In this paper, we first established the local well-posedness of the generalized short pulse system in the critical Besov space $ B_{2, 1}^{\frac{3}{2}}(\mathbb{T}) $, improving upon the local well-posedness result obtained in [S. Yu, X. Yin, J. Math. Anal. Appl., 475 (2019), 1427–1447]. We then proved that the solution map was Hölder continuous in $ B_{2, r}^{\mu}(\mathbb{T}) $. Finally, by a generalized Ovsyannikov theorem combined with fundamental properties of Sobolev-Gevrey spaces, we established the Gevrey regularity and analyticity of solutions and further obtained a lower bound of the lifespan and the continuity of the data-to-solution map.
Citation: Shanshan Zheng, Li Yang. Continuity and analyticity for a generalized two-component short pulse system[J]. AIMS Mathematics, 2025, 10(10): 23958-23983. doi: 10.3934/math.20251065
In this paper, we first established the local well-posedness of the generalized short pulse system in the critical Besov space $ B_{2, 1}^{\frac{3}{2}}(\mathbb{T}) $, improving upon the local well-posedness result obtained in [S. Yu, X. Yin, J. Math. Anal. Appl., 475 (2019), 1427–1447]. We then proved that the solution map was Hölder continuous in $ B_{2, r}^{\mu}(\mathbb{T}) $. Finally, by a generalized Ovsyannikov theorem combined with fundamental properties of Sobolev-Gevrey spaces, we established the Gevrey regularity and analyticity of solutions and further obtained a lower bound of the lifespan and the continuity of the data-to-solution map.
| [1] |
T. Schäfer, C. E. Wayne, Propagation of ultra-short optical pulses in cubic nonlinear media, Phys. D, 196 (2004), 90–105. http://dx.doi.org/10.1016/j.physd.2004.04.007 doi: 10.1016/j.physd.2004.04.007
|
| [2] |
R. Beals, M. Rabelo, K. Tenenblat, Bäcklund transformations and inverse scattering solutions for some pseudospherical surface equations, Stud. Appl. Math., 81 (1989), 125–151. http://dx.doi.org/10.1002/sapm1989812125 doi: 10.1002/sapm1989812125
|
| [3] |
J. C. Brunelli, The bi-Hamiltonian structure of the short pulse equation, Phys. Lett. A, 353 (2006), 475–478. http://dx.doi.org/10.1016/j.physleta.2006.01.009 doi: 10.1016/j.physleta.2006.01.009
|
| [4] |
M. Wadati, K. Konno, Y. H. Ichikawa, New integrable nonlinear evolution equations, J. Phys. Soc. Jpn., 47 (1979), 1698–1700. http://dx.doi.org/10.1143/JPSJ.47.1698 doi: 10.1143/JPSJ.47.1698
|
| [5] |
A. Sakovich, S. Sakovich, Solitary wave solutions of the short pulse equation, J. Phys. A: Math. Gen., 39 (2006), L361. http://dx.doi.org/10.1088/0305-4470/39/22/L03 doi: 10.1088/0305-4470/39/22/L03
|
| [6] |
E. J. Parkes, Some periodic and solitary travelling-wave solutions of the short-pulse equation, Chaos Soliton. Fract., 38 (2008), 154–159. http://dx.doi.org/10.1016/j.chaos.2006.10.055 doi: 10.1016/j.chaos.2006.10.055
|
| [7] |
V. K. Kuetche, T. B. Bouetou, T. C. Kofane, On two-loop soliton solution of the Schäfer-Wayne short-pulse equation using Hirota's method and Hodnett-Moloney approach, J. Phys. Soc. Jpn., 76 (2007), 024004. http://dx.doi.org/10.1143/JPSJ.76.024004 doi: 10.1143/JPSJ.76.024004
|
| [8] |
Y. Matsuno, Periodic solutions of the short pulse model equation, J. Math. Phys., 49 (2008), 073508. http://dx.doi.org/10.1063/1.2951891 doi: 10.1063/1.2951891
|
| [9] |
Y. Matsuno, Multiloop soliton and multibreather solutions of the short pulse model equation, J. Phys. Soc. Jpn., 76 (2007), 084003. http://dx.doi.org/10.1143/JPSJ.76.084003 doi: 10.1143/JPSJ.76.084003
