In this paper, we studied the sharp bounds for the $ m $-linear $ n $-dimensional $ p $-adic integral operator with a kernel on central and noncentral $ p $-adic Morrey spaces with power weight. As an application, the sharp bounds for $ p $-adic Hardy and Hilbert operators on $ p $-adic weighted Morrey spaces were obtained. Finally, we also found the sharp bound for the $ p $-adic Hausdorff operator on $ p $-adic weighted central and noncentral Morrey spaces, which generalizes the previous results.
Citation: Tingting Xu, Zaiyong Feng, Tianyang He, Xiaona Fan. Sharp estimates for the $ {p} $-adic $ {m} $-linear $ {n} $-dimensional Hardy and Hilbert operators on $ {p} $-adic weighted Morrey space[J]. AIMS Mathematics, 2025, 10(6): 14012-14031. doi: 10.3934/math.2025630
In this paper, we studied the sharp bounds for the $ m $-linear $ n $-dimensional $ p $-adic integral operator with a kernel on central and noncentral $ p $-adic Morrey spaces with power weight. As an application, the sharp bounds for $ p $-adic Hardy and Hilbert operators on $ p $-adic weighted Morrey spaces were obtained. Finally, we also found the sharp bound for the $ p $-adic Hausdorff operator on $ p $-adic weighted central and noncentral Morrey spaces, which generalizes the previous results.
| [1] |
A. V. Avetisov, A. H. Bikulov, S. V. Kozyrev, V. A. Osipov, $p$-adic models of ultrametric diffusion constrained by hierarchical energy landscapes, J. Phys. A: Math. Gen., 35 (2002), 177. https://doi.org/10.1088/0305-4470/35/2/301 doi: 10.1088/0305-4470/35/2/301
|
| [2] |
S. Albeverio, W. Karwoski, A random walk on $p$-adics: the generator and its spectrum, Stoch. Proc. Appl., 53 (1994), 1–22. https://doi.org/10.1016/0304-4149(94)90054-x doi: 10.1016/0304-4149(94)90054-x
|
| [3] |
S. Albeverio, A. Y. Khrennikov, V. M. Shelkovich, Harmonic analysis in the p-adic Lizorkin spaces: fractional operators, pseudo-differential equations, p-adic wavelets, Tauberian theorems, J. Fourier Anal. Appl., 12 (2006), 393–425. https://doi.org/10.1007/s00041-006-6014-0 doi: 10.1007/s00041-006-6014-0
|
| [4] |
T. Batblod, Y. Sawano, Sharp bounds for $m$-linear Hilbert-type operators on the weighted Morrey spaces, Math. Inequal. Appl., 20 (2017), 263–283. https://doi.org/10.7153/mia-20-20 doi: 10.7153/mia-20-20
|
| [5] |
T. Batbold, Y. Sawano, G. Tumendemberel, Sharp bounds for certain $m$-linear integral operators on $p$-adic function spaces, Filomat, 36 (2022), 801–812. https://doi.org/10.2298/fil2203801b doi: 10.2298/fil2203801b
|
| [6] |
J. C. Chen, D. S. Fan, C. J. Zhang, Multilinear Hausdorff operators and their best constants, Acta. Math. Sin.-English Ser., 28 (2012), 1521–1530. https://doi.org/10.1007/s10114-012-1455-7 doi: 10.1007/s10114-012-1455-7
|
| [7] |
Y. Deng, D. Yan, M. Wei, Sharp estimates for $m$ linear $p$-adic Hardy and Hardy-Littlewood-Pólya operators on $p$-adic central Morrey spaces, J. Math. Inequal., 15 (2021), 1447–1458. https://doi.org/10.7153/jmi-2021-15-99 doi: 10.7153/jmi-2021-15-99
|
| [8] |
