Research article

The properties of the Laplacian permanental polynomials of graphs

  • Published: 24 October 2025
  • MSC : 05C31

  • In this paper, some properties of the Laplacian permanental polynomials of graphs are given. First, we provide a formula to evaluate the coefficients of the Laplacian permanental polynomial. Following this, we derive some interesting derivative properties of the Laplacian permanental polynomial. In addition, the recursive relations on the Laplacian permanental coefficients of some subdivision graphs are deduced.

    Citation: Wei Li. The properties of the Laplacian permanental polynomials of graphs[J]. AIMS Mathematics, 2025, 10(10): 24317-24328. doi: 10.3934/math.20251078

    Related Papers:

  • In this paper, some properties of the Laplacian permanental polynomials of graphs are given. First, we provide a formula to evaluate the coefficients of the Laplacian permanental polynomial. Following this, we derive some interesting derivative properties of the Laplacian permanental polynomial. In addition, the recursive relations on the Laplacian permanental coefficients of some subdivision graphs are deduced.



    加载中


    [1] R. A. Brualdi, J. L. Goldwasser, Permanent of the Laplacian matrix of trees and bipartite graphs, Discrete Math., 48 (1984), 1–21. https://doi.org/10.1016/0012-365x(84)90127-4 doi: 10.1016/0012-365x(84)90127-4
    [2] D. M. Cvetković, M. Doob, H. Sachs, Spectra of graphs, Academic Press, 1980.
    [3] J. L. Goldwasser, Permanent of the Laplacian matrix of trees with a given matching, Discrete Math., 61 (1986), 197–212. https://doi.org/10.1016/0012-365X(86)90091-9 doi: 10.1016/0012-365X(86)90091-9
    [4] X. Y. Geng, X. Hu, S. C. Li, Futher results on permanental bounds for the Laplacian matrix of trees, Linear Multilinear Algebra, 58 (2010), 571–587. https://doi.org/10.1080/03081080902765583 doi: 10.1080/03081080902765583
    [5] I. Gutman, G. G. Cash, Relations between the permanental and characteristic polynomials of fullerenes and benzenoid hydrocarbons, MATCH Commun. Math. Comput. Chem., 45 (2002), 55–70.
    [6] W. Li, Graphs whose characteristic and permanental polynomials have coefficients of the same magnitude, Discrete Math., 339 (2016), 2127–2135. https://doi.org/10.1016/j.disc.2016.02.019 doi: 10.1016/j.disc.2016.02.019
    [7] W. Li, On the matching and permanental polynomials of graphs, Discrete Appl. Math., 302 (2021), 16–23. https://doi.org/10.1016/j.dam.2021.05.030 doi: 10.1016/j.dam.2021.05.030
    [8] S. Y. Liu, On the (signless) Laplacian permanental polynomials of graphs, Graphs Combin., 35 (2019), 787–803. https://doi.org/10.1007/s00373-019-02033-2 doi: 10.1007/s00373-019-02033-2
    [9] W. Li, Z. M. Qin, H. P. Zhang, Extremal hexagonal chains with respect to the coefficients sum of the permanental polynomial, Appl. Math. Comput., 291 (2016), 30–38. https://doi.org/10.1016/j.amc.2016.06.025 doi: 10.1016/j.amc.2016.06.025
    [10] X. G. Liu, T. Z. Wu, Computing the permanental polynomials of graphs, Appl. Math. Comput., 304 (2017), 103–113. https://doi.org/10.1016/j.amc.2017.01.052 doi: 10.1016/j.amc.2017.01.052
    [11] H. Minc, Permanents, Addision-Wesley, 1978.
    [12] R. Merris, The Laplacian permanental polynomial for trees, Czech. Math. J., 32 (1982), 397–403. https://doi.org/10.21136/CMJ.1982.101816 doi: 10.21136/CMJ.1982.101816
    [13] R. Merris, K. R. Rebman, W. Watkins, Permanental polynomials of graphs, Linear Algebra Appl., 38 (1981), 273–288. https://doi.org/10.1016/0024-3795(81)90026-4 doi: 10.1016/0024-3795(81)90026-4
    [14] L. G. Valiant, The complexity of computing the permanent, Theor. Comput. Sci., 8 (1979), 189–201. https://doi.org/10.1016/0304-3975(79)90044-6 doi: 10.1016/0304-3975(79)90044-6
    [15] T. Z. Wu, H. P. Zhang, Per-spectral and adjacency spectral characterizations of a complete graph removing six edges, Discrete Appl. Math., 203 (2016), 158–170. https://doi.org/10.1016/j.dam.2015.09.014 doi: 10.1016/j.dam.2015.09.014
    [16] T. Z. Wu, X. L. Zeng, H. Z. Lü, On the roots of (signless) Laplacian permanental polynomials of graphs, Graphs Combin., 39 (2023), 113. https://doi.org/10.1007/s00373-023-02710-3 doi: 10.1007/s00373-023-02710-3
    [17] W. G. Yan, F. J. Zhang, On the permanental polynomials of some graphs, J. Math. Chem., 35 (2004), 175–188. https://doi.org/10.1023/B:JOMC.0000033254.54822.f8 doi: 10.1023/B:JOMC.0000033254.54822.f8
    [18] H. P. Zhang, W. Li, Computing the permanental polynomials of bipartite graphs by Pfaffian orientation, Discrete Appl. Math., 160 (2012), 2069–2074. https://doi.org/10.1016/j.dam.2012.04.007 doi: 10.1016/j.dam.2012.04.007
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(214) PDF downloads(16) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog