Research article Topical Sections

Generalized Perron complements of strictly generalized doubly diagonally dominant matrices

  • Published: 18 June 2025
  • MSC : 15A45, 15A48

  • It is well known that there is an intrinsic connection between Perron complements and Schur complements. It has been demonstrated that Schur complements of strictly generalized doubly diagonally dominant matrices retain the property of strict generalized double diagonal dominance. Our primary aim of this study is to extend these findings to generalized Perron complements of nonnegative irreducible matrices. Specifically, we established that generalized Perron complements derived from strictly generalized doubly diagonally dominant and nonnegative irreducible matrices preserve strict generalized double diagonal dominance and nonnegative irreducibility. Numerical examples are provided to substantiate our theoretical results.

    Citation: Qin Zhong, Ling Li, Gufang Mou. Generalized Perron complements of strictly generalized doubly diagonally dominant matrices[J]. AIMS Mathematics, 2025, 10(6): 13996-14011. doi: 10.3934/math.2025629

    Related Papers:

  • It is well known that there is an intrinsic connection between Perron complements and Schur complements. It has been demonstrated that Schur complements of strictly generalized doubly diagonally dominant matrices retain the property of strict generalized double diagonal dominance. Our primary aim of this study is to extend these findings to generalized Perron complements of nonnegative irreducible matrices. Specifically, we established that generalized Perron complements derived from strictly generalized doubly diagonally dominant and nonnegative irreducible matrices preserve strict generalized double diagonal dominance and nonnegative irreducibility. Numerical examples are provided to substantiate our theoretical results.



    加载中


    [1] F. Saberi-Movahed, K. Berahman, R. Sheikhpour, Y. F. Li, S. R. Pan, Nonnegative matrix factorization in dimensionality reduction: A Survey, 2024, arXiv: 2405.03615. https://doi.org/10.48550/arXiv.2405.03615
    [2] S. Ahmadian, K. Berahmand, M. Rostami, S. Forouzandeh, P. Moradi, M. Jalili, Recommender Systems based on Non-negative Matrix Factorization: A Survey, IEEE Trans. Artif. Intell., (2025). https://doi.org/10.1109/TAI.2025.3559053
    [3] A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Philadelphia: Society for Industrial and Applied Mathematics, 1994. https://doi.org/10.1137/1.9781611971262
    [4] F. Z. Zhang, Matrix Theory: Basic Results and Techniques, New York: Springer, 1999. https://link.springer.com/book/10.1007/978-1-4614-1099-7
    [5] B. S. Li, M. J. Tsatsomeros, Doubly diagonally dominant matrices, Linear Algebra Appl., 261 (1997), 221–235. https://doi.org/10.1016/S0024-3795(96)00406-5 doi: 10.1016/S0024-3795(96)00406-5
    [6] J. Z. Liu, Y. Q. Huang, F. Z. Zhang, The Schur complements of generalized doubly diagonally dominant matrices, Linear Algebra Appl., 378 (2004), 231–244. https://doi.org/10.1016/j.laa.2003.09.012 doi: 10.1016/j.laa.2003.09.012
    [7] R. L. Smith, Some interlacing properties of the Schur complements of a Hermitian matrix, Linear Algebra Appl., 177 (1992), 137–144. https://doi.org/10.1016/0024-3795(92)90321-Z doi: 10.1016/0024-3795(92)90321-Z
    [8] C. R. Johnson, Inverse M-matrices, Linear Algebra Appl., 47 (1982), 195–216. https://doi.org/10.1016/0024-3795(82)90238-5
    [9] J. Z. Liu, Y. Q. Huang, Some properties on Schur complements of H-matrices and diagonally dominant matrices, Linear Algebra Appl., 389 (2004), 365–380. https://doi.org/10.1016/j.laa.2004.04.012 doi: 10.1016/j.laa.2004.04.012
    [10] D. Carlson, T. L. Markham, Schur complements of diagonally dominant matrices, Czech. Math. J., 29 (1979), 246–251. https://dml.cz/bitstream/handle/10338.dmlcz/101601/CzechMathJ_29-1979-2_9.pdf
    [11] K. D. Ikramov, Invariance of the Brauer diagonal dominance in gaussian elimination, Moscow Univ. Comput. Math. Cybernet., N (1989), 91–94.
    [12] C. D. Meyer, Uncoupling the Perron eigenvector problem, Linear Algebra Appl., 114–115 (1989), 69–94. https://doi.org/10.1016/0024-3795(89)90452-7 doi: 10.1016/0024-3795(89)90452-7
    [13] C. D. Meyer, Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems, SIAM Rev., 31 (1989), 240–272. https://doi.org/10.1137/1031050 doi: 10.1137/1031050
    [14] L. Z. Lu, Perron complement and Perron root, Linear Algebra Appl., 341 (2002), 239–248. https://doi.org/10.1016/S0024-3795(01)00378-0 doi: 10.1016/S0024-3795(01)00378-0
    [15] Z. G. Ren, T. Z. Huang, X. Y. Cheng, A note on generalized Perron complements of Z-matrices, Electron. J. Linear Al., 15 (2006), 8–13. https://doi.org/10.13001/1081-3810.1217 doi: 10.13001/1081-3810.1217
    [16] Z. M. Yang, Some closer bounds of Perron root basing on generalized Perron complement, J. Comput. Appl. Math., 235 (2010), 315–324. https://doi.org/10.1016/j.cam.2010.06.012 doi: 10.1016/j.cam.2010.06.012
    [17] S. M. Yang, T. Z. Huang, A note on estimates for the spectral radius of a nonnegative matrix, Electron. J. Linear Al., 13 (2005), 352–358. https://doi.org/10.13001/1081-3810.1168 doi: 10.13001/1081-3810.1168
    [18] G. X. Huang, F. Yin, K. Guo, The lower and upper bounds on Perron root of nonnegative irreducible matrices, J. Comput. Appl. Math., 217 (2008), 259–267. https://doi.org/10.1016/j.cam.2007.06.034 doi: 10.1016/j.cam.2007.06.034
    [19] Q. Zhong, C. Y. Zhao, Extended Perron complements of $M$-matrices, AIMS Math., 8 (2023), 26372–26383. https://doi.org/10.3934/math.20231346 doi: 10.3934/math.20231346
    [20] S. W. Zhou, T. Z. Huang, On Perron complements of inverse ${{N}_{0}}$-matrices, Linear Algebra Appl., 434 (2011), 2081–2088. https://doi.org/10.1016/j.laa.2010.12.004 doi: 10.1016/j.laa.2010.12.004
    [21] M. Neumann, Inverses of Perron complements of inverse M-matrices, Linear Algebra Appl., 313 (2000), 163–171. https://doi.org/10.1016/S0024-3795(00)00128-2 doi: 10.1016/S0024-3795(00)00128-2
    [22] S. M. Fallat, M. Neumann, On Perron complements of totally nonnegative matrices, Linear Algebra Appl., 327 (2001), 85–94. https://doi.org/10.1016/S0024-3795(00)00312-8 doi: 10.1016/S0024-3795(00)00312-8
    [23] M. Adm, J. Garloff, Total nonnegativity of the extended Perron complement, Linear Algebra Appl., 508 (2016), 214–224. https://doi.org/10.1016/j.laa.2016.07.002 doi: 10.1016/j.laa.2016.07.002
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(600) PDF downloads(12) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog