right)}, \frac{p^{-}-r^{+}+1}{\left(p^{-}+1\right)\left(r^{+}-1\right)}, \frac{p^{-}-1}{2\left(p^{-}+1\right)}\right\} . \tag{4.24}
\end{equation*}
$$

Proof. Differentiate \mathcal{G} and use (1.2) to have

$$
\begin{align*}
\mathcal{G}^{\prime}(t) & =(1-\sigma) \mathcal{H}^{-\sigma}(t) \mathcal{H}^{\prime}(t)+\varepsilon\left(\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}\right) \\
& +\varepsilon \int_{\Omega}\left(u f_{1}(x, u, v)+v f_{2}(x, u, v)\right) d x-\varepsilon\left(\|\Delta u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right) \\
& -\varepsilon \int_{\Omega}\left(\left|u_{t}\right|^{m(x)-2} u_{t} u+\left|v_{t}\right|^{\mid(x)-2} v_{t} v\right) d x \tag{4.25}
\end{align*}
$$

By the definition of \mathcal{H} and E, we get

$$
\begin{equation*}
\|\Delta u\|_{2}^{2}+\|\nabla v\|_{2}^{2}=2 \int_{\Omega} F(x, u, v) d x-\left\|u_{t}\right\|_{2}^{2}-\left\|v_{t}\right\|_{2}^{2}+2 E_{1}-2 \mathcal{H}(t) . \tag{4.26}
\end{equation*}
$$

Combining (3.36), (4.25) and (4.26), we obtain

$$
\begin{align*}
\mathcal{G}^{\prime}(t) & \geq(1-\sigma) \mathcal{H}^{-\sigma}(t) \mathcal{H}^{\prime}(t)+2 \varepsilon\left(\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}\right)+2 \varepsilon \mathcal{H}(t) \\
& -2 \varepsilon E_{1}+\varepsilon\left(p^{-}-1\right) \int_{\Omega} F(x, u, v) d x \\
& -\varepsilon \int_{\Omega}\left(|u|\left|u_{t}\right|^{m(x)-1}+|v|\left|v_{t}\right|^{r(x)-1}\right) d x . \tag{4.27}
\end{align*}
$$

A combination of (4.16) and (4.27) leads to

$$
\begin{align*}
\mathcal{G}^{\prime}(t) \geq & (1-\sigma) \mathcal{H}^{-\sigma}(t) \mathcal{H}^{\prime}(t)+2 \varepsilon\left(\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}\right) \tag{4.28}\\
& +\varepsilon\left(p^{-}-1-2\left(d_{*} \gamma_{2}^{p^{-}+1}\right)^{-1} E_{1}\right) \int_{\Omega} F(x, u, v) d x
\end{align*}
$$

$$
\begin{equation*}
+2 \varepsilon \mathcal{H}(t)-\varepsilon \int_{\Omega}\left(|u|\left|u_{t}\right|^{m(x)-1}+|v|\left|v_{t}\right|^{r(x)-1}\right) d x \tag{4.29}
\end{equation*}
$$

where $p^{-}-1-2\left(d_{*} \alpha_{2}^{p^{-+1}}\right)^{-1} E_{1}>0$, since $\gamma_{2}>\gamma_{1}$.
Now, the last two terms of (4.29) can be estimated by applying (4.5) with $X=|u|, Y=\left|u_{t}\right|^{m(x)-1}, \lambda=m(x), \beta=\frac{m(x)}{m(x)-1}$, as follows:

$$
\begin{align*}
\int_{\Omega}|u|\left|u_{t}\right|^{m(x)-1} d x & \leq \int_{\Omega} \frac{\delta^{m(x)}}{m(x)}|u|^{m(x)} d x \tag{4.30}\\
& +\int_{\Omega} \frac{m(x)-1}{m(x)} \delta^{-m(x) /(m(x)-1)}\left|u_{t}\right|^{m(x)} d x
\end{align*}
$$

Let \tilde{k} be a positive constant to be selected later and take $\delta=\left[\tilde{k} \mathcal{H}^{-\sigma}(t)\right]^{\frac{1-m(x)}{m(x)}}$ to obtain

$$
\begin{align*}
\int_{\Omega}|u|\left|u_{t}\right|^{m(x)-1} d x & \leq \frac{\tilde{k}^{1-m^{-}}}{m^{-}} \int_{\Omega}[\mathcal{H}(t)]^{\sigma(m(x)-1)}|u|^{m(x)} d x \tag{4.31}\\
& +\frac{m^{+}-1}{m^{-}} \tilde{k} \mathcal{H}^{-\sigma}(t) \int_{\Omega}\left|u_{t}\right|^{m(x)} d x .
\end{align*}
$$

The properties of $m(x)$ and $\mathcal{H}(t)$ give

$$
\begin{aligned}
\int_{\Omega}[\mathcal{H}(t)]^{\sigma(m(x)-1)}|u|^{m(x)} d x & =\int_{\Omega}\left[\frac{\mathcal{H}(t)}{\mathcal{H}(0)}\right]^{\sigma(m(x)-1)}[\mathcal{H}(0)]^{\sigma(m(x)-1)}|u|^{m(x)} d x \\
& \leq \tilde{c_{2}}[\mathcal{H}(t)]^{\sigma\left(m^{+}-1\right)} \int_{\Omega}[\mathcal{H}(0)]^{\sigma(m(x)-1)}|u|^{m(x)} d x
\end{aligned}
$$

where $\tilde{c_{2}}=1 /[\mathcal{H}(0)]^{\sigma\left(m^{+}-1\right)}$. But $[\mathcal{H}(0)]^{\sigma(m(x)-1)} \leq c_{3}$, for all $x \in \Omega$, where $c_{3}>0$. So, for some $c_{4}>0$, we get

$$
\begin{equation*}
\int_{\Omega}[\mathcal{H}(t)]^{\sigma(m(x)-1)}|u|^{m(x)} d x \leq c_{4}[\mathcal{H}(t)]^{\sigma\left(m^{+}-1\right)} \int_{\Omega}|u|^{m(x)} d x . \tag{4.32}
\end{equation*}
$$

Combining (4.31) and (4.32) to obtain

$$
\begin{align*}
\int_{\Omega}|u|\left|u_{t}\right|^{m(x)-1} d x \leq & \frac{c_{4} \tilde{k}^{1-m^{-}}}{m^{-}}[\mathcal{H}(t)]^{\sigma\left(m^{+}-1\right)} \int_{\Omega}|u|^{m(x)} d x \tag{4.33}\\
& +\frac{m^{+}-1}{m^{-}} \tilde{k} \mathcal{H}^{-\sigma}(t) \int_{\Omega}\left|u_{t}\right|^{m(x)} d x .
\end{align*}
$$

Applying Similar calculations, we arrive at

$$
\begin{align*}
\int_{\Omega}\left|v_{t}\right|^{r(x)-1} v d x \leq & \frac{c_{5} \tilde{k}^{1-r^{-}}}{r^{-}}[\mathcal{H}(t)]^{\sigma\left(r^{+}-1\right)} \int_{\Omega}|\nu|^{r(x)} d x \tag{4.34}\\
& +\frac{r^{+}-1}{r^{-}} \tilde{k} \mathcal{H}^{-\sigma}(t) \int_{\Omega}\left|v_{t}\right|^{r(x)} d x .
\end{align*}
$$

Adding (4.33) and (4.34), we have

$$
\begin{align*}
\int_{\Omega}\left(|u|\left|u_{t}\right|^{m(x)-1}+|v|\left|v_{t}\right|^{r(x)-1}\right) d x \leq & \frac{c_{4} \tilde{k}^{1-m^{-}}}{m^{-}}[\mathcal{H}(t)]^{\sigma\left(m^{+}-1\right)} \int_{\Omega}|u|^{m(x)} d x \\
& +\frac{c_{5} \tilde{k}^{1-r^{-}}}{r^{-}}[\mathcal{H}(t)]^{\sigma\left(r^{+}-1\right)} \int_{\Omega}|v|^{r(x)} d x \tag{4.35}\\
& +\tilde{\alpha} \mathcal{H}^{-\sigma}(t)\left(\int_{\Omega}\left|u_{t}\right|^{m(x)} d x+\int_{\Omega}\left|v_{t}\right|^{r(x)} d x\right),
\end{align*}
$$

where $\tilde{\alpha}=\max \left\{\frac{m^{+}-1}{m^{-}} \tilde{k}, \frac{r^{+}-1}{r^{-}} \tilde{k}\right\}$. Using (3.40), we have

$$
\mathcal{H}^{\prime}(t)=\int_{\Omega}\left|u_{t}\right|^{m(x)} d x+\int_{\Omega}\left|v_{t}\right|^{r(x)} d x
$$

Hence, (4.35) becomes

$$
\begin{align*}
\int_{\Omega}\left(|u|\left|u_{t}\right|^{m(x)-1}+|v|\left|v_{t}\right|^{r(x)-1}\right) d x \leq & \frac{c_{4} \tilde{k}^{1-m^{-}}}{m^{-}}[\mathcal{H}(t)]^{\sigma\left(m^{+}-1\right)} \int_{\Omega}|u|^{m(x)} d x \\
& +\frac{c_{5} \tilde{k}^{1-r^{-}}}{r^{-}}[\mathcal{H}(t)]^{\sigma\left(r^{+}-1\right)} \int_{\Omega}|\nu|^{r(x)} d x \tag{4.36}\\
& +\tilde{\alpha} \mathcal{H}^{-\sigma}(t) \mathcal{H}^{\prime}(t) .
\end{align*}
$$

Using (3.38) and (4.15), we have

$$
[\mathcal{H}(t)]^{\sigma\left(m^{+}-1\right)} \leq c(\zeta(u)+\zeta(v))^{\sigma\left(m^{+}-1\right)} .
$$

Using the last inequality and (4.19), it can be concluded that

$$
\begin{align*}
{[\mathcal{H}(t)]^{\sigma\left(m^{+}-1\right)} \int_{\Omega}|u|^{m(x)} d x } & \leq c_{6}(\zeta(u)+\zeta(v))^{\sigma\left(m^{+}-1\right)+\frac{m^{+}}{p^{+}+1}} \\
& +c_{6}(\zeta(u)+\zeta(v))^{\sigma\left(m^{+}-1\right)+\frac{m^{-}}{p^{+}+1}} \tag{4.37}
\end{align*}
$$

Applying (4.4) with $z=\zeta(u)+\zeta(v), a=\mathcal{H}(0), \delta=\sigma\left(m^{+}-1\right)+\frac{m^{+}}{p^{-}+1}$ and then with $\delta=\sigma\left(m^{+}-1\right)+$ $\frac{m^{-}}{p^{-+1}}$, respectively, we get

$$
\begin{align*}
(\zeta(u)+\zeta(v))^{\sigma\left(m^{+}-1\right)+\frac{m^{+}}{p^{+}+1}} & \leq\left[1+\frac{1}{\mathcal{H}(0)}\right](\zeta(u)+\zeta(v)+\mathcal{H}(0)) \\
& \leq \alpha(\zeta(u)+\zeta(v)+\mathcal{H}(t)) \tag{4.38}
\end{align*}
$$

and

$$
\begin{equation*}
(\zeta(u)+\zeta(v))^{\sigma\left(m^{+}-1\right)+\frac{m^{-}}{p^{+}+1}} \leq \alpha(\zeta(u)+\zeta(v)+\mathcal{H}(t)) \tag{4.39}
\end{equation*}
$$

where $\alpha=1+\frac{1}{\mathcal{H}(0)}$.
A combination of (4.37)-(4.39) implies that, for some $c_{7}>0$,

$$
\begin{equation*}
[\mathcal{H}(t)]^{\sigma\left(m^{+}-1\right)} \int_{\Omega}|u|^{m(x)} d x \leq c_{7}(\zeta(u)+\zeta(v)+\mathcal{H}(t)) . \tag{4.40}
\end{equation*}
$$

Similar calculations give, for some $c_{8}>0$,

$$
\begin{equation*}
[\mathcal{H}(t)]^{\sigma v^{(t-1)}} \int_{\Omega}|\nu|^{r(x)} d x \leq c_{8}(\zeta(u)+\zeta(v)+\mathcal{H}(t)) \tag{4.41}
\end{equation*}
$$

Using (4.35), (4.40) and (4.41), we obtain, for $c_{9}, c_{10}>0$,

$$
\begin{align*}
\int_{\Omega}\left(|u|\left|u_{t}\right|^{m(x)-1}+|v|\left|v_{t}\right|^{r(x)-1}\right) d x \leq & \frac{\tilde{k}^{1-m^{-}}}{m^{-}} c_{9}(\zeta(u)+\zeta(v)+\mathcal{H}(t)) \\
& +\frac{\tilde{k}^{1-r^{-}}}{r^{-}} c_{10}(\zeta(u)+\zeta(v)+\mathcal{H}(t)) \tag{4.42}\\
& +\frac{r^{+}-1}{r^{-}} \tilde{k} \mathcal{H}^{-\sigma}(t) \mathcal{H}^{\prime}(t) .
\end{align*}
$$

Inserting (4.42) into (4.29), we have

$$
\begin{aligned}
\mathcal{G}^{\prime}(t) & \geq(1-\sigma-\varepsilon \tilde{R}) \mathcal{H}^{-\sigma}(t) \mathcal{H}^{\prime}(t)+2 \varepsilon\left(\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}\right) \\
& +\varepsilon\left(2-\frac{\tilde{k}^{1-m^{-}}}{m^{-}} c_{9}-\frac{\tilde{k}^{1-r^{-}}}{r^{-}} c_{10}\right) \mathcal{H}(t) \\
& +\varepsilon\left(c_{11}-\frac{\tilde{k}^{1-m^{-}}}{m^{-}} c_{9}-\frac{\tilde{k}^{1-r^{-}}}{r^{-}} c_{10}\right)(\zeta(u)+\zeta(v)) .
\end{aligned}
$$

where $c_{11}>0$ and $\tilde{R}=\tilde{k}\left(\frac{m^{+}-1}{m^{-}}+\frac{r^{+}-1}{r^{-}}\right)$. Now, we select \tilde{k} large enough so that

$$
\begin{aligned}
\mathcal{G}^{\prime}(t) & \geq(1-\sigma-\varepsilon \tilde{R}) \mathcal{H}^{-\sigma}(t) \mathcal{H}^{\prime}(t) \\
& +\varepsilon c_{12}\left(\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}+\mathcal{H}(t)+\zeta(u)+\zeta(v)\right),
\end{aligned}
$$

where $c_{12}>0$. Once \tilde{k} is fixed, we select ε small enough so that

$$
1-\sigma-\varepsilon \tilde{R} \geq 0 \text { and } \mathcal{G}(0)=\mathcal{H}^{1-\sigma}(0)+\varepsilon \int_{\Omega}\left(u_{0} u_{1}+v_{0} v_{1}\right) d x>0
$$

Using the fact that \mathcal{H} is a non-decreasing function, therefore (4.23) is established.
Theorem 4.1. Under the assumptions (4.1) and (4.9), any solution of the system (1.2) blows-up in a finite time.

Proof. Using (4.3) and the definition of \mathcal{G}, we have

$$
\begin{align*}
\mathcal{G}^{1 /(1-\sigma)}(t) & \leq\left(\mathcal{H}^{1-\sigma}(t)+\varepsilon \int_{\Omega}\left|u u_{t}+v v_{t}\right| d x\right)^{1 /(1-\sigma)} \\
& \leq 2^{\sigma /(1-\sigma)}\left(\mathcal{H}(t)+\left(\varepsilon \int_{\Omega}\left(\left|u u_{t}\right|+\left|v v_{t}\right|\right) d x\right)^{1 /(1-\sigma)}\right) \tag{4.43}\\
& \leq c_{13}\left(\mathcal{H}(t)+\left(\int_{\Omega}\left(|u|\left|u_{t}\right|+|v|\left|v_{t}\right|\right) d x\right)^{1 /(1-\sigma)}\right),
\end{align*}
$$

where $c_{13}=2^{\sigma /(1-\sigma)} \max \left\{1, \varepsilon^{1 /(1-\sigma)}\right\}$.
The embedding Lemma 2.2, Lemma 4.2, Hölder's and Young's inequalities give

$$
\begin{align*}
& \left(\int_{\Omega}\left(|u|\left|u_{t}\right|+|v| \mid v_{t}\right) d x\right)^{1 /(1-\sigma)} \\
& \leq 2^{\sigma /(1-\sigma)}\left(\int_{\Omega}|u|\left|u_{t}\right| d x\right)^{1 /(1-\sigma)}+2^{\sigma /(1-\sigma)}\left(\int_{\Omega}|v|\left|v_{t}\right| d x\right)^{1 /(1-\sigma)} \\
& \leq 2^{\sigma /(1-\sigma)}\left(\|u\|_{2}^{1 /(1-\sigma)}\left\|u_{t}\right\|_{2}^{1 /(1-\sigma)}+\|v\|_{2}^{1 /(1-\sigma)}\left\|v_{t}\right\|_{2}^{1 /(1-\sigma)}\right) \tag{4.44}\\
& \leq c_{14}\left(\|u\|_{p^{-}+1}^{1 /(1-\sigma)}\left\|u_{t}\right\|_{2}^{1 /(1-\sigma)}+\|v\|_{p^{-}}^{1 / 1-\sigma)}\left\|v_{t}\right\|_{2}^{1 /(1-\sigma)}\right) \\
& \leq c_{15}\left(\|u\|_{p^{-+1}}^{2 /(1-2)}+\left\|u_{t}\right\|_{2}^{2}+\|v\|_{p^{-+1}}^{2 /(1-2)}+\left\|v_{t}\right\|_{2}^{2}\right) \\
& \leq c_{15}\left((\zeta(u)+\zeta(v))^{\tau}+\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}\right),
\end{align*}
$$

where $\tau=2 /\left(p^{-}+1\right)(1-2 \sigma)$.
Using (4.15), (3.38) and since $\tau \leq 1$, we get, for some $c_{18}>0$,

$$
\left(\int_{\Omega}\left(|u|\left|u_{t}\right|+|v|\left|v_{t}\right|\right) d x\right)^{1 /(1-\sigma)} \leq c_{16}\left(\zeta(u)+\zeta(v)+\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}+\mathcal{H}(t)\right) .
$$

Inserting the last estimate in (4.43), we obtain

$$
\begin{equation*}
\mathcal{G}^{1 /(1-\sigma)}(t) \leq c_{17}\left(\zeta(u)+\zeta(v)+\mathcal{H}(t)+\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}\right) . \tag{4.45}
\end{equation*}
$$

Combining (4.23) and (4.45), we deduce that

$$
\mathcal{G}^{\prime}(t) \geq \tilde{c} \mathcal{G}^{1 /(1-\sigma)}(t), \text { for all } t>0
$$

where $\tilde{c}=\frac{\varepsilon \rho}{c_{16}}$. A simple integration over $(0, t)$ yields

$$
\mathcal{G}^{\sigma /(1-\sigma)}(t) \geq \frac{1}{\mathcal{G}^{\frac{-\sigma}{1-\sigma}}(0)-\frac{\sigma \tilde{c} t}{1-\sigma}},
$$

which implies that $\mathcal{G}(t) \longrightarrow+\infty$, as $t \longrightarrow T^{*}$, where $T^{*} \leq \frac{1-\sigma}{\sigma \sigma\left[\mathcal{G}^{(1-\sigma)}(0)\right]}$. Consequently, the solution of Problem (1.2) blows-up in a finite time.