Z. Fu, S. Gong, S. Lu, W. Yuan, Weighted multilinear Hardy operators and commutators, Forum Math., 27 (2015), 2825–2851. https://doi.org/10.1515/forum-2013-0064 doi: 10.1515/forum-2013-0064
|
| [9] |
Z. Fu, R. Gong, E. Pozzi, Q. Wu, Cauchy-Szegö commutators on weighted Morrey spaces, Math. Nachr., 296 (2023), 1859–1885. https://doi.org/10.1002/mana.202000139 doi: 10.1002/mana.202000139
|
| [10] |
Z. Fu, S. Lu, Y. Pan, S. Shi, Some one-sided estimates for oscillatory singular integrals, Nonlinear Anal.-Theor., 108 (2014), 144–160. https://doi.org/10.1016/j.na.2014.05.016 doi: 10.1016/j.na.2014.05.016
|
| [11] |
S. Haran, Riesz potentials and explicit sums in arithmetic, Invent. Math., 101 (1990), 697–703. https://doi.org/10.1007/bf01231521 doi: 10.1007/bf01231521
|
| [12] |
S. Haran, Analytic potential theory over the $p$-adics, Ann. I. Fourier, 43 (1993), 905–944. https://doi.org/10.5802/aif.1361 doi: 10.5802/aif.1361
|
| [13] |
Q. He, M. Wei, D. Yan, Sharp bound for generalized $m$-linear $n$-dimensional Hardy-Littlewood-Pólya operator, Anal. Theory Appl., 39 (2023), 28–41. https://doi.org/10.4208/ata.OA-2020-0039 doi: 10.4208/ata.OA-2020-0039
|
| [14] | A. Khrennikov, $p$-adic valued distributions in mathematical physics, Dordrecht: Springer, 1994. https://doi.org/10.1007/978-94-015-8356-5 |
| [15] | A. Khrennikov, Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models, Dordrecht: Springer, 1997. https://doi.org/10.1007/978-94-009-1483-4 |
| [16] |
Y. C. Kim, Weak type estimates of square functions associated with quasiradial Bochner-Riesz means on certain Hardy spaces, J. Math. Anal. Appl., 339 (2008), 266–280. https://doi.org/10.1016/j.jmaa.2007.06.050 doi: 10.1016/j.jmaa.2007.06.050
|
| [17] |
Y. C. Kim, Carleson measures and the BMO space on the $p$-adic vector space, Math. Nachr., 282 (2009), 1278–1304. https://doi.org/10.1002/mana.200610806 doi: 10.1002/mana.200610806
|
| [18] |
K. S. Rim, J. Lee, Estimate of weighted Hardy-Littlewood averages on the $p$-adic vector space, J. Math. Anal. Appl., 324 (2006), 1470–1477. https://doi.org/10.1016/j.jmaa.2006.01.038 doi: 10.1016/j.jmaa.2006.01.038
|
| [19] | M. H. Taibleson, Fourier analysis on local fields, Princeton: Princeton University Press, 1975. |
| [20] |
V. S. Varadarajan, Path integrals for a class of $p$-adic Schrödinger equations, Lett. Math. Phys., 39 (1997), 97–106. https://doi.org/10.1023/A:1007364631796 doi: 10.1023/A:1007364631796
|
| [21] |
D. D. Van, N. T. Hong, Multilinear Hausdorff operator on $p$-adic functional spaces and its applications, Anal. Math. Phys., 12 (2022), 86. https://doi.org/10.1007/s13324-022-00696-4 doi: 10.1007/s13324-022-00696-4
|
| [22] | V. S. Vladimiron, I. V. Volovich, E. I. Zelenov, $p$-adic analysis and mathematical physics, Singapore: World Scientific, 1992. https://doi.org/10.1142/1581 |
| [23] |
Q. Y. Wu, Z. W. Fu, Sharp estimates of $m$-linear $p$-adic Hardy and Hardy-Littlewood-Pólya operators, J. Appl. Math., 2011 (2011), 472176. https://doi.org/10.1155/2011/472176 doi: 10.1155/2011/472176
|