|
| [10] |
U. Saleem, M. Hassan, Darboux transformation and multisoliton solutions of the short pulse equation, J. Phys. Soc. Jpn., 81 (2012), 094008. http://dx.doi.org/10.1143/JPSJ.81.094008 doi: 10.1143/JPSJ.81.094008
|
| [11] |
Y. Matsuno, A novel multi-component generalization of the short pulse equation and its multisoliton solutions, J. Math. Phys., 52 (2011), 123702. http://dx.doi.org/10.1063/1.3664904 doi: 10.1063/1.3664904
|
| [12] | Z. Qiao, Finite-dimensional integrable system and nonlinear evolution equations, Beijing, China: Higer Eductation Press, 2002. |
| [13] |
Z. Qiao, C. Cao, W. Strampp, Category of nonlinear evolution equations, algebraic structure, and r-matrix, J. Math. Phys., 44 (2003), 701–722. http://dx.doi.org/10.1063/1.1532769 doi: 10.1063/1.1532769
|
| [14] |
J. Chen, S. Yang, Singularity formation for the high-order generalized Fokas-Olver-Rosenau-Qiao equation, Z. Angew. Math. Phys., 75 (2024), 203. http://dx.doi.org/10.1007/s00033-024-02345-1 doi: 10.1007/s00033-024-02345-1
|
| [15] |
R. Han, S. Yang, New wave breaking for the Camassa-Holm equation, J. Differ. Equations, 422 (2025), 604–613. https://dx.doi.org/10.1016/j.jde.2025.01.032 doi: 10.1016/j.jde.2025.01.032
|
| [16] |
S. Yang, Blow-up phenomena for the generalized FORQ/MCH equation, Z. Angew. Math. Phys., 71 (2020), 20. http://dx.doi.org/10.1007/s00033-019-1241-9 doi: 10.1007/s00033-019-1241-9
|
| [17] |
S. Yang, J. Chen, On the finite time blow-up for the high-order Camassa-Holm-Fokas-Olver-Rosenau-Qiao equations, J. Differ. Equations, 379 (2024), 829–861. http://dx.doi.org/10.1016/j.jde.2023.10.045 doi: 10.1016/j.jde.2023.10.045
|
| [18] |
Z. Zhaqilao, Q. Hu, Z. Qiao, Multi-soliton solutions and the Cauchy problem for a two-component short pulse system, Nonlinearity, 30 (2017), 3773–3798. http://dx.doi.org/10.1088/1361-6544/aa7e9c doi: 10.1088/1361-6544/aa7e9c
|
| [19] |
S. Yu, X. Yin, The Cauchy problem for a generalized two-component short pulse system with high-order nonlinearities, J. Math. Anal. Appl., 475 (2019), 1427–1447. http://dx.doi.org/10.1016/j.jmaa.2019.03.024 doi: 10.1016/j.jmaa.2019.03.024
|
| [20] | H. Bahouri, J. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Springer, Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16830-7 |
| [21] | R. Danchin, Fourier analysis methods for PDEs, Lecture Notes, 2005. |
| [22] |
C. Foias, R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359–369. http://dx.doi.org/10.1016/0022-1236(89)90015-3 doi: 10.1016/0022-1236(89)90015-3
|
| [23] |
W. Luo, Z. Yin, Gevrey regularity and analyticity for Camassa-Holm type systems, Ann. Sc. Norm. Super. Pisa Cl. Sci., 18 (2018), 1061–1079. http://dx.doi.org/10.2422/2036-2145.201603_011 doi: 10.2422/2036-2145.201603_011
|
| [24] |
L. Zhang, B. Liu, On the Luo-Yin results concerning Gevrey regularity and analyticity for Camassa-Holm-type systems, Ann. Sc. Norm. Super. Pisa Cl. Sci., 21 (2020), 1741–1744. http://dx.doi.org/10.1007/s11425-021-1949-8 doi: 10.1007/s11425-021-1949-8
|
| [25] |
J. Holmes, F. Tiglay, Non-uniform dependence of the data-to-solution map for the Hunter-Saxton equation in Besov spaces, J. Evol. Equ., 18 (2018), 1173–1187. http://dx.doi.org/10.1007/s00028-018-0436-4 doi: 10.1007/s00028-018-0436-4
|
| [26] |
R. Danchin, A note on well-posedness for Camassa-Holm equation, J. Differ. Equations, 192 (2003), 429–444. http://dx.doi.org/10.1016/S0022-0396(03)00096-2 doi: 10.1016/S0022-0396(03)00096-2
|