5. Global existence and decay-rate estimates

In this section, we establish the existence of global solutions for initial data in a certain stable set. Then, we show that the decay estimates of the solution energy are exponential or polynomial, depending on the $\max \left\{m^{+}, r^{+}\right\}$.

5.1. Global existence

To state and prove our first result, we introduce the two functionals defined for all $t \in(0, T)$ by

$$
\begin{equation*}
I(t)=I(u(t))=\|\Delta u\|_{2}^{2}+\|\nabla v\|_{2}^{2}-\left(p^{+}+1\right) \int_{\Omega} F(x, u, v) d x \tag{5.1}
\end{equation*}
$$

$$
\begin{equation*}
J(t)=J(u(t))=\frac{1}{2}\left(\|\Delta u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)-\int_{\Omega} F(x, u, v) d x \tag{5.2}
\end{equation*}
$$

and give the following Lemma.
Lemma 5.1. Under the assumptions (H.1) and (H.2), we suppose that

$$
I(0)>0 \text { and } \beta<1 \text {, }
$$

where

$$
\beta=C_{2}\left(p^{+}+1\right) \max \left\{c_{*}^{p^{-}+1}\left(\frac{2\left(p^{+}+1\right)}{p^{+}-1} E(0)\right)^{\frac{p^{-}-1}{2}}, c_{*}^{p^{+}+1}\left(\frac{2\left(p^{+}+1\right)}{p^{+}-1} E(0)\right)^{\frac{p^{+}-1}{2}}\right\} .
$$

Then,

$$
\begin{equation*}
I(t)>0, \text { for all } t \in(0, T) . \tag{5.3}
\end{equation*}
$$

Proof. From the continuity of I and the fact that $I(0)>0$, there exists t_{k} in $\left.] 0, T\right)$ such that

$$
\begin{equation*}
I(t) \geq 0, \forall t \in\left(0, t_{k}\right) . \tag{5.4}
\end{equation*}
$$

We have to show that this inequality is strict.
Recalling (5.1) and (5.2), we have

$$
J(t)=\frac{p^{+}-1}{2\left(p^{+}+1\right)}\left(\|\Delta u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)+\frac{1}{p^{+}+1} I(t),
$$

Combining with (5.4), this gives

$$
\begin{equation*}
J(t) \geq \frac{p^{+}-1}{2\left(p^{+}+1\right)}\left(\|\Delta u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right), \forall t \in\left(0, t_{k}\right) . \tag{5.5}
\end{equation*}
$$

From the definition of the energy, we have

$$
\begin{equation*}
E(t)=J(t)+\frac{1}{2}\left(\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}\right), \tag{5.6}
\end{equation*}
$$

for all $t \in(0, T)$. Consequently,

$$
\|\Delta u\|_{2}^{2}+\|\nabla v\|_{2}^{2} \leq \frac{2\left(p^{+}+1\right)}{\left(p^{+}-1\right)} E(t) .
$$

Thus, the decreasing property of E leads to

$$
\begin{equation*}
\max \left\{\|\Delta u\|_{2}^{2},\|\nabla v\|_{2}^{2}\right\} \leq \frac{2\left(p^{+}+1\right)}{\left(p^{+}-1\right)} E(0), \forall t \in\left(0, t_{k}\right) . \tag{5.7}
\end{equation*}
$$

On the other hand, from Lemma 2.1 and the Sobolev embedding $H_{0}^{2}(\Omega) \hookrightarrow L^{p(\cdot)+1}(\Omega)$, we have

$$
\int_{\Omega}|u|^{p(x)+1} d x \leq \max \left\{c_{*}^{p^{p^{+}+1}}\|\Delta u\|_{2}^{p^{-}+1}, c_{*}^{p^{+}+1}\|\Delta u\|_{2}^{p^{+}+1}\right\}
$$

$$
\leq \max \left\{c_{*}^{p^{-}+1}\|\Delta u\|_{2}^{p^{-}-1}, c_{*}^{p^{+}+1}\|\Delta u\|_{2}^{p^{+}-1}\right\}\|\Delta u\|_{2}^{2}
$$

Combining with (5.7), this yields, for all $t \in\left(0, t_{k}\right)$,

$$
\begin{aligned}
& \int_{\Omega}|u|^{p(x)+1} d x \\
& \leq \max \left\{c_{*}^{p^{-}+1}\left(\frac{2\left(p^{+}+1\right)}{\left(p^{+}-1\right)} E(0)\right)^{\frac{p^{-}-1}{2}}, c_{*}^{p^{+}+1}\left(\frac{2\left(p^{+}+1\right)}{\left(p^{+}-1\right)} E(0)\right)^{\frac{p^{+}-1}{2}}\right\}\|\Delta u\|_{2}^{2} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\int_{\Omega}|u|^{p(x)+1} d x \leq \frac{\beta}{C_{2}\left(p^{+}+1\right)}\|\Delta u\|_{2}^{2} . \tag{5.8}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\int_{\Omega}|\nu|^{p(x)+1} d x \leq \frac{\beta}{C_{2}\left(p^{+}+1\right)}\|\nabla v\|_{2}^{2} . \tag{5.9}
\end{equation*}
$$

The addition of (5.8) and (5.9) gives

$$
\begin{equation*}
\int_{\Omega}\left(|u|^{p(x)+1}+|v|^{p(x)+1}\right) d x \leq \frac{\beta}{C_{2}\left(p^{+}+1\right)}\left(\|\Delta u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right) . \tag{5.10}
\end{equation*}
$$

Combining (5.10) with (3.38), we infer that

$$
\begin{align*}
\int_{\Omega} F(x, u, v) d x & \leq \frac{\beta}{p^{+}+1}\left(\|\Delta u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right) \tag{5.11}\\
& <\frac{1}{p^{+}+1}\left(\|\Delta u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right),
\end{align*}
$$

for all $t \in\left(0, t_{k}\right)$. From the definition of I, this leads to

$$
I(t)>0 . \forall t \in\left(0, t_{k}\right) .
$$

By repeating the above procedure and using the decreasing property of E, we can extend t_{k} to T and obtain (5.3).

Theorem 5.1. Suppose that all assumptions of Lemma 5.1 are fulfilling. Then, the local solution (u, v) of the system (1.2) exists globally.

Proof. Substituting (5.5) into (5.6) and thanks to (5.3), it yields

$$
E(t) \geq \frac{p^{+}-1}{2\left(p^{+}+1\right)}\left(\|\Delta u\|_{2}^{2}+\|\nabla v\|_{2}^{2}\right)+\frac{1}{2}\left(\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}\right),
$$

for all $t \in(0, T)$. Then, we have

$$
\begin{align*}
\|\Delta u\|_{2}^{2}+\|\nabla v\|_{2}^{2}+\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2} & \leq C_{3} E(t) \\
& \leq C_{3} E(0), \tag{5.12}
\end{align*}
$$

for $C_{3}=\max \left\{2, \frac{2\left(p^{+}+1\right)}{p^{+}-1}\right\}$. This means that the norm in (5.12) is bounded independently of t. Therefore, the solution (u, v) exists globally.

5.2. Decay-rate estimates

To prove the decay result, we need the following Lemma.
Lemma 5.2. Suppose that the assumptions of Lemma 5.1 hold. Then, there exists a positive constant C_{4}, such that the global solution (u, v) satisfies

$$
\begin{equation*}
\int_{\Omega}\left(|u(t)|^{m(x)}+|v(t)|^{r(x)}\right) d x \leq C_{4} E(t) \text { for all } t \geq 0 \tag{5.13}
\end{equation*}
$$

Proof. The result is immediate by replacing p with m and r in (5.8) and (5.9), respectively, and by recalling (5.12).

Theorem 5.2. Under the assumptions of Lemma 5.1, the solution of the system (1.2) satisfies the following decay estimates, for all $t \geq 0$,

$$
E(t) \leq \begin{cases}\frac{k}{(1+t+)^{2} /\left(\lambda^{+}-2\right)}, & \text { if } \alpha>2, \tag{5.14}\\ k e^{-\omega \omega}, & \text { if } \alpha=2,\end{cases}
$$

where $\alpha=\max \left\{m^{+}, r^{+}\right\}$and $k, w>0$ are two positive constants.
Proof. Multiplying (1.2) $)_{1}$ by $u(t) E^{\eta}(t)$ and (1.2) $)_{2}$ by $v(t) E^{\eta}(t)$ and then, integrating each result over $\Omega \times(s, T)$, for $s \in(0, T)$ and $\eta \geq 0$ to be specified later, we arrive at

$$
\begin{aligned}
\int_{s}^{T} & \int_{\Omega} E^{\eta}(t)\left[u(t) u_{t t}(t)+u(t) \Delta^{2} u(t)+u(t)\left|u_{t}\right|^{m(x)-2} u_{t}(t)\right] d x d t \\
& =\int_{s}^{T} \int_{\Omega} E^{\eta}(t) u(t) f_{1}(x, u, v) d x d t
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{s}^{T} & \int_{\Omega} E^{\eta}(t)\left[v(t) v_{t t}(t)-v(t) \Delta v(t)+v(t)\left|v_{t}(t)\right|^{r(x)-2} v_{t}(t)\right] d x d t \\
& =\int_{s}^{T} \int_{\Omega} E^{\eta}(t) v(t) f_{2}(x, u, v) d x d t
\end{aligned}
$$

Green's formula and the boundary conditions lead to

$$
\begin{align*}
\int_{s}^{T} & \int_{\Omega} E^{\eta}(t)\left[\left(u(t) u_{t}(t)\right)_{t}-\left|u_{t}(t)\right|^{2}+|\Delta u(t)|^{2}+u(t) u_{t}(t)\left|u_{t}(t)\right|^{m(x)-2}\right] d x d t \\
& =\int_{s}^{T} \int_{\Omega} E^{\eta}(t) u(t) f_{1}(x, u, v) d x d t \tag{5.15}
\end{align*}
$$

and

$$
\begin{align*}
\int_{s}^{T} & \int_{\Omega} E^{\eta}(t)\left[\left(v(t) v_{t}(t)\right)_{t}-\left|v_{t}(t)\right|^{2}+|\nabla v(t)|^{2}+v(t) v_{t}(t)\left|v_{t}(t)\right|^{r(x)-2}\right] d x d t \\
& =\int_{s}^{T} \int_{\Omega} E^{\eta}(t) v(t) f_{2}(x, u, v) d x d t \tag{5.16}
\end{align*}
$$

Adding and subtracting the following two terms

$$
\left\lvert\, \begin{aligned}
& \int_{s}^{T} \int_{\Omega} E^{\eta}(t)\left[\beta|\Delta u(t)|^{2}+(1+\beta)\left|u_{t}(t)\right|^{2}\right] d x d t \\
& \int_{s}^{T} \int_{\Omega} E^{\eta}(t)\left[\beta|\nabla v(t)|^{2}+(1+\beta)\left|v_{t}(t)\right|^{2}\right] d x d t,
\end{aligned}\right.
$$

to (5.15) and (5.16), respectively, and recalling (5.11), we arrive at

$$
\begin{align*}
& (1-\beta) \int_{s}^{T} E^{\eta}(t) \int_{\Omega}\left(|\Delta u(t)|^{2}+|\nabla v(t)|^{2}+\left|u_{t}(t)\right|^{2}+\left|v_{t}(t)\right|^{2}\right) d x d t \\
& +\int_{s}^{T} E^{\eta}(t) \int_{\Omega}\left[\left(u(t) u_{t}(t)+v(t) v_{t}(t)\right)_{t}-(2-\beta)\left(\left|u_{t}(t)\right|^{2}+\left|v_{t}(t)\right|^{2}\right)\right] d x d t \\
& +\int_{s}^{T} E^{\eta}(t) \int_{\Omega}\left(u(t) u_{t}(t)\left|u_{t}(t)\right|^{m(x)-2}+v(t) v_{t}(t)\left|v_{t}(t)\right|^{r(x)-2}\right) d x d t \\
& =-\int_{s}^{T} E^{\eta}(t) \int_{\Omega}\left[\beta\left(|\Delta u(t)|^{2}+|\nabla v(t)|^{2}\right)-(p(x)+1) F(x, u, v)\right] d x d t \leq 0 . \tag{5.17}
\end{align*}
$$

Now, by exploiting the formula:

$$
\begin{aligned}
E^{\eta}(t) \int_{\Omega}\left(u(t) u_{t}(t)+v(t) v_{t}(t)\right)_{t} d x= & \frac{d}{d t}\left(E^{\eta}(t) \int_{\Omega}\left(u(t) u_{t}(t)+v(t) v_{t}(t)\right) d x\right) \\
& -\eta E^{\eta-1}(t) E^{\prime}(t) \int_{\Omega}\left(u(t) u_{t}(t)+v(t) v_{t}(t)\right) d x
\end{aligned}
$$

estimate (5.17) yields

$$
\begin{align*}
2(1-\beta) & \int_{s}^{T} E^{\eta+1}(t) d t \leq \eta \int_{s}^{T} E^{\eta-1}(t) E^{\prime}(t) \int_{\Omega}\left(u(t) u_{t}(t)+v(t) v_{t}(t)\right) d x d t \\
& -\int_{s}^{T} \frac{d}{d t}\left(E^{\eta}(t) \int_{\Omega}\left(u(t) u_{t}(t)+v(t) v_{t}(t)\right) d x\right) d t \\
& -\int_{s}^{T} E^{\eta}(t) \int_{\Omega}\left(u(t) u_{t}(t)\left|u_{t}(t)\right|^{m(x)-2}+v(t) v_{t}(t)\left|v_{t}(t)\right|^{r(x)-2}\right) d x d t \\
& +(2-\beta) \int_{s}^{T} E^{\eta}(t) \int_{\Omega}\left(\left|u_{t}(t)\right|^{2}+\left|v_{t}(t)\right|^{2}\right) d x d t \\
& =I_{1}+I_{2}+I_{3}+I_{4} \tag{5.18}
\end{align*}
$$

Next, we handle the terms $I_{i}, i=\overline{1,4}$ and denote by C a positive generic constant.

- First, applying Young's and Poincaré's inequalities, we obtain

$$
\begin{aligned}
I_{1} & =\eta \int_{s}^{T} E^{\eta-1}(t) E^{\prime}(t) \int_{\Omega}\left(u(t) u_{t}(t)+v(t) v_{t}(t)\right) d x d t \\
& \leq \frac{\eta}{2} \int_{s}^{T} E^{\eta-1}(t)\left(-E^{\prime}(t)\right)\left[\|u(t)\|_{2}^{2}+\left\|u_{t}(t)\right\|_{2}^{2}+\|v(t)\|_{2}^{2}+\left\|v_{t}(t)\right\|_{2}^{2}\right] d t
\end{aligned}
$$

$$
\leq C \int_{s}^{T} E^{\eta-1}(t)\left(-E^{\prime}(t)\right)\left[\|\Delta u(t)\|_{2}^{2}+\|\nabla v(t)\|_{2}^{2}+\left\|u_{t}(t)\right\|_{2}^{2}+\left\|v_{t}(t)\right\|_{2}^{2}\right] d t
$$

By (5.12), this gives

$$
\begin{align*}
I_{1} & \leq C \int_{s}^{T} E^{\eta}(t)\left(-E^{\prime}(t)\right) d t \\
& \leq C E^{\eta+1}(s)-C E^{\eta+1}(T) \leq C E^{\eta}(0) E(s) \leq C E(s) \tag{5.19}
\end{align*}
$$

- Concerning the second term, we have

$$
\begin{aligned}
I_{2} & =-\int_{s}^{T} \frac{d}{d t}\left(E^{\eta}(t) \int_{\Omega}\left(u(t) u_{t}(t)+v(t) v_{t}(t)\right) d x\right) d t \\
& =E^{\eta}(s)\left(\int_{\Omega}\left(u(x, s) u_{t}(x, s)+v(x, s) v_{t}(x, s)\right) d x\right) \\
& -E^{\eta}(T)\left(\int_{\Omega}\left(u(x, T) u_{t}(x, T)+v(x, T) v_{t}(x, T)\right) d x\right)
\end{aligned}
$$

Again, by (5.12) and the inequalities of Young and Poincaré, we get

$$
\begin{array}{r}
\left|\int_{\Omega} u(x, s) u_{t}(x, s) d x\right| \leq C\left(\|\Delta u(s)\|_{2}^{2}+\left\|u_{t}(s)\right\|_{2}^{2}\right) \leq C E(s), \\
\left|\int_{\Omega} u(x, T) u_{t}(x, T) d x\right| \leq C\left(\|\Delta u(T)\|_{2}^{2}+\left\|u_{t}(T)\right\|_{2}^{2}\right) \leq C E(T)
\end{array}
$$

and likewise

$$
\begin{array}{r}
\left|\int_{\Omega} v(x, s) v_{t}(x, s) d x\right| \leq C\left(\|\nabla v(s)\|_{2}^{2}+\left\|v_{t}(s)\right\|_{2}^{2}\right) \leq C E(s) \\
\left|\int_{\Omega} v(x, T) v_{t}(x, T) d x\right| \leq C\left(\|\nabla v(T)\|_{2}^{2}+\left\|v_{t}(T)\right\|_{2}^{2}\right) \leq C E(T) .
\end{array}
$$

Therefore,

$$
\begin{equation*}
I_{2} \leq C E^{\eta+1}(s) \leq C E^{\eta}(0) E(s) \leq C E(s) \tag{5.20}
\end{equation*}
$$

- For the third term, we apply Young's inequality (as in (4.30)) to obtain, for some $\varepsilon>0$,

$$
\begin{aligned}
I_{3}= & -\int_{s}^{T} E^{\eta}(t) \int_{\Omega}\left(u(t) u_{t}(t)\left|u_{t}(t)\right|^{m(x)-2}+v(t) v_{t}(t)\left|v_{t}(t)\right|^{r(x)-2}\right) d x d t \\
& \leq \int_{s}^{T} E^{\eta}(t)\left(\frac{\varepsilon}{2} \int_{\Omega}|u(t)|^{m(x)} d x+\frac{1}{\varepsilon} \int_{\Omega}\left|u_{t}(t)\right|^{m(x)} d x\right) d t \\
& +\int_{s}^{T} E^{\eta}(t)\left(\frac{\varepsilon}{2} \int_{\Omega}|v(t)|^{r(x)} d x+\frac{1}{\varepsilon} \int_{\Omega}\left|v_{t}(t)\right|^{r(x)} d x\right) d t .
\end{aligned}
$$

Invoking Lemma 5.2 and recalling (3.40), yields

$$
\begin{align*}
I_{3} & \leq \frac{\varepsilon}{2} \int_{s}^{T} E^{\eta}(t) \int_{\Omega}\left(|u(t)|^{m(x)}+|v(t)|^{r(x)}\right) d x d t+\frac{1}{\varepsilon} \int_{s}^{T} E^{\eta}(t)\left(-E^{\prime}(t)\right) d t \\
& \leq \varepsilon C \int_{s}^{T} E^{\eta+1}(t) d t+C_{\varepsilon} E(s) . \tag{5.21}
\end{align*}
$$

