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Abstract: In this paper, we first established the local well-posedness of the generalized short pulse

system in the critical Besov space 35,1(T)’ improving upon the local well-posedness result obtained
in [S. Yu, X. Yin, J. Math. Anal. Appl., 475 (2019), 1427-1447]. We then proved that the solution
map was Holder continuous in B’;’r(T). Finally, by a generalized Ovsyannikov theorem combined with
fundamental properties of Sobolev-Gevrey spaces, we established the Gevrey regularity and analyticity
of solutions and further obtained a lower bound of the lifespan and the continuity of the data-to-solution
map.
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1. Introduction

In the present paper, we consider the Cauchy problem for the following generalized short pulse
equations with high-order nonlinearities:

Uy, = a’'0u), +u, xeT,teR,
Ve = bu'ov), +v, xeT,teR,
u(x,0) = ug, xeT,t=0,
v(x,0) = vy, xeT,t=0,

(1.1)

where p,q € Z* and a, b are two constant parameters.
The special case where a = b = %, p = ¢q = 2,and u = v transforms system (1.1) into the classical
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short-pulse equation:
1
Uy = U+ 6(u3),m. (1.2)

This equation derived as a nonlinear approximation from Maxwell’s equations, characterizes the
propagation of ultrashort optical pulses in isotropic fibers [1]. Here, the real-valued function u(z, x)
characterizes the electric field’s magnitude. As a prominent example of integrable loop-soliton
systems, it has attracted considerable attention in the research community over recent decades.
Equation (1.2) has a Lax pair [2] and bi-Hamiltonian structure [3]. In [4], their analysis revealed
that the Eq (1.2) admits a Wadati-Konno-Ichikawa-type Lax pair and can be connected to the sine-
Gordon equation via a series of transformations. This finding positions Eq (1.2) as an integrable
model for ultrashort pulses, serving as an alternative to the nonlinear Schrodinger (NLS) equation.
Furthermore, researchers identified an appropriate hodograph transformation that reduces Eq (1.2)
to the renowned sine-Gordon (SG) equation, enabling the derivation of multi-loop solitary wave
solutions [5]. Consequently, diverse solution type in Eq (1.2) have been established, including: periodic
and solitary wave solutions [6]; two-loop soliton solutions [7]; and bilinear forms, multi-loop solutions,
multi-breather solutions, and periodic solutions [8, 9]. Notably, the loop soliton solutions of Eq (1.2)
can also be obtained through a Darboux transformation approach [10].

Considering the influence of polarization and anisotropy, researchers have developed different
versions of the short pulse equation for two-component systems. In a recent study, the two-component
short pulse system was proposed by Matsuno [11] as follows:

1
Uy = U+ E(uvux)x’
1.

{ Vi =V + 2wy, (13)
where Eq (1.1) to be discussed in this paper is precisely a high-order generalization of this two-
component short pulse system (1.3). It was shown that Eq (1.3) could be generated from the negative-
order Wadati-Konno-Ichikawa hierarchy in [12,13]. Besides, Eq (1.3) is integrable, with corresponding

Lax pairs given by ¥, = P¥Y, ¥, = Q¥, where the given matrices P and Q are:

| T {0 vy 1(1 O A uw wu,
P_/l(vx —1)’ Q_E(—u 0)+ﬁ(0 —1)+§(uvvx —uv)'

For the Cauchy problem, numerous works, such as [14—17], have examined the properties of solutions
to nonlinear Camassa-Holm-type equations or chemotaxis models in Besov spaces. Their core strategy
integrates Littlewood-Paley decomposition techniques with transport equation theory. Zhagilao
et al. [18] initially established the existence and uniqueness of a solution for Eq (1.3) with an estimate
of the analytic lifespan, and then deduced the continuity of the data-to-solution map in the space of
an analytic function. Later, in [19], the authors studied the local well-posedness of the Eq (1.1) in the

) 1+ .. .
Besov space B X B’  with s > {2,1+1). Dueto B® . < B’ for s > 1+, our first aim is to establish
p.r p.r 2 P p.r ps1 P

the local well-posedness of Eq (1.1) in the Besov space BE’I(T) to improve the local well-posedness
result in [19]. The specific theorem is as follows:

Theorem 1.1. Suppose that (uy, vo) € Bg’l (T), and then there exists a time T > 0 such that Eq (1.1) has
3 3 1 3
a unique strong solution (u,v) belonging to E; | := C([0,T]; B; ) N Ci([0,T1; B; ) xC([0,T]; By ) N

1 3 3
CY([0,T]; Bzz’l). Besides, the data-to-solution map (uy, vo) — (u, V) is continuous from 35,1 into Ezz’l.
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Remark 1.1. According to the Littlewood-Paley theory [20], we have the continuous embedding

3 3
B}, — B, = H’ where the critical exponent s = % is the minimal regularity index for which the
Besov space B | is embedded into Lip.

In [19], it has been proven that the data-to-solution mapping is continuous but not uniformly
continuous. The following results will provide information about the stability of the data-to-solution
map, that is, the data-to-solution map for Eq (1.1) to be Holder continuous in By X Bj .

Theorem 1.2. Suppose that (ug,vy) € B;J X B;J andr > 1, s >3/2o0rr=1,s > 3/2, ifu € R
such that s — 1 < pu < s. Then the data-to-solution map is Holder continuous from B’;J X B’ir to
C([0, T1; BS,) x C(0, T; B, ).

Next, based on the generalized Ovsyannikov theorem, we deduce the local analyticity and Gevrey
regularity of the solutions to Eq (1.1) on the circle and the whole space, and we see the continuity of
the data-to-solution map.

Theorem 1.3. Leto > 1, s > % Assume that uy € G, .. Then for any 0 < 6 < 1, there exists a To > 0

such that Eq (1.1) has a unique solution u which is holomorphic in |t| < % with values in Gy, (R).
Moreover,
1
T() = ’
D 20-+44m ((a +b)e 707 + ‘/z) (1 + llzollg, "

where the positive constant C' depends on s, «, B, vy, A, T.

3

Theorem 1.4. Let o > 1 and s > 3. For initial data (uy,v) € G, x G\, the data-to-solution map

(up, vo) — (u,v) of Eq (1.1) is continuous as a map from Gflm. X G}m into the solution space.

1

s’

This paper is structured as follows: Section 2 establishes foundational preliminaries. Sections 3
and 4 investigate the local well-posedness of system (1.1) in the critical Besov space, and Holder
continuity of the data-to-solution map. The local analyticity and Gevrey regularity are examined in
Section 5.

2. Preliminaries

In this section, we introduce the lemmas and definitions that will be employed in the subsequent
proofs. First, we briefly review some fundamental Besov space properties that will be essential for the
proof of the local well-posedness and Holder continuous for the generalized short pulse equations with
high-order nonlinearities.

