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Abstract: In this paper, we first established the local well-posedness of the generalized short pulse
system in the critical Besov space B

3
2
2,1(T), improving upon the local well-posedness result obtained

in [S. Yu, X. Yin, J. Math. Anal. Appl., 475 (2019), 1427–1447]. We then proved that the solution
map was Hölder continuous in Bµ2,r(T). Finally, by a generalized Ovsyannikov theorem combined with
fundamental properties of Sobolev-Gevrey spaces, we established the Gevrey regularity and analyticity
of solutions and further obtained a lower bound of the lifespan and the continuity of the data-to-solution
map.
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1. Introduction

In the present paper, we consider the Cauchy problem for the following generalized short pulse
equations with high-order nonlinearities:

utx = a(uvp−1∂xu)x + u, x ∈ T, t ∈ R,
vtx = b(vuq−1∂xv)x + v, x ∈ T, t ∈ R,
u(x, 0) = u0, x ∈ T, t = 0,
v(x, 0) = v0, x ∈ T, t = 0,

(1.1)

where p, q ∈ Z+ and a, b are two constant parameters.
The special case where a = b = 1

2 , p = q = 2, and u = v transforms system (1.1) into the classical
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short-pulse equation:

uxt = u +
1
6

(u3)xx. (1.2)

This equation derived as a nonlinear approximation from Maxwell’s equations, characterizes the
propagation of ultrashort optical pulses in isotropic fibers [1]. Here, the real-valued function u(t, x)
characterizes the electric field’s magnitude. As a prominent example of integrable loop-soliton
systems, it has attracted considerable attention in the research community over recent decades.
Equation (1.2) has a Lax pair [2] and bi-Hamiltonian structure [3]. In [4], their analysis revealed
that the Eq (1.2) admits a Wadati-Konno-Ichikawa-type Lax pair and can be connected to the sine-
Gordon equation via a series of transformations. This finding positions Eq (1.2) as an integrable
model for ultrashort pulses, serving as an alternative to the nonlinear Schrödinger (NLS) equation.
Furthermore, researchers identified an appropriate hodograph transformation that reduces Eq (1.2)
to the renowned sine-Gordon (SG) equation, enabling the derivation of multi-loop solitary wave
solutions [5]. Consequently, diverse solution type in Eq (1.2) have been established, including: periodic
and solitary wave solutions [6]; two-loop soliton solutions [7]; and bilinear forms, multi-loop solutions,
multi-breather solutions, and periodic solutions [8, 9]. Notably, the loop soliton solutions of Eq (1.2)
can also be obtained through a Darboux transformation approach [10].

Considering the influence of polarization and anisotropy, researchers have developed different
versions of the short pulse equation for two-component systems. In a recent study, the two-component
short pulse system was proposed by Matsuno [11] as follows:{

uxt = u + 1
2 (uvux)x,

vxt = v + 1
2 (uvvx)x,

(1.3)

where Eq (1.1) to be discussed in this paper is precisely a high-order generalization of this two-
component short pulse system (1.3). It was shown that Eq (1.3) could be generated from the negative-
order Wadati-Konno-Ichikawa hierarchy in [12,13]. Besides, Eq (1.3) is integrable, with corresponding
Lax pairs given by Ψx = PΨ, Ψt = QΨ, where the given matrices P and Q are:

P = λ
(

1 ux

vx −1

)
, Q =

1
2

(
0 v
−u 0

)
+

1
4λ

(
1 0
0 −1

)
+
λ

2

(
uv uvux

uvvx −uv

)
.

For the Cauchy problem, numerous works, such as [14–17], have examined the properties of solutions
to nonlinear Camassa-Holm-type equations or chemotaxis models in Besov spaces. Their core strategy
integrates Littlewood-Paley decomposition techniques with transport equation theory. Zhaqilao
et al. [18] initially established the existence and uniqueness of a solution for Eq (1.3) with an estimate
of the analytic lifespan, and then deduced the continuity of the data-to-solution map in the space of
an analytic function. Later, in [19], the authors studied the local well-posedness of the Eq (1.1) in the

Besov space Bs
p,r×Bs

p,r with s > { 32 , 1+
1
p }. Due to Bs

p,r ↪→ B
1+ 1

p

p,1 for s > 1+ 1
p , our first aim is to establish

the local well-posedness of Eq (1.1) in the Besov space B
3
2
2,1(T) to improve the local well-posedness

result in [19]. The specific theorem is as follows:

Theorem 1.1. Suppose that (u0, v0) ∈ B
3
2
2,1(T), and then there exists a time T > 0 such that Eq (1.1) has

a unique strong solution (u, v) belonging to E
3
2
2,1 := C([0,T ]; B

3
2
2,1) ∩ C1([0, T ]; B

1
2
2,1) × C([0, T ]; B

3
2
2,1) ∩

C1([0, T ]; B
1
2
2,1). Besides, the data-to-solution map (u0, v0)→ (u, v) is continuous from B

3
2
2,1 into E

3
2
2,1.
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Remark 1.1. According to the Littlewood-Paley theory [20], we have the continuous embedding
B

3
2
2,1 ↪→ B

3
2
2,2 ≈ H s, where the critical exponent s = 3

2 is the minimal regularity index for which the
Besov space Bs

2,1 is embedded into Lip.

In [19], it has been proven that the data-to-solution mapping is continuous but not uniformly
continuous. The following results will provide information about the stability of the data-to-solution
map, that is, the data-to-solution map for Eq (1.1) to be Hölder continuous in Bµ2,r × Bµ2,r.

Theorem 1.2. Suppose that (u0, v0) ∈ Bs
2,r × Bs

2,r and r > 1, s > 3/2 or r = 1, s ≥ 3/2, if µ ∈ R
such that s − 1 < µ < s. Then the data-to-solution map is Hölder continuous from Bµ2,r × Bµ2,r to
C([0, T ]; Bµ2,r) ×C([0, T ]; Bµ2,r).

Next, based on the generalized Ovsyannikov theorem, we deduce the local analyticity and Gevrey
regularity of the solutions to Eq (1.1) on the circle and the whole space, and we see the continuity of
the data-to-solution map.

Theorem 1.3. Let σ ≥ 1, s > 3
2 . Assume that u0 ∈ G1

σ,s. Then for any 0 < δ < 1, there exists a T0 > 0

such that Eq (1.1) has a unique solution u which is holomorphic in |t| < T0(1−δ)
σ
2

σ−1 with values in Gδσ,s(R).
Moreover,

T0 =
1

22σ+4+m
(
(a + b)e−σσσ +

√
2
)

(1 + ∥z0∥G1
σ,s

)m
,

where the positive constant C′ depends on s, α, β, γ, λ, Γ.

Theorem 1.4. Let σ ≥ 1 and s > 3
2 . For initial data (u0, v0) ∈ G1

σ,s × G1
σ,s, the data-to-solution map

(u0, v0) 7→ (u, v) of Eq (1.1) is continuous as a map from G1
σ,s ×G1

σ,s into the solution space.

This paper is structured as follows: Section 2 establishes foundational preliminaries. Sections 3
and 4 investigate the local well-posedness of system (1.1) in the critical Besov space, and Hölder
continuity of the data-to-solution map. The local analyticity and Gevrey regularity are examined in
Section 5.

2. Preliminaries

In this section, we introduce the lemmas and definitions that will be employed in the subsequent
proofs. First, we briefly review some fundamental Besov space properties that will be essential for the
proof of the local well-posedness and Hölder continuous for the generalized short pulse equations with
high-order nonlinearities.

To establish our work in Besov space, we present the Littlewood-Paley decomposition for the
definition of Besov spaces.

Lemma 2.1. (Littlewood-Paley decomposition) (see Proposition 2.10 in [20]) Assume that the ball
B � {ξ ∈ Rn, |ξ| ≤ 4

3 } and the ring R � {ξ ∈ Rn, 3
4 ≤ |ξ| ≤

8
3 }. Then there exist two radial functions

χ ∈ C∞c (B) and φ ∈ C∞c (R), valued in the interval [0, 1], such that

∀ξ ∈ Rn, χ(ξ) +
∑
q≥0

φ(2−qξ) = 1,
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|q − q′| ≥ 2⇒ Supp φ(2−q·) ∩ Supp φ(2−q′ ·) = ∅,

q ≥ 1⇒ Supp χ(·) ∩ Supp φ(2−q·) = ∅.

Next, let h � F −1φ and h̃ � F −1χ. Then for all f ∈ S′(Rn), the nonhomogeneous dyadic blocks ∆q and
low-frequency cut-off operator S q can be defined as follows:

∆q f = 0 for q ≤ −2,

∆−1 f = χ(D) f =
∫
Rn

h̃(y)u(x − y)dy,

∆q f � φ(2−qD) f = 2qn
∫
Rn

h(2qy) f (x − y)dy for q ≥ 0,

S q f �
q−1∑

p=−1

∆pu = χ(2−qD) f =
∫
Rn

h̃(2qy) f (x − y)dy. (2.1)

Moreover, it is easily shown that φ(ξ) = 1 if 4
3 ≤ |ξ| ≤

3
2 .

Next, we introduce the definition of Besov spaces as follows:

Definition 2.1. (Besov spaces) (see Definition 2.68 in [20]) Let s ∈ R, 1 ≤ p, r ≤ ∞. The
nonhomogenous Besov space Bs

p,r(R
n) can be characterized by

Bs
p,r(R

n) � { f ∈ S′(Rn); || f ||Bs
p,r < ∞},

where

|| f ||Bs
p,r �


( ∑

q≥−1
2qsr||∆q f ||rLp

) 1
r

, for r < ∞,

sup
q≥−1

2qs||∆q f ||Lp , for r = ∞.