- Now, we handle I_{4}, as follows:

$$
\begin{aligned}
I_{4} & =(2-\beta) \int_{s}^{T} E^{\eta}(t) \int_{\Omega}\left(\left|u_{t}(t)\right|^{2}+\left|v_{t}(t)\right|^{2}\right) d x d t \\
& =(2-\beta)\left[\int_{s}^{T} E^{\eta}(t) \int_{\Omega}\left|u_{t}(t)\right|^{2} d x d t+\int_{s}^{T} E^{\eta}(t) \int_{\Omega}\left|v_{t}(t)\right|^{2} d x d t\right] \\
& =(2-\beta)\left(J_{1}+J_{2}\right) .
\end{aligned}
$$

We claim that

$$
\begin{equation*}
J_{1}, J_{2} \leq \varepsilon C \int_{s}^{T} E^{\eta+1}(t) d t+C_{\varepsilon} E(s) \tag{5.22}
\end{equation*}
$$

Since $2 \leq \tilde{\alpha} \leq m(.) \leq \alpha$ on Ω, we obtain

$$
\begin{aligned}
J_{1} & =\int_{s}^{T} E^{\eta}(t) \int_{\Omega^{\prime}}\left|u_{t}(t)\right|^{2} d x d t \\
& =\int_{s}^{T} E^{\eta}(t)\left[\int_{\Omega_{-}}\left|u_{t}(t)\right|^{2} d x+\int_{\Omega_{+}}\left|u_{t}(t)\right|^{2} d x\right] d t \\
& \leq C \int_{s}^{T} E^{\eta}(t)\left[\left(\int_{\Omega_{-}}\left|u_{t}(t)\right|^{\alpha} d x\right)^{2 / \alpha}+\left(\int_{\Omega_{+}}\left|u_{t}(t)\right|^{\tilde{\alpha}} d x\right)^{2 / \tilde{\alpha}}\right] d t \\
& \leq C \int_{s}^{T} E^{\eta}(t)\left[\left(\int_{\Omega_{-}}\left|u_{t}(t)\right|^{m(x)} d x\right)^{2 / \alpha}+\left(\int_{\Omega_{+}}\left|u_{t}(t)\right|^{m(x)} d x\right)^{2 / \tilde{\alpha}}\right] d t
\end{aligned}
$$

where

$$
\begin{gathered}
\tilde{\alpha}=\min \left\{m^{-}, r^{-}\right\}, \alpha=\max \left\{m^{+}, r^{+}\right\}, \\
\Omega_{+}=\{x \in \Omega:|u(x, t)| \geq 1\} \text { and } \Omega_{-}=\{x \in \Omega:|u(x, t)|<1\} .
\end{gathered}
$$

Therefore,

$$
\begin{align*}
J_{1} & \leq C \int_{s}^{T} E^{\eta}(t)\left(-E^{\prime}(t)\right)^{2 / \alpha} d t+C \int_{s}^{T} E^{\eta}(t)\left(-E^{\prime}(t)\right)^{2 / \tilde{\alpha}} d t \\
& =C\left(J_{\alpha}+J_{\tilde{\alpha}}\right) . \tag{5.23}
\end{align*}
$$

Three cases are possible:
(1) if $\alpha=\tilde{\alpha}=2(m(x)=r(x)=2$, on $\Omega)$, then

$$
\begin{aligned}
J_{1} & \leq C \int_{s}^{T} E^{\eta}(t)\left(-E^{\prime}(t)\right) d t \\
& \leq C E(s) \leq \varepsilon C \int_{s}^{T} E^{\eta+1}(t) d t+C E(s)
\end{aligned}
$$

(2) if $\alpha>2$ and $\tilde{\alpha}=2$, we exploit Young's inequality with

$$
\delta=(\eta+1) / \eta \text { and } \delta^{\prime}=\eta+1
$$

to find

$$
\begin{aligned}
J_{\alpha} & =\int_{s}^{T} E^{\eta}(t)\left(-E^{\prime}(t)\right)^{2 / \alpha} d t \\
& \leq \varepsilon C \int_{s}^{T} E^{\eta+1}(t) d t+C_{\varepsilon} \int_{s}^{T}\left(-E^{\prime}(t)\right)^{2(\eta+1) / \alpha} d t
\end{aligned}
$$

So, for $\eta=\frac{\alpha}{2}-1$, we get

$$
\begin{align*}
J_{\alpha} & \leq \varepsilon C \int_{s}^{T} E^{\eta+1}(t) d t+C_{\varepsilon} \int_{s}^{T}\left(-E^{\prime}(t)\right) d t \\
& \leq \varepsilon C \int_{s}^{T} E^{\eta+1}(t) d t+C_{\varepsilon} E(s) \tag{5.24}
\end{align*}
$$

Also, in this case, we have

$$
\begin{equation*}
J_{\tilde{\alpha}}=\int_{s}^{T} E^{\eta}(t)\left(-E^{\prime}(t)\right) d t \leq C E(s) \tag{5.25}
\end{equation*}
$$

By inserting (5.24) and (5.25) into (5.23), we infer that J_{1} (and similarly J_{2}) satisfies (5.22).
(3) if $\alpha>\tilde{\alpha}>2$, we apply Young's inequality with

$$
\delta=\tilde{\alpha} /(\tilde{\alpha}-2) \text { and } \delta^{\prime}=\tilde{\alpha} / 2
$$

to obtain

$$
\begin{aligned}
J_{\tilde{\alpha}} & =\int_{s}^{T} E^{\eta}(t)\left(-E^{\prime}(t)\right)^{2 / \tilde{\alpha}} d t \\
& \leq \varepsilon C \int_{s}^{T} E(t)^{\eta \tilde{\alpha} /(\tilde{\alpha}-2)} d t+C_{\varepsilon} E(s) .
\end{aligned}
$$

But $\eta \tilde{\alpha} /(\tilde{\alpha}-2)=\eta+1+(\alpha-\tilde{\alpha}) /(\tilde{\alpha}-2)$, then

$$
\begin{align*}
J_{\tilde{\alpha}} & \leq \varepsilon C(E(s))^{(\alpha-\tilde{\alpha}) /(\alpha-2)} \int_{s}^{T} E^{\eta+1}(t) d t+C_{\varepsilon} E(s) \\
& \leq \varepsilon C \int_{s}^{T} E^{\eta+1}(t) d t+C_{\varepsilon} E(s) \tag{5.26}
\end{align*}
$$

The addition of (5.24) and (5.26) leads to (5.22).
We conclude that the claim is true for any $\alpha \geq \tilde{\alpha} \geq 2$. Therefore,

$$
\begin{equation*}
I_{4} \leq \varepsilon C \int_{s}^{T} E^{\eta+1}(t) d t+C_{\varepsilon} E(s) \tag{5.27}
\end{equation*}
$$