To establish our work in Besov space, we present the Littlewood-Paley decomposition for the
definition of Besov spaces.

Lemma 2.1. (Littlewood-Paley decomposition) (see Proposition 2.10 in [20]) Assume that the ball

B ={eRLE < %} and the ring R = {£ € Rn,% < €] < %}. Then there exist two radial functions

X €CZ(B) and ¢ € CZ(R), valued in the interval [0, 1], such that

VESR!, YO+ ) 92718 = 1,

q=0
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lg—q'122= Supp (27%) N Supp 9(277) = 0,
q=1= Supp x(-) N Supp ¢(27%) = 0.

Next, leth = F~'¢ and h = F~'y. Then for all f € S'(R"), the nonhomogeneous dyadic blocks A, and
low-frequency cut-off operator S, can be defined as follows:

Ayf =0 forqg < -2,

AL f=x(D)f = N h(y)u(x - y)dy,

n

A = 0@ DI =27 [ W@ = y)dy for g >0,

g-1
Sof = ) A =x@D)f = | BQIfG =)y, 2.1)

p=-1

.. . o4 3
Moreover, it is easily shown that (§) = 1 if 3 < |£] < 3.
Next, we introduce the definition of Besov spaces as follows:

Definition 2.1. (Besov spaces) (see Definition 2.68 in [20]) Let s € R,1 < p,r < oo. The
nonhomogenous Besov space B), ,(R") can be characterized by

By, (R = (f € SR®™; |fllg;, < oo,

where 1
_ ( 2 2‘”’IIAquIZp) , forr< oo,

sy, = 4\
sup 29| Ay f1lzr» forr = oo.

g>-1

In order to study the local well-posedness of the Eq (1.1) in Besov spaces, we need to the following
transport theory.

Lemma 2.2. (See Theorem 3.14 in [20]) Let 1 < p,r < oo, and s > —min(%,l - %). Assume that

Jo€ B, (R") and g € L'([0,TT; B, ,(R"). Let f € L*([0,T]; B, ,(R")) be the solution to the transport
equations

{8,f+v-Vf:g, 22)

f|t:0 = fO

with Vv e L'([0, T]; B;jrl (R™) for s > 1 + % or Vv e L'([0, T1; Bir(R”) N L*(R™)) otherwise. Then,
(I)Ifr=1o0rs+1+ %, then there exists C > 0 depending only on s, p, and r such that

!
cv, CV,(H-CV,
I£llss, < el follss, + f VPOV 0(s) g, s,
0

or

! !
1fllss, < Wfolls, + f lg(s)ls ds +C f Vo F (5l ds,
0 0
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with

t
. n.
i fo ”VV(T)”BfmmedT’ ifs<l1+ I_?’
V(1) := , . .
f IVv(D)||gs-1dT, ifs>1+—ors=1+—r=1.
0 " p p

(2) If s > 0, then there exists a constant C = C(n, p, r, s) such that

I Dlls;, <l folls;, + f llg(llp;, dT
0 (2.3)

+C fo (S @llsy IVl + IVV(Dllgy, L (Oll=)dT.

(3)If r < oo, then f € C([0,T]; B, ,(R")); and if r = oo, then f € C([0,T]; B;',I(R"))for all s < s.
(4) If v = f and s > 0, the inequality in (1) holds true with V;)(t) = ||Vv(t)|| .

Next, we introduce some useful properties of the Besov spaces to prove Theorems 1.1-1.2 as
follows:

Lemma 2.3. (See Proposition 1.3.5 in [21]) Assume that s € R, 1 < p,r, p;,r; < 0o (i =1,2). We get:
(1) By, , is a Banach space which is continuously embedded in S'.
(2) If r < oo, then limy, |IS ju — ullp;, = 0. The space C7 is dense in B, , if and only if p,r < co.

s—n(-L—-L)
(3)If pr < p2, 11 <1y, then B, | — B,, " " If s> % ors= %, r =1, we have B),, — L*.
(4) For s > 0, B, ,N\ L% is an algebra. Furthermore, By, is an algebra, provided that s > % ors>*%
andr = 1.

(5) Fatou lemma: If (u,),en is bounded in B, and u, > uin S’, then u € B, and

<

llullg, < hlrgglf 4], -

(6) Let m € R and f be an S™-multiplier (i.e., f : R" — R is a smooth function and satisfies that
VYa € N" there exists a constant Cy, s.t. |0°f(&)] < Co(1 + [E™1), V&€ € RY). Then the operator
f(D) = F~Y(fF) is continuous from B} to B "

Lemma 2.4. (See Corollary 2.86 in [20]) Let 1 < p,r < +oo, and the following estimates hold:
(i) For s > 0,

Ifglls;, < CUIflBy, Mgl + 11gllag, 1 1lLe)s
(ii) For all s; < I—’; < 8 (502> ;’j ifr=1)and s; + s, > 0, we have
1 gllgsy < ClLF g gl :

(iii)lfs>;1—70rs: r=1, we get

n
p’
Ifglls;, < Clifls, liglls,..

Now we describe two available interpolation inequalities.
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Lemma 2.5. (See Theorem 2.80 and Corollary 2.86 in [20]) (1) Complex interpolation: If sy < s,
0 e(0,1),and 1 < p,r < oo, then we get

0 1-6 K s
il a-ons < Cllully, luly?, Yu € By, 0By,

and

C 1 1 0 1-0
u sy < =+ —— |\lull s lull s -
oo < _sz( S+ 9)|| I !

(2)IfseR, e>0,and 1 < p < oo, there exists a constant C > 0 such that

e+1 lluel <
lully, < C ||u||%(1 + log lsie )
nETe Tz,

Lemma 2.6. (See Lemma 2.100 in [20]) Let 0 > 0, 1 <r < oo, and 1 < p < p; < o0. Let v be a vector
field over R. Then the following estimates hold:

1218, A Sl jenlle < CUWallz=llfllsg, + Ifellr IVl 1),

P

where é = pil + pLz. In addition, if o < 1, we have

177V A flle) jeller < ClIvillslfllsg, -
We also need to present the Osgood lemma, which is a generalization of the Gronwall lemma.

Lemma 2.7. (See Lemma 3.4 in [20]) Let p be a measurable function from [ty, T] to [0,c], y be a
locally integrable function from [ty, T to R*, and u be an increasing continuous function from [0, c] to
R*. Suppose that

p(t) <a+ f v(s)u(p(s))ds, for some a > 0.

fo

(1) If a > 0O, then we have

—M(p(1)) + M(a) < f v(s)ds, M(x) = f” —dr.
fo x H(r)

(2) If a = 0 and u satisfy the condition foc l%dr = +o00, then p = 0.
Remark 2.1. If u(r) = (1 —In#), r € [0, 1], we have M = In(1 — Inx), and p(t) < e """ with
c>0.

Finally, we introduce the Sobolev-Gevrey spaces and some basic properties to study the analytic
solution.

Definition 2.2. (See (1.10) in [22]) A function u € G°. (R?) if and only if

leellgs, ) = (f (1 + |2 7| d€) < oo, u € C¥(RY), 2.4)
, ”

where k,s > 0 and s is a real number. Furthermore, when 0 < 6’ < 6,0 < o0’ <o, and s’ < s, we can
find G‘;S(Rd) — G“Z’S(R"), G‘;,,S(Rd) — G‘;S(R"), G‘;S(R") — Gfm, (RY).
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Remark 2.2. For periodic domains, the Sobolev-Gevrey norm can be defined as:

1
1 2 L
2N\s 206lk|T | A 2 5(=A) 20
lallgs v = ( D1+ Y ) = 1 .
keZ

For our Gevrey regularity analysis of (1.1), the following generalized Ovsyannikov theorem is
fundamental.

Lemma 2.8. (See Theorem 3.1 in [23] and Theorem 3.1 in [24]) Let {Xs}o<5<1 be a scale of decreasing
Banach spaces, namely, we have X5 C X; with || - |ls < || - |ls for any 6 < ¢'. Consider the Cauchy
problem

(2.5)

uli=o = Uo.

{ & = F(t, u(r)),

Let T,R > 0 and o > 1. For given uy € X, assume that F satisfies the following conditions:
(i) For 0 < ¢’ < 6 < 1, the function t — u(t) is holomorphic in |t| < T and continuous on |t| < T with
values in X, and

sup [lu(9lls < R,

[t|l<T
and then t — F(t,u(t)) is a holomorphic function on |t| < T with values in X .
(ii) For any 0 < ¢’ < 6 < 1 and any u,v € B(uy, R) C X;, there exists a positive constant L depending
on up and R such that

L
sup ||F(t,u) — F(t,v)||ly < ————|lu — Vv||s.
mgl;)ll( ) — F(&,v)lls (5_6,)(,” Ils

(iii) There exists an M > 0 depending on uy and R such that for any 0 < 6 < 1,

sup ||F(¢,0)||5 < .
i °= -0y

Then the Cauchy problem (2.5) has a Ty € (0,T) and a unique solution u(t), which is holomorphic in
7| < D(TU;%T" with values in X5 for every 6 € (0, 1).

2(r+1R
2‘T+1220'+3LR+MD0-

Remark 2.3. In particular, Ty = min {22¢1+4 7 }, which gives a lower bound of the lifespan,

1

where D, = g

2
o+l

Remark 2.4. When o = 1, Lemma 2.8 becomes equivalent to the classical abstract Cauchy-Kovalevsky
theorem.

Lemma 2.9. (See Proposition 2.5 in [23]) For s > %, o > 1, and 6 > 0, there is an algrbra for G‘;S
and there is a constant C such that

lhaadllgs, < Cyllullgs e llgs - (2.6)

o,

Proof. The proof of this theorem can be found in Proposition 2.5 of [23]. For the reader’s convenience,
the detailed process is provided below.
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Since E = f % g, it follows that
a1, = f (1 + 1) e o+ i Pde
= [avigey| [ e amie-nay

< f (1 + 1) f &PE* I (¢ — )iy

2
d¢

2
d¢ (Here we use the fact that o > 1).

1 1 2

= | (1 +1gP)* F(e5<—A>2“ u) * F(e‘“—mz" u) d

f g ¢ @.7)

* A\l
_ (eé(—A) v u) ) (eé(—A) ”u’)
HS
< C, |8 u TNy (Here we use the fact that s > -).
HS H.V 2
2 2
= Calll, 1R,
O

Lemma 2.10. (See Proposition 2.6 in [23]) Suppose that s > % o > 1, and 6 > 0, and there exists a
constant C', such that ||luu’|| g S C'llullge ;lllu’llch.

Proof. While the proof of this theorem is available in Proposition 2.6 of [23], it is reproduced here for
the convenience of the reader.
By a similar argument as in Lemma 2.9, we obtain

L L 2
lcll, < () ()] (2.8)
o,s—1 fol
Using the fact that [|abl|gs-1 < Cyllallg-1|Ibllgs if s > 3, we get
il il 2 2 112
(66(—A)2<r M) . (66(—A)20’ M/) < C/ e§(—A)2(r u ‘ eﬁ(—A)Z(r u/
-1 s -1 Hs (2.9)
2 2
= C:”u”Gg—;_] ||u,||Gg—’3
Od
Lemma 2.11. (See Proposition 2.4 in [23]) When o > 0, s > 0, and 0 < ¢’ < 6, we can have
e—U' on
llusllge, < (5_—5,)(,||M||G§m’ (2.10)

where s is a real number and u € G°__.

The proof of Theorem 1.4 employs a fixed-point argument in a suitable Banach space. We now
define a new such space.
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Definition 2.3. (See Definition 3.4 in [23]) Let o > 1. For any a > 0, we denote by E, the function
space consisting of Xs-valued holomorphic and continuous functions u(t), defined for all 0 < 6 < 1

and |t] < 252 Pe

Y o .
, where Dy = 27" **%T_ The norm in this space is given by:

!
lullg, == sup (HM(I)HG;F‘(I —0)74|1 - ﬁ] < +oo.

The proof of Theorem 1.4 will rely on the following crucial lemma.

Lemma 2.12. (See Lemma 3.7 in [23] and Lemma 3.7 in [24]) Let o > 1. Foranya > 0, u € E,,

O0<do<l,and0<t< “(21(:5])” D, with D, = %, the following estimate holds:
22+ o

" lu()llsr) J a2**|ull, / a(l -06)”
T< ,
o (6(1) —06)” (1-90) a(l =6 —t

where the intermediate parameter 6(7) is given by

1

1 1\**7 i :
6(1) = 5(1+0)+ (E) ([(1 — )7 — é] _ [(1 — 87 + (27 - 1)2] ) € (0, 1).

The above constitutes all the properties required for this article. Lemmas 2.1-2.7 concern the
properties in Besov spaces used in proving Theorems 1.1-1.2, while the latter part, Lemmas 2.8-2.12,
contains the properties necessary for the proofs of Theorems 1.3-1.4.

3. Local well-posedness

The purpose of this section is to establish the existence, uniqueness, and continuity of strong local
solutions to Eq (1.1). To utilize the transport theory, we first need to rewrite Eq (1.1) in the following
equivalent form:

u, = auvP'0u + a;lu, xeT,teR,
v =bwt'0v+08'v, xeT,teR,
u(x,0) = up, xeT,t=0,
v(x,0) = vy, xeT,t=0,

3.1

where the inverse derivative operator 7' is a mean-zero, 2n-periodic pseudo differential operator. The
exact definition is as follows:

X 2
o= [ soy- 5 [ sy
0 T Jo

1 21 Y y 27
5 ) [ j; fodx = 2= j; f(x)dx]dy.

Moreover, in [25], we can find |8, flls; < A1l

(3.2)
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Proof of Theorem 1.1. First step: existence of a local solution.
We let uy = vy = 0 and develop a sequence of smooth functions (u,, v,,),en, Which serve as smooth
approximations to the solutions of the following linear transport system:

O — aupVl ' 3 )ts = 07y,
To3 (B = bvaul ' 0,)vuer = 07"V, (3.3)
Uni1(0) = @, 1(0), V,11(0) = @1 (0).

Based on IIG;IunllB% < ||un||B% , we use Lemma 2.2 for system (3.3) to get
2,1 2,1

C 3 lxuy™ H@ y dr

2
sl 3 <e I A7(0)] [ B
By By

¢ C [110xunvy )l yar
+Cf e 2l 5 dr,
0 B

2,1

and

o A I
<e 721 191 v Ol

¢ C L0cau YT
+c f e b
0

Vasill 3 3
By, 2

dr’
vl dr
By,

o=

Hence, we have

C [y luall
<e

g—1
e} e

2
S (loll

-1
lvall”5 +l1vall

1 B}

3 3
3 3
By, 5 By,

il 3+ Wantll 5 s+ vl 3)
B2,1 BZ,] 2,1 B2.1

t —1 -1
t Cﬁ(llun” ”Vn”pi +vall “”n”qg )ar’

3 3
+Csf e S (T
0 B

s+ |[vall 3 )dr.
2 B2
2,1 2.1

Let m = max{p, q}, and we deduce

-1 -1
laall s a3+ Ml 5 TaeallS < (1 Tl 5+ vl 3 )™
By, B, Bj, B3, B3, B,
and
1
liaall s +Mvall s < (U4 Dl 3+ vl 3 Y™
B;, B;, BZ,] Bz,|
So we get
C O+l 3+l 3 y"dr)
el 3 + vl 5 < e S (0 Hluoll s+ Ivoll 5)
BZ,] 2,1 BZ,I BZ,] (3 4)
1 C Ll 3 Hbll 3" '
+C, | e B B (U lluall 3+ Ivall 3 )™
0 B, By,
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We can chooseaT > 0suchthat 0 < 7 <

3
SCmT il 3 +Tvol )m,and assume that
B,

2

o

B

1

o+ fluoll 3 +IIvoll 3)

L+ lunll 3 +1vall 3 < B B .
Bz,. B3, [1 —-2Cmt(1 + ||u0|| 3+ ||v0|| 3 )m]m
21
Therefore, we have
, 1 = 2mCt(1 + ||uol o +||V0|| 3 )"
L+l 2 + vl 2)"dr < — 1 t 2]. 3.5
(Il ”321 v ”BEI) T L= 2mCr(lluol +||v0|| ) (3:5)
21
We also obtain
!
1
(1 +||un|| 3 +||vn|| 3)dr < - 1n{1—2mCt(1+|Iuo|| 3 +||V0|| 3 )" (3.6)
0 21 21 2 21
So we calculate
L+l 5+ lvoll
1+||un+1|| 3 el g = el
B3, Byy  [1 =2Cmt(1 + ||ugl| I +||vo|| )m]
2,1
, (1 + lluoll 3 + llvoll 3 )y™*! 1—2mCt(1+|luo|I 3 +voll 3)™
Cf 3221 B3, 22 Bzzl 2md
+ X T
0 [1=2Cmr(1 + lluoll 3 +1voll 3)" B L= 2Cmr(L +luoll 5+ Ivoll 3 )"
By, B3, B;, B;,
1+ +
ol 3 -+ Ivol 5 c
< +

1 L

[1 = 2Cmi(1 + ol 3 + ol 3)m] g [1—2sz(1 +luoll 5 + vl 3)m] "

21 21 21 21
e L P
21 21
X ; MdT
[ 1= 2Cmr(1+ ol + Iholl 77
2
U llll 5+ Iboll U lloll 5+ Iboll 3
21 2 21 21
S 1 + 1
2m 2m
[1—20mz(1+||uo|| +1Ivol g)’"] —2m[1—2Cmr<1+||uo|| Flvoll 3"
21 BZ[ 21
(1= 2Cmi(1+ ol 3 +livoll 5 ™
2

X . 2m+1 dT
|20l + ol 7]

21

4 ol 5 + ol 3 L+ lluoll 3 +IIvoll
BZI BZI + BZl B21
g , , , ,

1
[ 1= 2CmeC1+ ol 5+ tholl | |1~ 2Cmi(1 + ol
2,1

2m
m
o o +voll 5)
2 2
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1
x( -1

1

[1 = 2Cmi(h + ol 3 + ol 3 )]
21
-1

m

<(1+mM|s+umnsﬂ1—26mﬂ1+mM|s+umnx>]

21 21 21
-1
+(1+mM|;+nmnsﬂ1—20m«1+mM|;+nwnz>]
2 21 2
—(1+mM|;+nwueﬂ1—20mm1+WM|;+nmns>]m
< (1 g +lvoll 3|1 = 2Cme(1 + ol +4wmﬁ>ﬂm. (3.7)
2,1 By, 1 21

We have thus established that the sequence (u,,v,),>; is uniformly bounded in the space
3 3
C(0,T]; B; l(T)). Given this uniform bound for (u,,v,) and the Banach algebra property of 322,1(T)’

3
we can infer that the terms au,v, 9™, bv,ul ' 0,v"*1, 87'u, and 8;'v belong to C([0, T1; B; (T)).
3
Together with the linear equation 7,, this implies that (0,u,.1,0,v,41) € C([0,T]; Bzz,l(T))).
3
Consequently, we conclude that (u,,v,) € EZ?’I(T)) for all n € N*.

Second step: convergence of the approximate solutions.
We claim that the approximation solutions (u,, v,).>1 1s a Cauchy sequence in larger Banach spaces
1

C(0,T7; Bg’m)(T). For this purpose, given any (m,n) € N* X N*, we get from equation (7)) that

Oi(Upskr1 — Uns1) — an+kun+kv5;;ax(un+k+l — Upt1)
-1 -1 —
- (an+kv£:+k - anunv{17 )01 = a,\;l(un+k = Up),
g-1

O (Varkr1 = Ups1) — bn+lvn+kum+na (Vntkr1 = Uns1)

- (an+kuz k anvnun )axvn+1 a;l(vrﬁk - vn)’
(WUniis1 = Uns1)(0, X) = Dpypp1ttg — Dy 1o,
Wntkr1 = Var1)(0, X) = g 1vo = P vo.