In order to study the local well-posedness of the Eq (1.1) in Besov spaces, we need to the following
transport theory.

Lemma 2.2. (See Theorem 3.14 in [20]) Let 1 ≤ p, r ≤ ∞, and s ≥ −min( n
p , 1 −

n
p ). Assume that

f0 ∈ Bs
p,r(R

n) and g ∈ L1([0, T ]; Bs
p,r(R

n)). Let f ∈ L∞([0, T ]; Bs
p,r(R

n)) be the solution to the transport
equations ∂t f + v · ∇ f = g,

f |t=0 = f0
(2.2)

with ∇v ∈ L1([0, T ]; Bs−1
p,r (Rn)) for s > 1 + n

p or ∇v ∈ L1([0, T ]; B
n
p
p,r(Rn) ∩ L∞(Rn)) otherwise. Then,

(1) If r = 1 or s , 1 + n
p , then there exists C > 0 depending only on s, p, and r such that

∥ f ∥Bs
p,r ≤ eCṼp(t)∥ f0∥Bs

p,r +

∫ t

0
eCṼp(t)−CṼp(s)∥g(s)∥Bs

p,r ds,

or

∥ f ∥Bs
p,r ≤ ∥ f0∥Bs

p,r +

∫ t

0
∥g(s)∥Bs

p,r ds +C
∫ t

0
Ṽ ′p(s)|| f (s)||Bs

p,r ds,
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with

Ṽp(t) :=


∫ t

0
∥∇v(τ)∥

B
n
p
p,∞

⋂
L∞

dτ, if s < 1 +
n
p

;∫ t

0
∥∇v(τ)∥Bs−1

p,r
dτ, if s > 1 +

n
p

or s = 1 +
n
p
, r = 1.

(2) If s > 0, then there exists a constant C = C(n, p, r, s) such that

|| f (t)||Bs
p,r ≤ || f0||Bs

p,r +

∫ t

0
||g(τ)||Bs

p,r dτ

+C
∫ t

0

(
|| f (τ)||Bs

p,r ||∇v(τ)||L∞ + ||∇v(τ)||Bs
p,r || f (τ)||L∞)dτ.

(2.3)

(3) If r < ∞, then f ∈ C([0, T ]; Bs
p,r(R

n)); and if r = ∞, then f ∈ C([0, T ]; Bs′
p,1(Rn)) for all s′ < s.

(4) If v = f and s > 0, the inequality in (1) holds true with Ṽ ′p(t) := ∥∇v(t)∥L∞ .

Next, we introduce some useful properties of the Besov spaces to prove Theorems 1.1-1.2 as
follows:

Lemma 2.3. (See Proposition 1.3.5 in [21]) Assume that s ∈ R, 1 ≤ p, r, pi, ri ≤ ∞ (i = 1, 2). We get:
(1) Bs

p,r is a Banach space which is continuously embedded in S′.
(2) If r < ∞, then limq→∞ ||S qu − u||Bs

p,r = 0. The space C∞c is dense in Bs
p,r if and only if p, r < ∞.

(3) If p1 ≤ p2, r1 ≤ r2, then Bs
p1,r1
↪→ B

s−n( 1
p1
− 1

p2
)

p2,r2 . If s > n
p or s = n

p , r = 1, we have Bs
p,r ↪→ L∞.

(4) For s > 0, Bs
p,r∩L∞ is an algebra. Furthermore, Bs

p,r is an algebra, provided that s > n
p or s ≥ n

p
and r = 1.

(5) Fatou lemma: If (un)n∈N is bounded in Bs
p,r and un → u in S′, then u ∈ Bs

p,r and

||u||Bs
p,r ≤ lim inf

n→∞
∥un∥Bs

p,r
.

(6) Let m ∈ R and f be an S m-multiplier (i.e., f : Rn → R is a smooth function and satisfies that
∀α ∈ Nn, there exists a constant Cα, s.t. |∂α f (ξ)| ≤ Cα(1 + |ξ|m−|α|), ∀ξ ∈ Rd). Then the operator
f (D) = F −1( fF ) is continuous from Bs

p,r to Bs−m
p,r .

Lemma 2.4. (See Corollary 2.86 in [20]) Let 1 ≤ p, r ≤ +∞, and the following estimates hold:
(i) For s > 0,

|| f g||Bs
p,r ≤ C(|| f ||Bs

p,r ||g||L∞ + ||g||Bs
p,r || f ||L∞);

(ii) For all s1 ≤
n
p < s2 (s2 ≥

n
p if r = 1) and s1 + s2 > 0, we have

|| f g||Bs1
p,r
≤ C|| f ||Bs1

p,r
||g||Bs2

p,r
;

(iii) If s > n
p or s = n

p , r = 1, we get

|| f g||Bs
p,r ≤ C|| f ||Bs

p,r ||g||Bs
p,r .

Now we describe two available interpolation inequalities.
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Lemma 2.5. (See Theorem 2.80 and Corollary 2.86 in [20]) (1) Complex interpolation: If s1 < s2,
θ ∈ (0, 1), and 1 ≤ p, r ≤ ∞, then we get

||u||Bθs1+(1−θ)s2
p,r

≤ C||u||θ
Bs1

p,r
||u||1−θ

Bs2
p,r
, ∀u ∈ Bs1

p,r ∩ Bs2
p,r,

and
||u||Bθs1+(1−θ)s2

p,1
≤

C
s1 − s2

(1
θ
+

1
1 − θ

)
||u||θ

Bs1
p,r
||u||1−θ

Bs2
p,r
.

(2) If s ∈ R, ϵ > 0, and 1 ≤ p ≤ ∞, there exists a constant C > 0 such that

∥u∥Bs
p,1
≤ C
ϵ + 1
ϵ
∥u∥Bs

p,∞

(
1 + log

∥u∥Bs+ϵ
p,∞

∥u∥Bs
p,∞

)
.

Lemma 2.6. (See Lemma 2.100 in [20]) Let σ > 0, 1 ≤ r ≤ ∞, and 1 ≤ p ≤ p1 ≤ ∞. Let v be a vector
field over R. Then the following estimates hold:

∥(2 jσ∥[v∂x,∆ j] f ∥Lp) j∈N∥lr ≤ C(∥vx∥L∞∥ f ∥Bσp,r + ∥ fx∥Lp2 ∥v∥Bσ−1
p1 ,r

),

where 1
p =

1
p1
+ 1

p2
. In addition, if σ < 1, we have

∥(2 jσ∥[v∂x,∆ j] f ∥Lp) j∈N∥lr ≤ C∥vx∥L∞∥ f ∥Bσp,r .

We also need to present the Osgood lemma, which is a generalization of the Gronwall lemma.

Lemma 2.7. (See Lemma 3.4 in [20]) Let ρ be a measurable function from [t0, T ] to [0, c], γ be a
locally integrable function from [t0, T ] to R+, and µ be an increasing continuous function from [0, c] to
R+. Suppose that

ρ(t) ≤ a +
∫ t

t0
γ(s)µ(ρ(s))ds, for some a ≥ 0.

(1) If a > 0, then we have

−M(ρ(t)) +M(a) ≤
∫ t

t0
γ(s)ds, M(x) ≜

∫ c

x

1
µ(r)

dr.

(2) If a = 0 and µ satisfy the condition
∫ c

0
dr
µ(r)dr = +∞, then ρ ≡ 0.

Remark 2.1. If µ(r) = r(1 − ln r), r ∈ [0, 1], we haveM = ln(1 − ln x), and ρ(t) ≤ ece
−

∫ t
t0
γ(t′)dt′

with
c > 0.

Finally, we introduce the Sobolev-Gevrey spaces and some basic properties to study the analytic
solution.

Definition 2.2. (See (1.10) in [22]) A function u ∈ Gδσ,s(R
d) if and only if

∥u∥Gδσ,s(Rd) =
( ∫

Rd
(1 + |ξ|2)se2δ|ξ|

1
σ
|û|2dξ

)
< ∞, u ∈ C∞(Rd), (2.4)

where κ, s > 0 and s is a real number. Furthermore, when 0 < δ′ < δ, 0 < σ′ < σ, and s′ < s, we can
find Gδσ,s(R

d) ↪→ Gδ
′

σ,s(R
d), Gδσ′,s(R

d) ↪→ Gδσ,s(R
d), Gδσ,s(R

d) ↪→ Gδσ,s′(R
d).
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Remark 2.2. For periodic domains, the Sobolev-Gevrey norm can be defined as:

||u||Gδσ,s(T) =

(∑
k∈Z

(1 + |k|2)se2δ|k|
1
σ
|û(k)|2

) 1
2

= ||eδ(−∆)
1

2σ u||Hs(T).

For our Gevrey regularity analysis of (1.1), the following generalized Ovsyannikov theorem is
fundamental.

Lemma 2.8. (See Theorem 3.1 in [23] and Theorem 3.1 in [24]) Let {Xδ}0<δ<1 be a scale of decreasing
Banach spaces, namely, we have Xδ ⊂ X′δ with ∥ · ∥δ′ < ∥ · ∥δ for any δ < δ′. Consider the Cauchy
problem { du

dt = F(t, u(t)),
u|t=0 = u0.

(2.5)

Let T,R > 0 and σ ≥ 1. For given u0 ∈ X1, assume that F satisfies the following conditions:
(i) For 0 < δ′ < δ < 1, the function t 7−→ u(t) is holomorphic in |t| < T and continuous on |t| < T with
values in Xs and

sup
|t|<T
∥u(t)∥δ < R,

and then t 7−→ F(t, u(t)) is a holomorphic function on |t| < T with values in Xδ′ .
(ii) For any 0 < δ′ < δ < 1 and any u, v ∈ B(u0,R) ⊂ Xδ, there exists a positive constant L depending
on u0 and R such that

sup
|t|≤T
∥F(t, u) − F(t, v)∥δ′ <

L
(δ − δ′)σ

∥u − v∥δ.

(iii) There exists an M > 0 depending on u0 and R such that for any 0 < δ < 1,

sup
|t|≤T
∥F(t, 0)∥δ ≤

M
(1 − δ)σ

.

Then the Cauchy problem (2.5) has a T0 ∈ (0, T ) and a unique solution u(t), which is holomorphic in
|t| < Dσ

(1−δ)σT0
2σ+1 with values in Xδ for every δ ∈ (0, 1).

Remark 2.3. In particular, T0 = min
{

1
22σ+4L ,

2σ+1R
2σ+122σ+3LR+MDσ

}
, which gives a lower bound of the lifespan,

where Dσ = 1

2σ−2+ 2
σ+1

.

Remark 2.4. Whenσ = 1, Lemma 2.8 becomes equivalent to the classical abstract Cauchy-Kovalevsky
theorem.

Lemma 2.9. (See Proposition 2.5 in [23]) For s > 1
2 , σ ≥ 1, and δ > 0, there is an algrbra for Gδσ,s

and there is a constant Cs such that

∥uu′∥Gδσ,s ≤ Cs∥u∥Gδσ,s∥u
′∥Gδσ,s . (2.6)

Proof. The proof of this theorem can be found in Proposition 2.5 of [23]. For the reader’s convenience,
the detailed process is provided below.
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Since f̂ g = f̂ ∗ ĝ, it follows that

||uu′||2Gδσ,s =
∫

(1 + |ξ|2)se2δ|ξ|
1
σ
|û ∗ û′|2dξ

=

∫
(1 + |ξ|2)s

∣∣∣∣∣∫ eδ|ξ|
1
σ û(η)û′(ξ − η) dη

∣∣∣∣∣2 dξ

≤

∫
(1 + |ξ|2)s

∣∣∣∣∣∫ eδ|ξ−η|
1
σ eδ|η|

1
σ û(η)û′(ξ − η)dη

∣∣∣∣∣2 dξ (Here we use the fact that σ ≥ 1).

=

∫
(1 + |ξ|2)s

∣∣∣∣∣F (
eδ(−∆)

1
2σ u

)
∗ F

(
eδ(−∆)

1
2σ u′

)∣∣∣∣∣2 dξ

=

∥∥∥∥∥(eδ(−∆)
1

2σ u
)
·

(
eδ(−∆)

1
2σ u′

)∥∥∥∥∥2

Hs

≤ Cs

∥∥∥∥∥eδ(−∆)
1

2σ u
∥∥∥∥∥2

Hs

∥∥∥∥∥eδ(−∆)
1

2σ u′
∥∥∥∥∥2

Hs
(Here we use the fact that s >

1
2

).

= Cs||u||2Gδσ,s ||u
′||2Gδσ,s
.

(2.7)

□

Lemma 2.10. (See Proposition 2.6 in [23]) Suppose that s > 1
2 , σ ≥ 1, and δ > 0, and there exists a

constant C′s such that ∥uu′∥Gδ
σ,s−1
≤ C′s∥u∥Gδσ,s−1

∥u′∥Gδσ,s .

Proof. While the proof of this theorem is available in Proposition 2.6 of [23], it is reproduced here for
the convenience of the reader.

By a similar argument as in Lemma 2.9, we obtain

||uu′||2Gδ
σ,s−1
≤

∥∥∥∥∥(eδ(−∆)
1

2σ u
)
·

(
eδ(−∆)

1
2σ u′

)∥∥∥∥∥2

Hs−1
. (2.8)

Using the fact that ∥ab∥Hs−1 ≤ Cs∥a∥Hs−1∥b∥Hs if s > 1
2 , we get∥∥∥∥∥(eδ(−∆)

1
2σ u

)
·

(
eδ(−∆)

1
2σ u′

)∥∥∥∥∥2

Hs−1
≤ C′s

∥∥∥∥∥eδ(−∆)
1

2σ u
∥∥∥∥∥2

Hs−1

∥∥∥∥∥eδ(−∆)
1

2σ u′
∥∥∥∥∥2

Hs

= C′s||u||
2
Gδ
σ,s−1
||u′||2Gδσ,s .

(2.9)

□

Lemma 2.11. (See Proposition 2.4 in [23]) When σ > 0, s > 0, and 0 < δ′ < δ, we can have

∥ux∥Gδ′σ,s ≤
e−σσσ

(δ − δ′)σ
∥u∥Gδσ,s , (2.10)

where s is a real number and u ∈ Gδσ,s.

The proof of Theorem 1.4 employs a fixed-point argument in a suitable Banach space. We now
define a new such space.
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Definition 2.3. (See Definition 3.4 in [23]) Let σ ≥ 1. For any a > 0, we denote by Ea the function
space consisting of Xδ-valued holomorphic and continuous functions u(t), defined for all 0 < δ < 1
and |t| < a(1−δ)σDσ

2σ−1 , where Dσ = 2σ−2+ 1
2σ+1 . The norm in this space is given by:

∥u∥ET := sup
|t|< a(1−δ)σ

2σ−1

∥u(t)∥Gσ,sδ (1 − δ)σ
√

1 −
|t|

a(1 − δ)σ

 < +∞.
The proof of Theorem 1.4 will rely on the following crucial lemma.

Lemma 2.12. (See Lemma 3.7 in [23] and Lemma 3.7 in [24]) Let σ ≥ 1. For any a > 0, u ∈ Ea,
0 < δ < 1, and 0 ≤ t < a(1−δ)σ

2σ+1 Dσ with Dσ = 1

2σ−2+ 2
σ+1

, the following estimate holds:

∫ t

0

∥u(τ)∥δ(τ)
(δ(τ) − δ)σ

dτ ≤
a22δ+3∥u∥Ea

(1 − δ)σ

√
a(1 − δ)σ

a(1 − δ)σ − t
,

where the intermediate parameter δ(τ) is given by

δ(τ) =
1
2

(1 + δ) +
(
1
2

)2+ 1
σ
([

(1 − δ)σ −
t
a

] 1
σ

−

[
(1 − δ)σ + (2σ+1 − 1)

t
a

] 1
σ

)
∈ (0, 1).

The above constitutes all the properties required for this article. Lemmas 2.1–2.7 concern the
properties in Besov spaces used in proving Theorems 1.1-1.2, while the latter part, Lemmas 2.8–2.12,
contains the properties necessary for the proofs of Theorems 1.3-1.4.

3. Local well-posedness

The purpose of this section is to establish the existence, uniqueness, and continuity of strong local
solutions to Eq (1.1). To utilize the transport theory, we first need to rewrite Eq (1.1) in the following
equivalent form: 

ut = auvp−1∂xu + ∂−1
x u, x ∈ T, t ∈ R,

vt = bvuq−1∂xv + ∂−1
x v, x ∈ T, t ∈ R,

u(x, 0) = u0, x ∈ T, t = 0,
v(x, 0) = v0, x ∈ T, t = 0,

(3.1)

where the inverse derivative operator ∂−1
x is a mean-zero, 2π-periodic pseudo differential operator. The

exact definition is as follows:

∂−1
x f (x) �

∫ x

0
f (y)dy −

x
2π

∫ 2π

0
f (y)dy

−
1

2π

∫ 2π

0

[ ∫ y

0
f (x)dx −

y
2π

∫ 2π

0
f (x)dx

]
dy.

(3.2)

Moreover, in [25], we can find ||∂−1
x f ||Bs

2,r
≤ || f ||Bs−1

2,r
.
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Proof of Theorem 1.1. First step: existence of a local solution.
We let u0 = v0 ≜ 0 and develop a sequence of smooth functions (un, vn)n∈N, which serve as smooth

approximations to the solutions of the following linear transport system:

Tn


(∂t − aunvp−1

n ∂x)un+1 = ∂
−1
x un,

(∂t − bvnuq−1
n ∂x)vn+1 = ∂

−1
x vn,

un+1(0) = Φn+1u(0), vn+1(0) = Φn+1v(0).
(3.3)

Based on ||∂−1
x un||

B
3
2
2,1

≤ ||un||
B

1
2
2,1

, we use Lemma 2.2 for system (3.3) to get

||un+1||
B

3
2
2,1

≤ e
C

∫ t
0 ||∂x(unvp−1

n )(τ)||
B

1
2
2,1

dτ

||Φn+1u(0)||
B

3
2
2,1

+ c
∫ t

0
e

C
∫ t
τ
||∂x(unvp−1

n )(τ′)||
B

1
2
2,1

dτ′

||un||
B

3
2
2,1

dτ,

and

||vn+1||
B

3
2
2,1

≤ e
C

∫ t
0 ||∂x(vnuq−1

n )(τ)||
B

1
2
2,1

dτ

||Φn+1v(0)||
B

3
2
2,1

+ c
∫ t

0
e

C
∫ t
τ
||∂x(vnup−1

n )(τ′)||
B

1
2
2,1

dτ′

||vn||
B

3
2
2,1

dτ.

Hence, we have

||un+1||
B

3
2
2,1

+ ||vn+1||
B

3
2
2,1

≤ e
C

∫ t
0 (||un ||

B
3
2
2,1

||vn ||
p−1

B
3
2
2,1

+||vn ||
B

3
2
2,1

||un ||
q−1

B
3
2
2,1

)dτ

(||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)

+Cs

∫ t

0
e

C
∫ t
τ

(||un ||
B

3
2
2,1

||vn ||
p−1

B
3
2
2,1

+||vn ||
B

3
2
2,1

||un ||
q−1

B
3
2
2,1

)dτ′

(||un||
B

3
2
2,1

+ ||vn||
B

3
2
2,1

)dτ.

Let m = max{p, q}, and we deduce

||un||
B

3
2
2,1

||vn||
p−1

B
3
2
2,1

+ ||vn||
B

3
2
2,1

||un||
q−1

B
3
2
2,1

≤ (1 + ||un||
B

3
2
2,1

+ ||vn||
B

3
2
2,1

)m,

and
||un||

B
3
2
2,1

+ ||vn||
B

3
2
2,1

≤ (1 + ||un||
B

3
2
2,1

+ ||vn||
B

3
2
2,1

)m+1.

So we get

1 + ||un+1||
B

3
2
2,1

+ ||vn+1||
B

3
2
2,1

≤ e
C

∫ t
0 (1+||un ||

B
3
2
2,1

+||vn ||
B

3
2
2,1

)mdτ)

(1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)

+ Cs

∫ t

0
e

C
∫ t
τ

(1+||un ||
B

3
2
2,1

+||vn ||
B

3
2
2,1

)mdτ′

(1 + ||un||
B

3
2
2,1

+ ||vn||
B

3
2
2,1

)m+1dτ.

(3.4)

AIMS Mathematics Volume 10, Issue 10, 23958–23983.



23968

We can choose a T > 0 such that 0 < T < 3
8Cm(1+||u0 ||

B
3
2
2,1

+||v0 ||
B

3
2
2,1

)m , and assume that

1 + ||un||
B

3
2
2,1

+ ||vn||
B

3
2
2,1

≤

C(1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)

[1 − 2Cmt(1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)m]
1
m

.

Therefore, we have∫ t

τ

(1 + ||un||
B

3
2
2,1

+ ||vn||
B

3
2
2,1

)mdτ ≤ −
1

2Cm
ln

1 − 2mCt(1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)m

1 − 2mCτ(1||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)m . (3.5)

We also obtain∫ t

0
(1 + ||un||

B
3
2
2,1

+ ||vn||
B

3
2
2,1

)mdτ ≤ −
1

2Cm
ln{1 − 2mCt(1 + ||u0||

B
3
2
2,1

+ ||v0||
B

3
2
2,1

)m}. (3.6)

So we calculate

1 + ||un+1||
B

3
2
2,1

+ ||vn+1||
B

3
2
2,1

≤

1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

[1 − 2Cmt(1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)m]
1

2m

+C
∫ t

0

(1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)m+1

[1 − 2Cmτ(1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)m]1+ 1
m

×

[ 1 − 2mCt(1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)m

1 − 2Cmτ(1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)m

] −1
2m

dτ

≤

1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1[

1 − 2Cmt(1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)m
] 1

2m

+
C[

1 − 2Cmt(1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)m
] 1

2m

×

∫ t

0

(1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)m+1

[
1 − 2Cmτ(1 + ||u0||

B
3
2
2,1

+ ||v0||
B

3
2
2,1

)m
] 2m+1

2m

dτ

≤

1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1[

1 − 2Cmt(1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)m
] 1

2m

+

1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

−2m
[
1 − 2Cmt(1 + ||u0||

B
3
2
2,1

+ ||v0||
B

3
2
2,1

)m
] 1

2m

×

∫ t

0

d(1 − 2Cmt(1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)m)[
1 − 2Cmτ(1 + ||u0||

B
3
2
2,1

+ ||v0||
B

3
2
2,1

)m
] 2m+1

2m

dτ

≤

1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1[

1 − 2Cmt(1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)m
] 1

2m

+

1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1[

1 − 2Cmt(1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)m
] 1

2m
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×

( 1[
1 − 2Cmt(1 + ||u0||

B
3
2
2,1

+ ||v0||
B

3
2
2,1

)m
] 1

2m

− 1
)

≤ (1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)
[
1 − 2Cmt(1 + ||u0||

B
3
2
2,1

+ ||v0||
B

3
2
2,1

)m
] −1

2m

+ (1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)
[
1 − 2Cmt(1 + ||u0||

B
3
2
2,1

+ ||v0||
B

3
2
2,1

)m
] −1

m

− (1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)
[
1 − 2Cmt(1 + ||u0||

B
3
2
2,1

+ ||v0||
B

3
2
2,1

)m
] −1

2m

≤ (1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)
[
1 − 2Cmt(1 + ||u0||

B
3
2
2,1

+ ||v0||
B

3
2
2,1

)m
] −1

m

. (3.7)

We have thus established that the sequence (un, vn)n≥1 is uniformly bounded in the space
C([0, T ]; B

3
2
2,1(T)). Given this uniform bound for (un, vn) and the Banach algebra property of B

3
2
2,1(T),

we can infer that the terms aunvp−1
n ∂xun+1, bvnup−1

n ∂xvn+1, ∂−1
x u, and ∂−1

x v belong to C([0,T ]; B
3
2
2,1(T)).

Together with the linear equation Tn, this implies that (∂tun+1, ∂tvn+1) ∈ C([0, T ]; B
3
2
2,1(T))).

Consequently, we conclude that (un, vn) ∈ E
3
2
2,1(T)) for all n ∈ N+.

Second step: convergence of the approximate solutions.
We claim that the approximation solutions (un, vn)n≥1 is a Cauchy sequence in larger Banach spaces

C([0, T ]; B
1
2
2,∞)(T). For this purpose, given any (m, n) ∈ N+ × N+, we get from equation (Tn) that



∂t(un+k+1 − un+1) − an+kun+kv
p−1
n+k∂x(un+k+1 − un+1)

− (an+kv
p−1
n+k − anunvp−1

n )∂xun+1 = ∂
−1
x (un+k − un),

∂t(vn+k+1 − un+1) − bn+1vn+ku
q−1
m+n∂x(vn+k+1 − un+1)

− (an+ku
q−1
n+k − anvnup−1

n )∂xvn+1 = ∂
−1
x (vn+k − vn),

(un+k+1 − un+1)(0, x) = Φn+k+1u0 − Φn+1u0,

(vn+k+1 − vn+1)(0, x) = Φn+k+1v0 − Φn+1v0.

(3.8)

We have already obtained that the smooth approximation un of (3.3) is uniformly bounded in E
3
2
2,1. The

uniform bound (3.7) and B
1
2
2,1 ↪→ B

1
2
2,∞ yield that for 0 ≤ t ≤ T < 3

8Cm(1+||u0 ||
B

3
2
2,1

+||v0 ||
B

3
2
2,1

)
1
m

,

||(un+k+1 − un+1)(t)||
B

3
2
2,∞

≤ ||un+k+1(t)||
B

3
2
2,1

+ ||un+1(t)||
B

3
2
2,1

≤

2C(1 + ||u0||
B

3
2
2,∞

+ ||v0||
B

3
2
2,∞

)

[1 − 2Cmt(1 + ||u0||
B

3
2
2,∞

+ ||v0||
B

3
2
2,∞

)m]
1
m

≤ 2C(1 + ||u0||
B

3
2
2,∞

+ ||v0||
B

3
2
2,∞

) := M.

(3.9)
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Similarly, we also derive ||(vn+m+1 − vn+1)(t)||
B

3
2
2,∞

≤ M. In particular, ||un(t)||
B

3
2
2,∞

≤ 2C(1 + ||u0||
B

3
2
2,∞

+

||v0||
B

3
2
2,∞

). Next, we use Lemma 2.2 for Eq (3.8) to get

||(un+k+1 − un+1)(t)||
B

1
2
2,∞

≤ e
C

∫ t
0 ||∂x(anun+kvp−1

n+k )||
B

1
2
2,∞∩L∞

dτ

||Φn+k+1u0 − Φn+1u0||
B

1
2
2,∞

+C
∫ t

0
e

c
∫ t
τ
||∂x(anun+kvp−1

n+k )||
B

1
2
2,∞∩L∞dτ′||∂−1

x (un+k − un)||
B

1
2
2,∞

.

(3.10)

Next, we estimate the terms on the right-hand side of the above inequality (3.10). According to the
uniform bound for approximations, we deduce for any 0 ≤ τ ≤ t ≤ T ,∫ t

τ

||∂x(anun+kv
p−1
n+k )||

B
1
2
2,∞∩L∞

dr ≤ C
∫ t

τ

||un+kv
p−1
n+k ||B

3
2
2,∞∩Lip

dr

≤ C
∫ t

τ

||un+k||
B

3
2
2,1

||vn+k||
p−1

B
3
2
2,1

dr

≤ C
∫ t

τ

(1 + ||un+k||
m

B
3
2
2,1

+ ||vn+k||
m

B
3
2
2,1

)dr

≤ CT +
∫ T

0

Cm+1(1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)m

1 − 2Cmr(1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)m dr

≤
3C

8mCm(1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

+ 4Cm+1(1 + ||u0||
B

3
2
2,1

+ ||v0||
B

3
2
2,1

)m

< ∞.

(3.11)

Besides, referring to the definition of the cut-off low frequency operator,

||Φn+k+1u0 − Φn+1u0||
B

3
2
2,∞

≤ C||
∑

n+1≤k≤n+k

∆ku0||
B

3
2
2,1

≤ C
∑
j≥−1

2
1
2 j||∆ j(

∑
n+1≤k≤n+k

∆ku0)||L2

≤ C
∑

n≤ j≤k+n+1

2− j2 j(1+ 3
2 )(||∆ jΦn+k+1u0||L2 + ||∆ jΦn+1u0||L2)

≤ C2−n
∑

n≤ j≤k+n+1

2 j(1+ 3
2 )||∆ ju0||L2

= C2−n||u0||
B

3
2
2,1

,

(3.12)

where we have used ∆ jΦi = Φi∆ j and if | j − i| ≥ 2, ∆ j∆i = 0. Next, we estimate the remaining terms,

||∂−1
x (un+k − un)||

B
1
2
2,∞

≤ ||un+k − un||
B

1
2
2,1

. (3.13)
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Hence, we obtain

||un+k+1 − un+1||
B

1
2
2,1

≤ C2−n||u0||
B

1
2
2,1

+C
∫ t

0
||un+k − un||

B
1
2
2,1

dτ

≤ CM2−n +C
∫ t

0
||un+k − un||

B
1
2
2,1

.

(3.14)

We aim to use the logarithmic interpolation inequality on un+m − un to derive

||un+k − un||
B

1
2
2,1

≤ C||un+k − un||
B

1
2
2,∞

ln(e +
||un+k − un||

B
3
2
2,∞

||un+k − un||
B

1
2
2,∞

). (3.15)

Similarly, we also derive

||vn+k − vn||
B

1
2
2,1

≤ C||vn+k − vn||
B

1
2
2,∞

ln(e +
||vn+k − vn||

B
3
2
2,∞

||vn+k − vn||
B

1
2
2,∞

). (3.16)

For convenience, we introduce the following notation:

Dn,k = ||(un+k − un)(t)||
B

1
2
2,∞

+ ||(vn+k − vn)(t)||
B

1
2
2,∞

,

Dn(t) = sup
k∈N+

Dn,k(t),D(t) = lim sup
n→∞

Dn(t),
(3.17)

and this leads to the conclusion from (3.14) that

Dn+1(t) ≤ CM2−n +C
∫ t

0
Dn(τ) ln(e +

M
Dn(τ)

)dτ. (3.18)

According to the definite of D(t), ∀ε > 0, ∃N = N(ε) > 0 such that Dn(t) < D(t)+ ε for n > N. Hence,

Dn+1(t) ≤ CM2−n +C
∫ t

0
(D(τ) + ε) ln(e +

M
D(τ) + ε

)dτ.

First, take the supremum over n, and then let n approach 0. We can deduce from the previous inequality
that

D(t) ≤ C
∫ t

0
D(τ) ln(e +

M
D(τ)

)dτ,

where if x ∈ (0,M], µx = x ln(e + M
x ), when x = 0, µ(x) = 0. Note that

∫ M

0
1

x ln(e+M
x )

dx =
∫ +∞

1
dy

y ln(e+y) =

+∞. Based on the Osgood lemma, D(t) = 0, t ∈ (0,T ], so lim supn→∞ Dn(t) ≤ lim supn→∞ Dn(t) = 0

This shows limn→∞ Dn(t) = 0, so (un, vn)n≥1 is the Cauchy sequence in C([0, T ]; B
1
2
2,∞). Next, we prove

that the approximate solution {un}n≥1 converges strongly to the space C([0, T ]; B
1
2
2,1). If 0 < ε < 1,

θ ∈ (0, 1) such that 1
2 + ε =

θ
2 +

3
2 (1 − θ). Because B

1
2+ε

2,1 ↪→ B
1
2
2,1 for ε > 0, we can apply Lemma 2.5 to
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get

||un+k+1 − un+1||
B

1
2
2,1

≤ ||un+k+1 − un+1||
B

1
2 +ε
2,1

≤ C(
1
θ
+

1
1 − θ

)||un+k+1 − un+1||
θ

B
1
2
2,∞

||un+k+1 − un+1||
1−θ

B
3
2
2,∞

≤ C(
1
θ
+

1
1 − θ

)M1−θ||un+k+1 − un+1||
θ

B
1
2
2,1

→ 0, n, k → ∞,

(3.19)

and

||vn+k+1 − vn+1||
B

1
2
2,1

→ 0, n, k → ∞, (3.20)

where the last limitation is based on the fact that (un(t), vn(t))n≥1 forms a Cauchy sequence in B
1
2
2,∞, as

demonstrated previously. As a consequence, we have shown that (un(t), vn(t))n≥1 is a Cauchy sequence
in C([0, T ]; B

1
2
2,1), which implies that there exists a function u such that (un, vn) converges strongly to

(u, v) in C([0, T ]; B
1
2
2,1) as n approaches infinity. Taking the limit as n→ ∞ in (3.3), we confirm that the

element is a valid solution to the Eq (1.1). Furthermore, due to the algebraic property of B
1
2
2,1, it is not

hard to confirm that auvp−1∂xu, ∂−1
x u, bvuq−1∂xv, ∂−1

x v together with Eq (1.1) itself imply that ∂tu, ∂tv

belongs to C([0, T ]; B
1
2
2,1). Therefore, we have demonstrated that the solution (u, v) belongs to E

3
2
2,1(T ).

This completes the proof of the existence part of Theorem 1.1.

Third step: uniqueness and stability. Suppose that (u, v) and (ũ, ṽ) are solutions for Eq (1.1) with
the same initial data (u0, v0). Let w = u − ũ, z = v − ṽ, and the solution (w, z) satisfies the following
equations: 

∂tw = auvp−1∂xw + (auvp−1 − aũṽp−1)∂xũ + ∂−1
x w,

∂tz = bvuq−1∂xz + (bvuq−1 − bṽũq−1)∂xṽ + ∂−1
x z,

w(x, 0) = u0 − ũ0,

z(x, 0) = v0 − ṽ0.

(3.21)

By utilizing the a priori estimate for the linear transport equation in Besov spaces to the above system,
we obtain 

||w(t)||
B

1
2
2,∞

≤ ecη(t)(||w0||
B

1
2
2,∞

+
∫ t

0
e−cη(τ)||E(t, x)||

B
1
2
2,∞

dτ),

||z(t)||
B

1
2
2,∞

≤ ecI(t)(||z0||
B

1
2
2,∞

+
∫ t

0
e−cI(τ)||F(t, x)||

B
1
2
2,∞

dτ),
(3.22)

where η(t) =
∫ t

0
||∂x(auvp−1)||

B
1
2
2,∞∩L∞

dτ, I(t) =
∫ t

0
||∂x(bvuq−1)||

B
1
2
2,∞∩L∞

dτ, E(t, x) = (auvp−1−aũṽp−1)∂xũ+

∂−1
x w, and F(t, x) = (bvuq−1 − bṽũq−1)∂xṽ + ∂−1

x z. Based on B
3
2
2,1 ⊂ Lip and B

3
2
2,1 ⊂ B

3
2
2,∞, we have

||∂x(auvp−1)||
B

1
2
2,∞∩L∞

+ ||∂x(bvuq−1)||
B

1
2
2,∞∩L∞

≤ C(1 + ||u||
B

3
2
2,1

+ ||v||
B

3
2
2,1

)m. (3.23)
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Next, the estimates for the terms E(t, x) and F(t, x) are obtained by using the space B
1
2
2,1 ∩ L∞ as a

Banach algebra;

||E(t, x)||
B

1
2
2,∞

= ||[au(vp−1 − ṽp−1) + a(u − ũ)ṽp−1]∂xũ||
B

1
2
2,∞

+ ||∂−1
x w||

B
1
2
2,∞

= ||[au(vp−1 − ṽp−1) + awṽp−1]∂xũ||
B

1
2
2,∞

+ ||w||
B

1
2
2,1

≤ c||u(vp−1 − vp−1)∂xũ||
B

1
2
2,1

+ ||wṽp−1∂xũ||
B

1
2
2,1

+ ||w||
B

1
2
2,1

≲ ||u||
B

1
2
2,1

||ũ||
B

3
2
2,1

||z||
B

1
2
2,1

p−2∑
i=1

||v||i
B

1
2
2,1

||ṽ||p−2−i

B
1
2
2,1

+ ||w||
B

1
2
2,1

||ṽ||p−1

B
1
2
2,1

||ũ||
B

3
2
2,1

+ ||w||
B

1
2
2,1

,

(3.24)

and

||F(t, x)||
B

1
2
2,∞

≲ ||v||
B

1
2
2,1

||ṽ||
B

3
2
2,1

||w||
B

1
2
2,1

p−2∑
i=1

||u||i
B

1
2
2,1

||ũ||p−2−i

B
1
2
2,1

+ ||z||
B

1
2
2,1

||ũ||p−1

B
1
2
2,1

||ṽ||
B

3
2
2,1

+ ||z||
B

1
2
2,1

.

(3.25)

We let Ψ = (w, z) and ||Ψ(t)|| = ||w(t)|| + ||z(t)||, so we get

||Ψ(t)||
B

1
2
2,∞

≤ e
c
∫ t

0 (1+||u||
B

3
2
2,1

+||v||
B

3
2
2,1

)mdτ(
||Ψ0||

B
1
2
2,∞

+ c
∫ t

0
e
−c

∫ τ
0 (1+||u||

B
3
2
2,1

+||v||
B

3
2
2,1

)mdτ

Γ(τ) × ||Ψ(τ)||
B

1
2
2,1

dτ
)
,

(3.26)

where

Γ(τ) = ||u||
B

1
2
2,1

||ũ||
B

3
2
2,1

p−2∑
i=1

||v||i
B

1
2
2,1

||ṽ||p−2−i

B
1
2
2,1

+ ||ṽ||p−1

B
1
2
2,1

||ũ||
B

3
2
2,1

+ 2

+ ||v||
B

1
2
2,1

||ṽ||
B

3
2
2,1

q−2∑
i=1

||u||i
B

1
2
2,1

||ũ||q−2−i

B
1
2
2,1

+ ||ũ||q−1

B
1
2
2,1

||ṽ||
B

3
2
2,1

≲ 4 + ||u||4
B

3
2
2,1

+ ||v||4
B

3
2
2,1

+ ||ũ||4
B

3
2
2,1

+ ||ṽ||4
B

3
2
2,1

+ (1 + ||v||
B

3
2
2,1

+ ||ṽ||
B

3
2
2,1

)2m

+ (1 + ||u||
B

3
2
2,1

+ ||ũ||
B

3
2
2,1

)2m + (1 + ||ũ||
B

3
2
2,1

+ ||ṽ||
B

3
2
2,1

)m ≜ A(τ).

(3.27)

Suppose that sup
t∈[0,T ∗]

H(τ) = sup
t∈[0,T ∗]

exp
(
− c

∫ t

0
(1 + ||u||

B
3
2
2,1

+ ||v||
B

3
2
2,1

)mdτ
)
||Ψ(t)||

B
1
2
2,∞

, and then from (3.26),

we arrive at

H(t) ≤ H(0) + c
∫ t

0
e
−c

∫ τ
0 (1+||u||

B
3
2
2,1

+||v||
B

3
2
2,1

)mdτ

(A(τ) × ||Ψ(τ)||
B

1
2
2,1

dτ). (3.28)

We use interpolation inequalities of Lemma 2.5 to obtain

||Ψ(τ)||
B

1
2
2,1

≤ ||Ψ(τ)||
B

1
2
2,∞

ln(e +
||Ψ(τ)||

B
3
2
2,∞

||Ψ(τ)||
B

1
2
2,∞

). (3.29)
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Since ||Ψ(τ)||
B

3
2
2,∞

≤ A(τ), we deduce

e
−c

∫ t
0 (||u||

B
1
2
2,1

||v||p−1

B
1
2
2,1

)dτ

||Ψ||
B

1
2
2,1

≤ e
−c

∫ t
0 (1+||u||

B
3
2
2,1

+||v||
B

3
2
2,1

)mdτ

(||Ψ||
B

1
2
2,∞

× ln(e +
||Ψ(t)||

B
3
2
2,∞

||Ψ(t)||
B

1
2
2,∞

))

≤ e
−c

∫ τ
0 (1+||u||

B
3
2
2,1

+||v||
B

3
2
2,1

)mdτ

(||Ψ||
B

1
2
2,∞

× ln(e +
A(τ)
||Ψ(t)||

B
1
2
2,∞

)

≤ H(τ) ln(e +A(τ))(1 − lnH(τ)),

(3.30)

where the final estimate relies on the inequality ln(e + a
x ) ≤ ln(e + a)(1 − ln x), which holds for all

x ∈ (0, 1] and any a > 0. Combining this with (3.28) , we derive

H(τ) ≤ H(0) + c
∫ t

0
H(τ)(1 − lnH(τ))A(τ) ln(e +A(τ))dτ. (3.31)

The following properties hold:
(1) The function µ(x) = x ln(1 − x) is positive and increasing on (0, 1].
(2) The solution (u, v) ∈ C([0,T ]; B

3
2
2,1) ensures that the function γ(t) := At ln(e +At) is continuous

(hence locally integrable) on [0, T ].
(3) The integral evaluates to

∫ 1

x
dr
µ(r) = ln(1 − ln x).

Under sup
t∈[0,T ∗]

H(t) ≤ 1, Osgood’s lemma (Lemma 2.7) gives

C
∫ t

0
A(τ) ln(e +A(τ))dτ ≤ ln(1 − lnH(0)) − ln(1 − lnH(t))

= ln
(
lnH(0) − 1
lnH(t) − 1

)
= ln

(
ln(H(0)/e)
ln(H(t)/e)

)
.

(3.32)

To analyze the stability of the data-to-solution mapping, we will utilize the following fundamental
lemma for the linear transport equation within the framework of Besov spaces.

Lemma 3.1. ( [26]) Assume that d ∈ N+, 1 ≤ p ≤ ∞, and {un}n≥1 is a sequence of functions belonging

to C
(
[0, T ]; B

1+ d
p

p,1
)
. Let un be a solution to{

∂tun + an · ∇un = h,
un(0, x) = u0(x),

(3.33)

with u0 ∈ B
d
p

p,1, h ∈ L1(0, T ; B
d
p

p,1
)
, and supn∈N+ ∥an∥

B
1+ d

p
p,1

≤ γ(t), for some γ ∈ L1(0, T ). If in addition an

tends to a∞ in L1(0, T ; B
d
p

p,1
)
, then un tends to u∞ in C

(
[0, T ]; B

d
p

p,1
)
.

Fourth step: the countinuous dependence. Assume that we are provided with (un, vn) and (u∞, v∞),
two solutions of Eq (1.1), with initial data (u0

n, v
0
n) and (u∞0 , v

∞
0 ) such that (un

0, v
n
0) converges to (u∞0 , v

∞
0 )

in B
3
2
2,1. The above steps ensure that (un, vn) and (u∞, v∞) are uniformly bounded in L∞([0, T ]; B

3
2
p,1), and

||un − u∞||B0
p,∞
+ ||vn − v∞||B0

p,∞
≤ C(||un

0 − u∞0 ||B
3
2
2,1

+ ||vn
0 − v∞0 ||B

3
2
2,1

).
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By applying the interpolation inequality, we deduce that (un, vn) converges to (u∞, v∞) in
C([0, T ]; B

3
2−δ

2,1 ) for δ > 0. Selecting δ = 1, we obtain an improved convergence result: (un, vn) →

(u∞, v∞) in C([0, T ]; B
1
2
2,1).

Next, to prove (un, vn) → (u∞, v∞) in C([0, T ]; B
3
2
2,1), it is sufficient to demonstrate the convergence

of (un
x, v

n
x)→ (u∞x , v

∞
x ) in C([0, T ]; B

1
2
2,1). For convenience, let zn = un

x, wn = vn
x, zn = ρn+θn, wn = gn+hn,

and (ρn, θn, gn, hn) satisfies 
∂tρ

n − aun(vn)p−1ρn
x = F∞,

∂tgn − bvn(un)q−1gn
x = f∞,

ρn(0, x) = u∞0x,

gn(0, x) = v∞0x.

(3.34)

In addition, 
∂tθ

n − aun(vn)p−1θnx = Fn − F∞,
∂thn − bvn(un)q−1hn

x = f n − f∞,
θn(0, x) = un

0x − u∞0x,

gn(0, x) = vn
0x − v∞0x,

(3.35)

where Fn = aunvnzn + un, f n = bvnunwn + vn. We define An = −aun(vn)p−1 and Bn = −bvn(un)q−1 to
deduce

||An||
B

1
2
2,1

≤ C||(un − u∞)(vn)p−1||
B

1
2
2,1

+ ||u∞(vn − v∞)
p=2∑
i=0

(vn)p−2−i(v∞)2||
B

1
2
2,1

≤ C(||un − u∞||
B

1
2
2,1

+ ||vn − v∞||
B

1
2
2,1

),
(3.36)

and

||Bn||
B

1
2
2,1

≤ C(||un − u∞||
B

1
2
2,1

+ ||vn − v∞||
B

1
2
2,1

). (3.37)

Hence, in light of the condition (un, vn)→ (u∞, v∞) in C([0, T ]; B
1
2
2,1), we find that (An, Bn)→ (A∞, B∞)

in L1([0, T ]; B
1
2
2,1) as n → ∞. By using Lemma 3.1, we gain (ρn, gn) → (ρ∞, g∞) in C([0, T ]; B

1
2
2,1), and

find that (An, Bn)→ (A∞, B∞) in L1([0, T ]; B
1
2
2,1).

In view of Lemma 2.2, we arrive at

||θn||
B

1
2
2,1

≤ e
c
∫ t

0 ||∂x(un(vn)p−1)||
B

1
2
2,∞

dτ

||un
0x − u∞0x||

B
1
2
2,1

+ c
∫ t

0
e

∫ t
τ
||∂x(un(vn)p−1)||

B
1
2
2,∞

dη

× ||Fn − F∞||
B

1
2
2,1

dτ,

(3.38)

where we have

Fn − F∞ = aunvnzn + un − (au∞v∞z∞ + u∞)
= aunvn(zn − z∞) + aun(vn − v∞)z∞ + a(un − u∞)v∞zn + un − u∞.

(3.39)
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Next, we need to deduce

||Fn − F∞||
B

1
2
2,1

≤ (||un||
B

1
2
2,1

||vn||
B

1
2
2,1

+ ||un||
B

1
2
2,1

||z∞||
B

1
2
2,1

+ ||v∞||
B

1
2
2,1

||zn||
B

1
2
2,1

+ 1)

× (||zn − z∞||
B

1
2
2,1

+ ||vn − v∞||
B

1
2
2,1

+ ||un − u∞||
B

1
2
2,1

)

≤ (1 + ||un||2

B
1
2
2,1

+ ||vn||2

B
1
2
2,1

+ ||u∞||2
B

3
2
2,1

+ ||v∞||2
B

1
2
2,1

+ ||un||2

B
3
2
2,1

)

× (||zn − z∞||
B

1
2
2,1

+ ||vn − v∞||
B

1
2
2,1

+ ||un − u∞||
B

1
2
2,1

)

≤ C(||un
x − u∞x ||

B
1
2
2,1

+ ||vn − v∞||
B

1
2
2,1

+ ||un − u∞||
B

1
2
2,1

).

(3.40)

Likewise, we have || f n − f∞||
B

1
2
2,1

≤ C(||vn
x − v∞x ||

B
1
2
2,1

+ ||vn − v∞||
B

1
2
2,1

+ ||un − u∞||
B

1
2
2,1

). Therefore, we deploy

||θn||
B

1
2
2,1

≤ C(||un
0x − u∞0x||

B
1
2
2,1

+

∫ t

0
||un

x − u∞x ||
B

1
2
2,1

+ ||vn
x − v∞x ||

B
1
2
2,1

+ ||vn − v∞||
B

1
2
2,1

+ ||un − u∞||
B

1
2
2,1

dτ)

≤ C(||un
0x − u∞0x||

B
1
2
2,1

+

∫ t

0
||θn||

B
1
2
2,1

+ ||ρn − ρ∞||
B

1
2
2,1

+ ||vn − v∞||
B

1
2
2,1

+ ||un − u∞||
B

1
2
2,1

dτ),

(3.41)

and

||hn||
B

1
2
2,1

≤ C(||vn
0x − v∞0x||

B
1
2
2,1

+

∫ t

0
||hn||

B
1
2
2,1

+ ||gn − g∞||
B

1
2
2,1

+ ||vn − v∞||
B

1
2
2,1

+ ||un − u∞||
B

1
2
2,1

dτ).
(3.42)

Applying the facts of (un, vn) → (u∞, v∞) in C([0,T ]; B
1
2
2,1), (un

0x, v
n
0x) → (u∞0x, v

∞
0x) in C([0,T ]; B

1
2
2,1),

and (ρn, gn) → (ρ∞, g∞) in C([0,T ]; B
1
2
2,1), we derive that (θn, hn) → 0 in C([0, T ]; B

1
2
2,1). Based on

Lemma 2.2, we get (θ∞, h∞) = 0 in C([0,T ]; B
1
2
2,1). Hence,

||zn − z∞||
L∞([0,T ];B

1
2
2,1)
+ ||wn − w∞||

L∞([0,T ];B
1
2
2,1)

≤ ||ρn − ρ∞||
L∞([0,T ];B

1
2
2,1)
+ ||θn − θ∞||

L∞([0,T ];B
1
2
2,1)

+ ||gn − g∞||
L∞([0,T ];B

1
2
2,1)
+ ||hn − h∞||

L∞([0,T ];B
1
2
2,1)

≤ ||ρn − ρ∞||
L∞([0,T ];B

1
2
2,1)
+ ||gn − g∞||

L∞([0,T ];B
1
2
2,1)

+ ||θn||
L∞([0,T ];B

1
2
2,1)
+ ||hn||

L∞([0,T ];B
1
2
2,1)
.

(3.43)

Therefore, we conclude that (un
x, v

n
x) → (u∞x , v

∞
x ) in C([0, T ]; B

1
2
2,1). In conclusion, the proof of the

Theorem 1.1 has been completed. □
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4. The Hölder continuity

In this section, we mainly focus on Hölder continuity. First, we need to deduce that the data-to-
solution map is Lipschitz continuous in the Besov space Bs−1

2,r .

Proof of Theorem 1.2. Let z1 = (u1, v1) and z2 = (u2, v2) be the solutions of Eq (1.1) with the initial
data z1(0) = (u1(0), v1(0)) ∈ B(0,R), z2(0) = (u2(0), v2(0)) ∈ B(0,R), and ũ = u1 − u2, ṽ = v1 − v2. Then
(ũ, ṽ) satisfies the equations{

ũt = au1vp−1
1 ∂xũ + (au1vp−1

1 − au2vp−1
2 )∂xu2 + ∂

−1
x ũ,

ṽt = bv1uq−1
1 ∂xṽ + (bv1uq−1

1 − bv1vq−1
1 )∂xv2 + ∂

−1
x ṽ.

(4.1)

Based on Lemma 2.2, the first equation of (4.1) yields

||ũ||Bs−1
2,r
≤ ||ũ(0)||Bs−1

2,r
ec

∫ t
0 I1(τ)dτ +CR

∫ t

0
ec

∫ t
τ

I(τ′)dτ′ ||ũ(τ)||Bs−1
2,r

dτ, (4.2)

where I1(t) = ||∂x(au1vp−1
1 )||Bs−1

2,r
and R is a constant which depends only on ||z1(0)||Bs

2,r
, ||z2(0)||Bs

2,r
, and p.

Multiplying the inequality by e−c
∫ t

0 I1(τ)dτ and differentiating yields the differential inequality

d
dt

(||ũ||Bs−1
2,r

e−c
∫ t

0 I1(τ)dτ) ≤ CRe−c
∫ t

0 I(t)dt||ũ(t)||Bs−1
2,r
. (4.3)

Next, we apply Gronwall’s lemma, and we get

||ũ||Bs−1
2,r
≤ ||ũ(0)||Bs−1

2,r
eRt+c

∫ t
0 I1(τ)dτ ≤ ||ũ(0)||Bs−1

2,r
eR′t. (4.4)

Similarly, utilizing the above steps in the second equation yields the estimate:

||ṽ||Bs−1
2,r
≤ ||ṽ(0)||Bs−1

2,r
eRt+c

∫ t
0 I1(τ)dτ ≤ ||ṽ(0)||Bs−1

2,r
eR′′t, (4.5)

where R′,R′′ depend on p, q, ||u0||Bs
2,r

, ||v0||Bs
2,r

, and the lifespan of the solution.
Consider two solutions u, v ∈ C([0,T ]; Bs

2,r) with initial data u0, v0 ∈ Bs
2,r such that ∥u0∥Bs

2,r
, ∥v0∥Bs

2,r
≤

R. We study the difference u − v in the Bσ2,r norm. Using the interpolation lemma, we derive

||z1 − z2||Bµ2,r
≤ ||z1 − z2||

s−µ
Bs−1

2,r
||z1 − z2||

µ+1−s
Bs

2,r
, (4.6)

where we get ||z1 − z2||
µ+1−s
Bs

2,r
≤ (2R)µ+1−s. Then we obtain

||z1 − z2||Bµ2,r
≤ (2R)µ+1−s||z1 − z2||

s−µ
Bs−1

2,r
, (4.7)

and

||z1 − z2||Bµ2,r
≤ (2R)µ+1−s||z1(0) − z2(0)||s−µ

Bs−1
2,r
. (4.8)

By exploiting the continuous embedding properties of Besov spaces, we obtain

||z1 − z2||Bµ2,r
≤ (2R)µ+1−s||z1(0) − z2(0)||s−µ

Bµ2,r
. (4.9)

Thus, the proof of the theorem is finished. □
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5. Local Gevrey regularity and analyticity

5.1. Analytic solutions in Gδσ,s

In this section, we investigate the local Gevrey regularity and analyticity on the circle and the whole
space. Below we mainly provide the proof in the whole space, but a similar argument also yields the
periodic case. To this end, we first introduce a key lemma as follows:

Lemma 5.1. If 0 < δ ≤ 1, s ≥ 0, and u ∈ Gδσ,s, there holds the following estimate:

||∂−1
x u||2Gδσ,s ≤ 2||u||2Gδσ,s .

Besides, it is also true for the periodic case.

Proof. According to the definition of Sobolev-Gevrey spaces, we deduce

||∂−1
x u||2Gδσ,s =

∫
R

(1 + |ξ|2)seδ|ξ|
1
σ ̂|∂−1

x u|2dξ

=

∫
R

(1 + |ξ|2)s eδ|ξ|
1
σ û

iξ
dξ

=

∫
R

(1 + |ξ|2)s|∂−1
x eδ(−∆)

1
2σ u|2dξ

= ||∂−1
x eδ(−∆)

1
2σ u||2Hs .

(5.1)

We let f = eδ(−∆)
1

2σ u, due to H s = L2 ∩ Ḣ s with s ≥ 0, and we find

||∂−1
x u||2Gδσ,s = ||∂

−1
x f ||2L2 + ||∂

−1
x f ||2Ḣs

= || f ||2Ḣ−1 + || f ||2Ḣs−1

≤ 2|| f ||2Hs = 2||eδ(−∆)
1

2σ u||2Hs

= 2
∫
R

(1 + |ξ|2)se2δ|ξ||û|2dξ = 2||u||2Gδσ,s .