Now, substituting (5.19)-(5.21) and (5.27) into (5.18), we get

$$
2(1-\beta) \int_{s}^{T} E^{\eta+1}(t) d t \leq \varepsilon C \int_{s}^{T} E^{\eta+1}(t) d t+C_{\varepsilon} E(s),
$$

with $\eta=\frac{\alpha}{2}-1$. So,

$$
2(1-\beta) \int_{s}^{T} E^{\frac{\alpha}{2}}(t) d t \leq \varepsilon C \int_{s}^{T} E^{\frac{\alpha}{2}}(t) d t+C_{\varepsilon} E(s)
$$

Choosing ε small enough, we obtain

$$
\int_{s}^{T} E^{\frac{\alpha}{2}}(t) d t \leq C E(s)
$$

Letting $T \longrightarrow \infty$, it yields

$$
\int_{s}^{\infty} E^{\frac{\alpha}{2}}(t) d t \leq C E(s), \forall s>0
$$

Applying Komornik's lemma [23], we get the desired decay estimates.

6. Conclusions

We considered a coupled system of Laplacian and bi-Laplacian equations with nonlinear damping and source terms of variable-exponents nonlinearities. We gave a detailed proof of the local existence using Faedo-Galerkin method and Banach-fixed-point theorem. We also showed that the solutions with positive-initial energy blow-up in a finite time. Furthermore, we proved a global existence theorem, using the Stable-set method and established a decay estimate of the solution energy, by Komornik's integral approach.

Acknowledgment

The authors would like to acknowledge the support provided by King Fahd University of Petroleum \& Minerals (KFUPM), Saudi Arabia. The support provided by the Interdisciplinary Research Center for Construction \& Building Materials (IRC-CBM) at King Fahd University of Petroleum \& Minerals (KFUPM), Saudi Arabia, for funding this work through Project No. INCB2205, is also greatly acknowledged.

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. S. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells, New York: McGraw-hill, 1959.
2. P. Shankar, The eddy structure in stokes flow in a cavity, J. Fluid mech., 250 (1993), 371-383. https://doi.org/10.1017/S0022112093001491
3. R. Srinivasan, Accurate solutions for steady plane flow in the driven cavity. i. stokes flow, Z. angew. Math. Phys., 46 (1995), 524-545. https://doi.org/10.1007/BF00917442
4. V. Meleshko, Steady stokes flow in a rectangular cavity, P. Roy. Soc. A-Math. Phy., 452 (1996), 1999-2022. https://doi.org/10.1098/rspa.1996.0106
5. P. Shankar, M. Deshpande, Fluid mechanics in the driven cavity, Annu. Rev. Fluid Mech., 32 (2000), 93-136. https://doi.org/10.1146/annurev.fluid.32.1.93
6. N. E. Sevant, M. I. Bloor, M. J. Wilson, Aerodynamic design of a flying wing using response surface methodology, J. Aircraft, 37 (2000), 562-569. https://doi.org/10.2514/2.2665
7. M. I. Bloor, M. J. Wilson, Method for efficient shape parametrization of fluid membranes and vesicles, Phys. Rev. E, 61 (2000), 4218-4229. https://doi.org/10.1103/PhysRevE.61.4218
8. V. Meleshko, Biharmonic problem in a rectangle, In: In fascination of fluid dynamics, Springer, 1998, 217-249. https://doi.org/10.1007/978-94-011-4986-0_14
9. V. Meleshko, Selected topics in the history of the two-dimensional biharmonic problem, Appl. Mech. Rev., 56 (2003), 33-85. https://doi.org/10.1115/1.1521166
10. V. Meleshko, Bending of an elastic rectangular clamped plate: Exact versus engineeringsolutions, J. Elasticity, 48 (1997), 1-50. https://doi.org/10.1023/A:1007472709175
11. V. Meleshko, A. Gomilko, Infinite systems for a biharmonic problem in a rectangle, P. Roy. Soc. A Math. Phy., 453 (1997), 2139-2160. https://doi.org/10.1098/rspa.1997.0115
12. S. Antontsev, S. Shmarev, Blow-up of solutions to parabolic equations with nonstandard growth conditions, J. Comput. Appl. Math., 234 (2010), 2633-2645. https://doi.org/10.1016/j.cam.2010.01.026
13. S. Antontsev, S. Shmarev, Evolution pdes with nonstandard growth conditions, In: Atlantis studies in differential equations, 2015. https://doi.org/10.2991/978-94-6239-112-3
14. B. Guo, W. Gao, Blow-up of solutions to quasilinear hyperbolic equations with $\mathrm{p}(\mathrm{x}, \mathrm{t})$-Laplacian and positive initial energy, C. R. Mecanique, 342 (2014), 513-519. https://doi.org/10.1016/j.crme.2014.06.001
15. S. A. Messaoudi, O. Bouhoufani, I. Hamchi, M. Alahyane, Existence and blow up in a system of wave equations with nonstandard nonlinearities, Electron. J. Differ. Eq., 2021 (2021), 1-33.
16. S. A. Messaoudi, A. A. Talahmeh, M. M. Al-Gharabli, M. Alahyane, On the existence and stability of a nonlinear wave system with variable exponents, Asymptotic Anal., 128 (2022), 211-238. https://doi.org/10.3233/ASY-211704
17. S. H. Park, J. R. Kang, Blow-up of solutions for a viscoelastic wave equation with variable exponents, Math. Method. Appl. Sci., 42 (2019), 2083-2097. https://doi.org/10.1002/mma. 5501
18. O. Bouhoufani, I. Hamchi, Coupled system of nonlinear hyperbolic equations with variable-exponents: Global existence and stability, Mediterr. J. Math., 17 (2020), 166. https://doi.org/10.1007/s00009-020-01589-1
19. L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Springer, 2011.
20. D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces: Foundations and harmonic analysis, Springer Science \& Business Media, 2013.
21. K. Agre, M. A. Rammaha, Systems of nonlinear wave equations with damping and source terms, Differ. Integral Equ., 19 (2006), 1235-1270. https://doi.org/10.57262/die/1356050301
22. C. O. Alves, M. M. Cavalcanti, V. N. D. Cavalcanti, M. A. Rammaha, D. Toundykov, On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms, Discrete Cont. Dyn. S, 2 (2009), 583-608. https://doi.org/10.3934/dcdss.2009.2.583
23. V. Komornik, Decay estimates for the wave equation with internal damping, In: Control and estimation of distributed parameter systems: Nonlinear phenomena, 1994. https://doi.org/10.1007/978-3-0348-8530-0_14
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