(3.8)

3
We have already obtained that the smooth approximation u, of (3.3) is uniformly bounded in E; ,. The

1 1
uniform bound (3.7) and B5 |, — B; _ yieldthatfor0 <t < T < 3
) > 8Cm(1+]luoll 3 +voll 3 )’77
21 221
N(@nsrsr = )OI 3 ||un+k+1(l‘)|| 3t ||Ltn+1(t)|| 3
BZ 21 21
2CA1 +||uo||Bg +lvoll 3)
< 2 2 0 (3.9
[1—2Cmt(1 + luoll 5+ [Ivoll 5 )"
B2, B},
<2C(1 + fluoll 5 +Ivoll 3 ) =M.
B? B2,
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Similarly, we also derive ||(V"** — ”“)(t)ll < M. In particular, ||un(t)|| 3 < 2C(1 + |luoll 3+
BZoo

||v0|| 3 ). Next, we use Lemma 2.2 for Eq (3. 8) to get

2oo

C [ 10x(@ntnai” DIl p o dr
(tpsks1 — )OIl 1 < e P26t 1Dy s 120 — (Dn+lu0|| 1
32
300

200
3.10
r c f,’||ax<anun+kvi;;>||% (3.10)
+C f e S dT'Ila;l(umk—un)llB%
0 2,00

Next, we estimate the terms on the right-hand side of the above inequality (3.10). According to the
uniform bound for approximations, we deduce forany 0 <7 <7< T,

!
-1
f 16t Ol 3 r <€ f btnagll 3 dr
.

2 NLip

<Cf ety il %”Vn+k||p 'dr
2

BZ]

<Cf(1+||un+kll’"a +||Vn+k||m3 )dr

21 21

(1 + o] G-AD

3l 3"
2

T
SCT+f
0 1—2Cmr(1+||uo|| 3 +||V0|| )’"

2 1

+4C™ (A + |uol|

3C

<
8mC (1 + lluoll 3+ [Ivoll

3
2
2,1 BZ,l

+ 1ol 3)™

3
B2
2 2 1

< 00,

Besides, referring to the definition of the cut-off low frequency operator,

ittt = prtioll 3 <l D, Auaal g
2

n+1<k<n+k

<C ) 27lAL Z Ao

j=-1 n+1<k<n+k

—imi(1+2
<C Y 22D(A Dtz + 1A Dy 1uoll2) (3.12)

n<j<k+n+1

<c2m Y 2UDAull

n<j<k+n+1

= C27luoll 5

2 1

where we have used A;®; = ®;A; and if |j —i| > 2, A;A; = 0. Next, we estimate the remaining terms,

-1
107 ik — un)lle% < ttpsx = M"HBZ% . (3.13)

,1
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Hence, we obtain

ttpis1 — Upsr

< C27luoll +Cf " — ”II ldT
2

1
Bz
2 (3.14)
<CM27" + cf " = u?||
0 322,1
We aim to use the logarithmic interpolation inequality on u,,,,, — u, to derive
et sr — wall 3 7
e = tall 3 < Cllttner = all g InCe + —2’°°)- (3.15)
21 Bz%oo ||l/in+k - un” %
BZ,oo
Similarly, we also derive
||Vn+k - Vn”B%
sk = Vall 1 < ClVysie = vall 4 In(e + ————). (3.16)
Bz,l Bz,m ||vn+k - Vn” %
BZ,oo
For convenience, we introduce the following notation:
Dy = ll(u"* - WOl + (Gl OOy
e e (3.17)
D, (t) = sup D, (1), D(¢) = lim sup D,(?),
keN+ n—oo
and this leads to the conclusion from (3.14) that
! M
Dy (1) <CM2™" + C f D,(7)In(e + )dr. (3.18)
0 Dn(T)

According to the definite of D(t), Ve > 0, AN = N(g) > 0 such that D, (¢) < D(t) + € forn > N. Hence,

Dn+1(t) <CM2™"+C L (D(T) + 8) ln(e + #)d?’

First, take the supremum over n, and then let n approach 0. We can deduce from the previous inequality
that

D) <C fo D(7)In(e + %)d?’

where if x € (0, M], t, = xIn(e + &), when x = 0, (x) = 0. Note that )" - Linda = [ e =

+00. Based on the Osgood lemma, D(¢) = 0, t € (0,T], so limsup,_,, D,(?) < lim sup,,_,., Dn(t) = 0
This shows lim,_,., D,(t) = 0, so (¢",V"),»; 1s the Cauchy sequence in C([0, T]; BZ%’OO). Next, we prove
that the approximate solution {"},>; converges strongly to the space C([0,T]; 32%,1)- Ifo<e <1,
6 € (0,1) such that 1 + & = § + 3(1 — ). Because BZ%IE — 32%,1 for £ > 0, we can apply Lemma 2.5 to
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get
ttpsis1 — Upsr |l 1 < ety — Ul Lee
By, By,
% 1-6
< C(E + 1—9)”un+k+1 — Uy 1 lttnsks1 — Upsrll 3
B B B (3.19)
1 1 1-6 6
SC(= + ——IM lunsisr — upinll”
0 1-6 3221
— 0,n,k — oo,
and

Vansrr1 — Vn+1||Bz%l — 0,1,k — oo, (3.20)

1
where the last limitation is based on the fact that (u,(f), v,(7)),>1 forms a Cauchy sequence in B _, as
demonstrated previously. As a consequence, we have shown that (u,(?), v,(?)),>1 is a Cauchy sequence

1
in C([0, T']; B |), which implies that there exists a function u such that (u,,v,) converges strongly to

1
(u,v)in C([0,T1; Bé’l) as n approaches infinity. Taking the limit as n — oo in (3.3), we confirm that the
1
element is a valid solution to the Eq (1.1). Furthermore, due to the algebraic property of B, , it is not
hard to confirm that auv’~'0,u, 8. 'u, bvu?'d,v, 8;'v together with Eq (1.1) itself imply that d,u, d,v
1 3

belongs to C([0, T']; Bzz’l). Therefore, we have demonstrated that the solution (u, v) belongs to E22 ().
This completes the proof of the existence part of Theorem 1.1.

Third step: uniqueness and stability. Suppose that (u,v) and (it, ) are solutions for Eq (1.1) with
the same initial data (ug, vo). Let w = u — i1, z = v — ¥, and the solution (w, z) satisfies the following
equations:

aw = awP 'd.w + (auw’™' — airv?~1)d, i + 47 'w,
0,z = bvu'd,z + (bvud™" — bvi1o,v + 8, 'z,
w(x, 0) = uo — iy,

72(x,0) = vy — V.