(5.2)

□

Next, the main proof of Theorem 1.3 is as follows:

Proof of Theorem 1.3. System (1.1) takes the following form:
d
dt u = E(t, u(t)),
d
dt v = F(t, v(t)),
u(0, x) = u0, v(0, x) = v0,

(5.3)

where E(t, u(t)) = auvp−1ux + ∂
−1
x u and F(t, u(t)) = bvuq−1vx + ∂

−1
x v.
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Fix σ ≥ 1 and s > 3
2 , and {Gδσ,s}0<δ<1 is the decreasing Banach space. For any 0 < δ′ < δ, we arrive

at

∥E(t, u(t))∥Gδ′σ,s ≤ ∥auvp−1ux∥Gδ′σ,s + ∥∂
−1
x u∥Gδ′σ,s

≤ a∥uvp−1ux∥Gδ′σ,s + ∥∂
−1
x u∥Gδ′σ,s

≤ a∥u∥Gδ′σ,s∥v∥
p−1
Gδ′σ,s
∥ux∥Gδ′σ,s +

√
2∥u∥Gδ′σ,s

≤ a
e−σσσ

(δ − δ′)σ
∥u∥2Gδσ,s∥v∥

p−1
Gδσ,s
+
√

2∥u∥Gδσ,s .

(5.4)

Similarly, we also get ||F(t, v(t))||Gδ′σ,s ≤ b e−σσσ
(δ−δ′)σ ||v||

2
Gδσ,s
||u||p−1

Gδσ,s
+
√

2||v||Gδσ,s .We use similar steps to deduce

||E(u0)||Gδσ,s ≤ a
e−σσσ

(δ − δ′)σ
||u0||

2
Gδσ,s
||v0||

p−1
Gδσ,s
+
√

2||u0||Gδσ,s ,

||F(u0)||Gδσ,s ≤ b
e−σσσ

(δ − δ′)σ
||v0||

2
Gδσ,s
||u0||

q−1
Gδσ,s
+
√

2||v0||Gδσ,s .

Then we satisfy Lemma 2.8 (iii), where

M1 = a
e−σσσ

(δ − δ′)σ
||u0||

2
Gδσ,s
||v0||

p−1
Gδσ,s
+
√

2||u0||Gδσ,s ,

and
M2 = b

e−σσσ

(δ − δ′)σ
||v0||

2
Gδσ,s
||u0||

q−1
Gδσ,s
+
√

2||v0||Gδσ,s .

Below we want to prove that condition (ii) of Lemma 2.8 is satisfied. Let z0 = (u0, v0), z1, z2 ∈ Gδσ,s,
||z − z0||Gδσ,s < R, and ||z2 − z0||Gδσ,s < R, and we arrive at

||E(z1) − E(z2)||Gδ′σ,s ≤ ||au1vp−1
1 ux − au2vp−1

2 u2||Gδ′σ,s + ||∂
−1
x u1 − ∂

−1
x u2||Gδ′σ,s

≤ ||au1vp−1
1 (∂xu1 − ∂xu2)||Gδ′σ,s + ||(au1vp−1

1 − au2vp−2
2 )∂xu2||Gδ′σ,s

≤ a
e−σσσ

(δ − δ′)σ
||u1||Gδσ,s ||v1||

p−1
Gδσ,s
||u1 − u2||Gδσ,s + a||u1vp−1

1 − u2vp−1
2 ||Gδσ,s ||u2||Gδσ,s +

√
2||u1 − u1||Gδσ,s

≤ a
e−σσσ

(δ − δ′)σ
(||z0||Gδσ,s + R)p||u1 − u2||Gδσ,s + a

e−σσσ

(δ − δ′)σ
||u1vp−1

1 − u2vp−1
2 ||Gδσ,s ||u2||Gδσ,s +

√
2||u1 − u2||Gδσ,s ,

(5.5)

where

||u1vp−1
1 − u2vp−1

2 ||Gδσ,s = ||u1(vp−1
1 − vp−1

2 + (u1 − u2)vp−1
2 )||Gδσ,s

= ||u1(v1 − v2)
p−2∑
k=0

vp−2−k
1 vk

2 + (u1 − u2)vp−1
2 )||Gδσ,s

≤ ||u1||Gδσ,s ||v1 − v2||Gδσ,s

p−2∑
k=0

||v1||
p−2−k
Gδσ,s
||v2||

k
Gδσ,s
+ ||u1 − u2||Gδσ,s ||v2||Gδσ,s

≤ ||z1 − z2||Gδσ,s(R + ||z0||Gδσ,s)
p.

(5.6)
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Hence, we conclude that

||E(z1) − E(z2)||Gδ′σ,s ≤ a
e−σσσ

(δ − δ′)σ
(R + ||z0||Gδσ,s)

p||z1 − z2||Gδσ,s +
√

2||u1 − u2||Gδσ,s , (5.7)

and

||F(z1) − F(z2)||Gδ′σ,s ≤ b
e−σσσ

(δ − δ′)σ
(R + ||z0||Gδσ,s)

q||z1 − z2||Gδσ,s +
√

2||u1 − u2||Gδσ,s . (5.8)

So we combine (5.7) and (5.8) to obtain

||E(z1) − E(z2)||Gδ′σ,s + ||F(z1) − F(z2)||Gδ′σ,s

≤

 (a + b)e−σσσ +
√

2
(δ′ − δ)σ

(R + ||z0||Gδσ,s)
m

 ||z1 − z2||Gδσ,s ,
(5.9)

where m = max{p, q}. Therefore, we deduce that L =
(

(a+b)e−σσσ+
√

2
(δ′−δ)σ (R + ||z0||Gδσ,s)

m
)
. Since

T0 = min{
1

22σ+4L
,

2σ+1R
2σ+122σ+3LR + MDσ

}

and Dσ = 1
2σ−2+ 1

2σ+1
, we choose R = ||z0||Gδσ,s , and then L = 2m[(a + b)e−σσσ +

√
2]||z0||

m
Gδσ,s

. So we have

finished Theorem 1.3. □

5.2. Continuity of the data-to-solution map in G1
σ,s

In this part, from Definition 2.3, we study the continuity of the data-to-solution map from G1
σ,s×G1

σ,s

into the solution space.
Proof of Theorem 1.4. Define that

T∞ =
1

22σ+4+m
(
(a + b)e−σσσ +

√
2
)
||z∞0 ||

m
G1
σ,s

,

T n =
1

22σ+4+m
(
(a + b)e−σσσ +

√
2
)
||zn

0||
m
G1
σ,s

.

(5.10)

Due to ||zn
0 − z∞0 ||G1

σ,s
→ 0 as n → ∞, this implies that there exists N if n ≥ N, and we have ||zn

0||G1
σ,s
≤

||z∞0 ||G1
σ,s
+ 1. Let T = 1

22σ+4+m(a+b)e−σσσ(||z∞0 ||G1
σ,s
+1)m such that T ≤ min{T n, T∞} with n ≥ N. Based on

Theorem 1.3, we claim T n, T∞ are the existence times of the solutions zn, z∞ corresponding to the
initial data zn

0, z
∞
0 . Then we see that for n ≥ N,

z∞(t, x) = z∞0 +
∫ t

0
H(τ, z∞(t, τ))dτ, 0 ≤ t <

T (1 − δ)σ

2σ − 1
,

zn(t, x) = zn
0 +

∫ t

0
H(τ, zn(t, τ))dτ, 0 ≤ t <

T (1 − δ)σ

2σ − 1
,

(5.11)
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where H = E + F in Theorem 1.3. Then if 0 ≤ t < T (1−δ)σ

2σ−1 and 0 ≤ δ ≤ 1, we get

||zn(t) − z∞(t)||δ ≤ ||zn
0 − z∞0 ||δ +

∫ t

0
||H(zn(τ)) − H(z∞)(τ)||δdτ. (5.12)

Define δ(t) = 1
2 (1 + δ) + ( 1

2 )2+ 1
σ ((1 − δ)σ − t

T

1
σ − [(1 − δ)σ + (2σ+1 − 1) t

T ]
1
σ ), and setting a = T in

Lemma 2.12, we have δ < δ(τ) < 1. Together with (5.12), this implies

||H(zn)(t) − H(z∞)(τ)||δ ≤
L||zn(τ) − z∞(τ)||δ

(δ(τ) − δ)σ
, (5.13)

where L = 2m[(a + b)e−σσσ +
√

2]||z0||
m
Gδσ,s

, and we deduce

||zn(t) − z∞(t)||δ ≤ ||zn
0 − z∞0 ||δ + LT22δ+3 ||z

n(τ) − z∞(t)||ET

(1 − δ)σ

√
T (1 − δ)σ

T (1 − δ)σ − t
.

Since LT22σ+3 < 1
2 , we get

||zn(t) − z∞(t)||δ ≤ ||zn
0 − z∞0 ||δ +

||zn(τ) − z∞(t)||ET

2(1 − δ)σ

√
T (1 − δ)σ

T (1 − δ)σ − t
,

which implies

||zn(t) − z∞(t)||ET (1 − δ)σ
√

T (1 − δ)σ

T (1 − δ)σ − t
≤ ||zn

0 − z∞0 ||δ(1 − δ)
σ

√
T (1 − δ)σ

T (1 − δ)σ − t
+

1
2
||zn(τ) − z∞(t)||ET .

Through taking the supremum over 0 < δ < 1, 0 < t < T (1−δ)σ

2σ−1 , we obtain

||zn − z∞||ET ≤ ||z
n
0 − z∞0 ||1 +

1
2
||zn(t) − z∞(t)||ET ,

which is
||zn − z∞||ET ≤ 2||zn(t) − z∞(t)||ET .

Therefore, we have completed the proof of Theorem 1.4. □

6. Conclusions

Our work primarily investigates the Cauchy problem for the generalized short pulse system on the
periodic domain. Utilizing transport theory, we establish the existence and uniqueness of solutions and
prove the continuity of the solution map. Furthermore, we demonstrate that this solution map is Hölder
continuous. Finally, we also establish the Gevrey regularity and analyticity of the solutions.
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