(3.21)

By utilizing the a priori estimate for the linear transport equation in Besov spaces to the above system,
we obtain

t
Iw®ll 1 < e™(woll 4 + f5 e @NEE | 4 dr),
B B, B,

. 3.22
=0l o), 22

: P
<eOll y + i e NEGE Ol

1 1 1

2 2 2

2,00 2,00 2,00

where () = [ |19 (aw ™,  dr (0 = [ 10:bvus™I y  dr, E(t,x) = (auv’™" —aii?")d, i+
B NL*® B2 _NL™

2,00
3 3 3
d.'w, and F(z, x) = (bvu?™" — bvi"")d,v + 8;'z. Based on B] | C Lip and B;, C B; , we have
10 (aw” DIl 4 +[10,Bvut |
BZ _NL® B}

2,00 2,00

LLsCa+ ||u||B§J vl 30" (3.23)

2,1
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1
Next, the estimates for the terms E(¢, x) and F(¢, x) are obtained by using the space BZZ’1 NL” asa
Banach algebra;

E(z, X)II 1= = lau(v”™" = 37" + a(u — )7~ 10l 1 + 107" Wil 4
B? B2

2 o0 2,00 2,00

= lfau@?™" =57 + awd”adll | +lwll
B

2,00 2,1
< cllu(v”™" = v Ha, I 'o il + vl (3.24)
21 21 2,1
p—2
N ; 2-
< Dol g Wl g I 9P+ il 90 T+ ]y
B, B, B3, =1 32,21 B21 21 321 B, 2|
and
2-
IFGN < IV s Il leull‘ | ||u||” ‘
200 B B B (3.25)
1121l ", |19 g Tl
B, B, By, B;,
We let ¥ = (w, z) and ||Y(?)]| = [lw(@®)|| + ||lz(®)]|, so we get
e [yl 3+l 3 ydr ¢ e [fQ+l 3+l 3
Mol se R (il v [e A
B B 0 (3.26)
I x ¥l y dr),
2
where
p—2
2- 1
I'(r) = IIMII ! ||u|| o2 VIl 917 l+||V||p1 llall 5 +2
By 4o B3, 322l Bj, B,
-
2—i q-1
MLy 171 5 Z lf Wl 19
2 2 5
By, By, =1 3221 21 le 2,1 (327)
4 4 4 "t S L2
SA+ll o I3+l s+, + @+l s+ 117 3"
3221 3221 3221 3221 B B
+ (Ll o+l g) + (Ll s+ 191 )" = A,
21 2 21 21
Suppose that sup H(7) = sup eXP(—Cf(l +ull 3 + 1V 3)"dOIY@Il ;5 and then from (3.26),
€[0.T*] 1€[0.T7] By, B, B;
we arrive at
¢ =c fy A+l %+|IV|I %)'"dT
H(r) < 7‘((0)+cf e B B (Al X PO 1 d7). (3.28)
0 B;,
We use interpolation inequalities of Lemma 2.5 to obtain
Il
2
II‘I’(T)II ! <II‘I’(T)II 5 ln(€+ ). (3.29)
2
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Since ||WVY(7)]| 3 < A(t), we deduce
BZ,oo

-Cfo’(nunB% nvn"*%‘ ) —e [+l 3+l 5 yndr @ B
e Mg se R W xine s )
2,1 2,00 >
, , 5
< —cfo<1+||u||B§1+|v||B§l>"’dr(H‘PH Cintes A7) ) (3.30)
<e T y XIn(e+ ————
By YOIl 4
’ B

< H(1)In(e + A(T))(1 — InH (1)),

where the final estimate relies on the inequality In(e + %) < In(e + @)(1 — In x), which holds for all
x € (0, 1] and any a > 0. Combining this with (3.28) , we derive

H(t) < H@O) +c f H(r)(1 = InH(7))A(T) In(e + A(1))dT. (3.31)
0

The following properties hold:

(1) The function u(x) = xIn(1 — x) is positive and increasing on (0, 1].

(2) The solution (u,v) € C([0,T]; Bil) ensures that the function y(¢) := At In(e + At) is continuous
(hence locally integrable) on [0, T'].

(3) The integral evaluates to xl ;% = In(1 — In x).

Under sup H(r) < 1, Osgood’s lemma (Lemma 2.7) gives
1€[0.7%]

Cf A(7) In(e + A(1))dt < In(1 —In H(0)) — In(1 — In H(2))
0

- (%)_1 (W)
"M mHO -1 "I HO) /) |

(3.32)

To analyze the stability of the data-to-solution mapping, we will utilize the following fundamental
lemma for the linear transport equation within the framework of Besov spaces.

Lemma 3.1. ( [26]) Assume that d € N¥, 1 < p < oo, and {u,},>1 is a sequence of functions belonging
d

to C([0,T1; B;; ). Let u, be a solution to

{ ou, +a, -Vu, =h, (3.33)

un (0, x) = up(x),
4 d
with ug € B) |, h € LY(0,T; B! ), and sup,qy, llall 1.4 < (D), for some y € LY0,T). If in addition a,
B i) Bp : D

d d
tends to a., in L'(0, T B;’]), then u, tends to u., in C([0, T]; B;,l)'

Fourth step: the countinuous dependence. Assume that we are provided with (u,,v,) and (Uc, Vo),

two solutions of Eq (1.1), with initial data (u?l, vg) and (u’, vy’) such that (ug, vjj) converges to (uy’, vy)
3 3

in Bzz’l. The above steps ensure that (u,, v,) and (4w, Vo) are uniformly bounded in L*([0, T']; B;’ ), and

W —u|lgpp + |V =V|lpp < C(|lul —ull| 3 +|VE=v2l 3).
"= g+ 19 = v < €l = 55+ =5
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By applymg the interpolation inequality, we deduce that (x",v") converges to (u*,v™) in
C(0,T1; B )for 0 > 0. Selecting 6 = 1, we obtain an improved convergence result: (¥",v") —
(u™,v*)in C([O, TY; B D-
Next, to prove (u",v") — (u,v>) in C([0, T'] Bzf’ 1), it is sufficient to demonstrate the convergence
1

of (uy, vy) = (u,vy) in C([0, T']; B; ). For convenience, let 2" = uy, w" =V, 2" = p"+6", w" = g"+h"
and (p", 6", g", h") satisfies

0,0" — au"(v")l”‘1 = F,

Big" - by gr = f=,

(O’ x) - qu’

(3.34)
g"(O, X) = Vg
In addition,

0,0" — au"(v)P~1g" = F"

—F~,
A:h" — bv' (U h = fr —
0"(0,x) = uy, — ug,, (3.35)
g"(0,x) = vy, — v
where F" = au™V'z" + u", f* = bv'u"'w" + v'. We define A" = —au"(v")’"! and B" = —bv"(u")?! to
deduce
IA™] g S Cll@" = u®)("y™ | 41 + 0" =y )Z(V PP o}
By By, B3 (3.36)
< C(ll” = u™| o + V=V 1),
B2,l BZ,l
and
||B"|| ! <C(||M - u || ! +||V -V || !

)

(3.37)
Hence, in light of the condition (¢",v") — (u

<, v*)in C([0, T1; Bzi,l)’ we find that (A", B") — (A®, B®)
in L'([0,T]; B )) as n — co. By using Lemma 3.1, we gain (0", g") — (o

1
,8™)in C([0,T]; B3 ), and
1
find that (A", B") — (A*, B®) in L'([0, T]; B2 D
In view of Lemma 2.2, we arrive at
¢ Jy1xa 0y i y dr
el 4 <e e g, — uill
21 21
3.38
¢ LU0 P y dn ( )
+Cf€ Preo X ||F" = F°°|| L dr,
0

2 1
where we have

F'"—F%” =au™V'7" + u" — (au™v°z" + u®™)
— aunvn(zn _ ™

)+ an" (V= v +a" —uC W+ U —u

(3.39)
AIMS Mathematics
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Next, we need to deduce

IE" = F0 oy < Al IR+l 121+ Il +1)

"]

1

+ " = u®ll 1)
B

1 2,1

1 1 1 1 1 1
2 2 2 2 2 2
BZ 2 2 2 BZ 2 1

3 5T

.1
X (12" =27l + IV =7

! 5
BZI 2

n2 n o012 00112 ny2
<A+, + IR, + 1eSIE, + IR, + P ) (3.40)

2 2 2 2
BZ,I BZ,I BZ,I BZ,I BZ.I

X (1 =271y + " =Vl + e = u™l )
BZl BZI 2,1
< Clig =l g+ =Vl g+l =] ).
21 21 21

Likewise, we have || f" — f°°|| 1 < c(pr =yl P+ V" — v 1+ [l — u™|| ! ). Therefore, we deploy
21 BZ,l BZ,I BZ,I

||9"|| ! <C(|IMOX—MOXII TR I 174 7o | N o | e g [
21 21 0 BZ,I Bz,l
+ [V = v 1 +||u —u || 1d‘r)
B}
(3.41)
< Clu, — w3l f el 4+ llo" = I
2 2 BZ,I
+ "= || 1 + ||t — u || 1dT)
21 21
and
!
I, < CAvg, vl y + f Il + g = gl
Bj, By, 0 B By (3.42)

+ V' =V 1+ W = u o dr).
B}, B},
Applying the facts of (u",v") — (u™,v*) in C([0,T1; B3,), (u5,,v5,) — (ugevee) in C(0,T1; B; ),
1 1
and (0", ¢") — (0°,¢%) in C([0, T];Bzz’l), we derive that (6",h") — 0 in C([O, T];Bzz’l). Based on
Lemma 2.2, we get (6%, h*) = 0in C([0, T]; B§,1)- Hence,

2" = 2"l 1o+ =w® 1
2 2
L=((0,T1:B3,) L=(0,T1:B3,)
<o =PIl y F e =67 1
L=([0.T):B5) L>([0.T]:B )
+1lg" - &7 y A=A 1
L2(0T185) L=(0.T1:B3,) (3.43)
< llo" = p”I p g - g7 !
L=([0.T):B5) L>([0.T}:B}))
+ 116"l L IR ]
L=((0,T1:B3,) L=(0,T1:B3)

1
Therefore, we conclude that (u},v}) — (u7,vy) in C([0,T]; Bzz’l). In conclusion, the proof of the
Theorem 1.1 has been completed. O
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4. The Holder continuity

In this section, we mainly focus on Holder continuity. First, we need to deduce that the data-to-
solution map is Lipschitz continuous in the Besov space Bé‘rl.

Proof of Theorem 1.2. Let z; = (u1,vy) and 2o = (uy, v,) be the solutions of Eq (1.1) with the initial
data ZI(O) = (u](O), VI(O)) € B(O’ R)9 ZZ(O) = (MZ(O)a VZ(O)) € B(Oa R)9 and it = uy — Uy, V= Vi — Va. Then
(&1, V) satisfies the equations

i, = aulvf_laxﬁ + (aulvl_l - auzvz_l)a Up + (9‘ i, @.1)
v, = bvlu‘f_laxf/ + (bvlu1 — bvyv!” N, + v '
Based on Lemma 2.2, the first equation of (4.1) yields
t
Il -1 < (Ol gy-r €70 ™ + CR f R TG Y (4.2)
na N 0 N

where 1,(t) = ||6x(au1V‘1U _1)”3331 and R is a constant which depends only on ||z;(0)|| B}, [1z2(0)]| B> and p.

Multiplying the inequality by e~ hh@dr

and differentiating yields the differential inequality

&l e K < CRe KDl (4.3)
Next, we apply Gronwall’s lemma, and we get

Il < WOl B < Ol g1 (4.4)
Similarly, utilizing the above steps in the second equation yields the estimate:

1 7
¥llgy. 1 < IFO)lpp €™ b < 5(0) 5y €%, (4.5)

where R’, R” depend on p, g, ||u|| By, s [Ivoll By, , and the lifespan of the solution.
Consider two solutions u, v € C([O T, B ) with initial data uo, vo € B;, such that ||u|| B s lvolly <
R. We study the difference u — v in the BY norm. Using the interpolation lemma, we derive

+1-
llz1 — Z2||B“ < lz: —Zz|| 1”Z1 —Zz||# - (4.6)
where we get ||z; — Z2||“+ ¥ < (2R)**'=%. Then we obtain

Iz = 2ol < QRY™ iz ~ 2l 4.7)

and

lz1 = 2llpr < CRF'llz1(0) — 20l (4.8)
By exploiting the continuous embedding properties of Besov spaces, we obtain

llz1 = zallp, < (2RY"*']|21(0) — Zz(O)H;Z:- (4.9)

Thus, the proof of the theorem is finished. m]
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5. Local Gevrey regularity and analyticity

5.1. Analytic solutions in G,

In this section, we investigate the local Gevrey regularity and analyticity on the circle and the whole
space. Below we mainly provide the proof in the whole space, but a similar argument also yields the
periodic case. To this end, we first introduce a key lemma as follows:

Lemma 5.1. [f0 <6 <1, s >0, and u € G°_, there holds the following estimate:

a,s’

-1..112 2
107wl < 2wl .

Besides, it is also true for the periodic case.

Proof. According to the definition of Sobolev-Gevrey spaces, we deduce

167l = f (1 + 160 | Tapde

) Zse(ﬂgﬁ,;,
—fR<1+|§|>—. i 5
f(1+|§|>|a 1D 2 g

1 6 A2«r
= 16,V ul[3,,.

€1 .
We let f = &Yy, due to H® = L> N H* with s > 0, and we find

—1 2 -1 2 -1 2
107 w2, = 107" f12: + 110 £1E,
= ”f” ot ”f”Hs 1

<21 = 20T ul, (5.2)
= 2fR(1 + 1Py ¥l dé = 2||ullég,s.
O
Next, the main proof of Theorem 1.3 is as follows:
Proof of Theorem 1.3. System (1.1) takes the following form:
—u = E(t,u(1)),
—v = F(t,v(1)), (5.3)

u(O X) = ug, v(0, x) = vy,
where E(t, u(t)) = auv’'u, + 8;'u and F(¢, u(t)) = bvui~'v, + ;.
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Fixoc > 1and s > %, and {G(fw}oqkl is the decreasing Banach space. For any 0 < ¢’ < ¢, we arrive
at

—1 -1
NE, u)llgy, < llawv” ugllgy + 105 ullgs
—1 -1
< alluv” uyllgy + 110, ullgy,
-1
< allulgy M, lhedlgg, + V2lullos, 5.4

(o

e’ 2 p-1
a5 =gy Il MG, + V2l -

. . —0 O -1 . .
Similarly, we also get ||F'(z, V(t))”G?,’,S < bﬁ”vlléisllullggﬁ + \/illvlng’s. We use similar steps to deduce

-0 0

€ 2 p-1
IEuo)llgs, < amlluoﬂ(;gﬁllvolng’s + ‘/§||Mo||cg;_v,

b —0 0
66

Then we satisfy Lemma 2.8 (iii), where

2 -1
IF o)l < ol lluoll?y' + V2lvollgs,.

—O0 0

M e
a—
TR G -y

2 p-1
leollgs Ivolly," + V2lluolgs,

and

—O0 0

e "o 2 -1
bmllmllcgslluol P V2lvollgs .-

Below we want to prove that condition (ii) of Lemma 2.8 is satisfied. Let zg = (ug, vo), 21,22 € G‘g_’s,
lz = zollgs . < R, and ||z2 — zollgs . < R, and we arrive at

M,

-1 “1 -1 -1
IE@1) — E2)llgs, < llaw V™ u, — ausv wollgy + 1105 ur — 0 wollgs

—1 -1 -2
< llaupvy™ (Osur = On)llgy + llawVy™ — auzvy )osuallgy
(% a
i r-1 _ i r=1 _ p=ly ) _ '
= amllulllggJHW||Gg,s||u1 u2||G3J + a”ulvl uv, ”Gg’SHMZHGg,X + \/zllul ul”Gg’S (55)
-0 a e—O' o 1 -
< CIW(HZOHGQ_v + R)!luy — wallgs | + a((s_—(s,)(fﬂulvf — UV llgs, Nluallgs  + \/§||M1 — algs
where
e~ = v Mgy = Ny O™ =05+ Gy — )V )|
v, 2Vy s, 1V 2 1= W)V, s,

p—2
—2-k_k -1
= [lur(vi — vp) E vf vy + (U — Mz)Vg )”Gfm
k=0

(5.6)

p-2
p—2-k k
< lhaallgg I = vallgs,, D Wil vallly + s = wallgg, lIvall,
k=0
< llz1 = 2allgs (R + llz0llgs )"
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Hence, we conclude that

-0 0

e
IE@z1) = E22)llgs, < GW(R + llzollgs ) llz1 — zallgs, + V2lluy - wallgs (5.7)
and
e—o— a
1F(z1) = F(2)llgy, < bm(R + llzollgs, )Mz — zallgs , + V2lluy - wllgs - (5.8)

So we combine (5.7) and (5.8) to obtain

IEG) - EGllgy, + IF @) — F@llgy,

< (a+b)e 70 + \2
- (5/ — 6)(7‘

(5.9)

(R + IIZollcg,S)m) llz1 — zallgs»

where m = max{p, g}. Therefore, we deduce that L = (%(R + ||Zo||cg,_v)’"). Since

1 20’+1 R
220+4] 7 Do+1D20+3 [ R 1 MD,,

}

To = min{

and D, = 2(,_21 —, we choose R = ||zollgs , and then L = 2"[(a + b)e™ 707 + \/§]||z0||26 . So we have
20+1 ’ [

finished Theorem 1.3. O

5.2. Continuity of the data-to-solution map in G,

In this part, from Definition 2.3, we study the continuity of the data-to-solution map from G}m X G}m
into the solution space.
Proof of Theorem 1.4. Define that

1
T = ,
220-+4+m ((a +b)eTa7 + \/i) ||Z80||gl
1 . (5.10)
T" =

= 220-+4+m ((a + b)e 70 + \/z) ||Z8||gl v.

Due to |lzj — z5'llgt . — 0 as n — oo, this implies that there exists N if n > N, and we have ||zjllg1 = <
eyl + 1. Let T = 1 such that 7 < min{7", T®} with n > N. Based on

22(r+4+m(a"'b)e_o—o'(r(”ZSo”Gl’_ ] + l)m
o,

Theorem 1.3, we claim 7", T* are the existence times of the solutions 7",z corresponding to the
initial data zjj, z;'. Then we see that forn > N,

! T(1-96)
0 =35 + f H(r,™(t0)dr, 0 < 1 < 0=
. 271
, 01— oy (5.11)
Zn(ta -x) = Zg + f H(T, Zn(ta T))dT70 <t< ﬁa
0 -
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where H = E + F in Theorem 1.3. Then if 0 <7 < T(ZL—__‘?” and 0 <6 <1, we get

lI2"(2) = 27 @lls < llzg — 2o lls + fo 1H(Z" (1)) — HZ™)(T)llsd. (5.12)

Define 6(r) = L(1 +6) + (D¥*F((1 = 6)” = £7 — [(1 = 6)” + (27*1 = 1)£]#), and setting @ = T in
Lemma 2.12, we have 6 < 6(7) < 1. Together with (5.12), this implies
Lilz"(7) = 2% (@)lls

IH @)@ — HEZ™)(lls < S =67 (5.13)

where L = 2"[(a + b)e "0 + V2]||zll”; , and we deduce

5 9
Gtr,s

Sl @ = 22Ol | T =06)7

") = 2Ol < 12— s + LT -
1z"() — 2= (@)lls ”Zo ) Ils (1-0) T(1-6) —t

Since LT2%°+3 < %, we get

(1) — 2% T(1-9)
120 - 20l < 1~ 25l + == e [ TAZ9)

2(1 =90) T -6y -+t
which implies
T -9 T -9 1
SO 1 =0 \|m—— <llzg =2 lls(1 =0)” {|m7——=— + =l"(?) = " Ol|g,-
12°(1) = 27 Ol (1 = 6) TA =67 —1 = llzg = 2o lls(1 = 6) TA =57 —1 @) = 27 Olle,
Through taking the supremum over 0 < 6 < 1,0 <t < T;f,__‘sl)a, we obtain

o0 o0 l o0
12" = 2%, <llzg—z5lh + Ellz”(t) -2 Ollg,

which is
12" = 2%llg, < 2012"(0) = 27Ol -

Therefore, we have completed the proof of Theorem 1.4. O
6. Conclusions

Our work primarily investigates the Cauchy problem for the generalized short pulse system on the
periodic domain. Utilizing transport theory, we establish the existence and uniqueness of solutions and
prove the continuity of the solution map. Furthermore, we demonstrate that this solution map is Holder
continuous. Finally, we also establish the Gevrey regularity and analyticity of the solutions.
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