Research article Special Issues

New developments in convex analysis: Harmonically trigonometric $ p $-coordinated convex functions and related inequalities

  • Published: 21 October 2025
  • MSC : 26A51, 26D15

  • In this paper, we introduce two novel classes of functions termed the harmonically trigonometric $ p $-convex functions on $ \Delta = [\tau, \upsilon]\times[\varphi, \chi] $ and harmonically trigonometric $ p $-coordinated convex functions. We discuss relations between these two newly introduced classes of convex functions in two variables and validate the theoretical findings with visual 3D graphs that illustrate the relation landscapes and transition regimes between the function classes. We then study several special or limiting cases (e.g. $ p = 1 $, $ p = -1 $, pure harmonic trigonometric and pure trigonometric), showing that our general formulations leads to new novel convexities. Hermite-Hadamard, Fejér-Hermite-Hadamard, and related type integral inequalities, with bounds including hypergeometric functions, are presented via a novel coordinated class of convex functions.

    Citation: Sabila Ali, Muhammad Samraiz, Salma Trabelsi, Hajer Zaway. New developments in convex analysis: Harmonically trigonometric $ p $-coordinated convex functions and related inequalities[J]. AIMS Mathematics, 2025, 10(10): 23984-24015. doi: 10.3934/math.20251066

    Related Papers:

  • In this paper, we introduce two novel classes of functions termed the harmonically trigonometric $ p $-convex functions on $ \Delta = [\tau, \upsilon]\times[\varphi, \chi] $ and harmonically trigonometric $ p $-coordinated convex functions. We discuss relations between these two newly introduced classes of convex functions in two variables and validate the theoretical findings with visual 3D graphs that illustrate the relation landscapes and transition regimes between the function classes. We then study several special or limiting cases (e.g. $ p = 1 $, $ p = -1 $, pure harmonic trigonometric and pure trigonometric), showing that our general formulations leads to new novel convexities. Hermite-Hadamard, Fejér-Hermite-Hadamard, and related type integral inequalities, with bounds including hypergeometric functions, are presented via a novel coordinated class of convex functions.



    加载中


    [1] C. Niculescu, L. E. Persson, Convex functions and their applications, New York: Springer, 2006, 7–64. https://doi.org/10.1007/0-387-31077-0_2
    [2] B. G. Pachpatte, On some integral inequalities involving convex functions, Rgmia Res. Rep. Coll., 3 (2000), 487–492.
    [3] S. Ali, R. S. Ali, M. Vivas-Cortez, S. Mubeen, G. Rahman, K. S. Nisar, Some fractional integral inequalities via $h$-Godunova–Levin preinvex function, AIMS Math., 7 (2022), 13832–13844. https://doi.org/10.3934/math.2022763 doi: 10.3934/math.2022763
    [4] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X
    [5] M. Samraiz, M. Malik, S. Naheed, A. O. Akdemir, Error estimates of Hermite‐Hadamard type inequalities with respect to a monotonically increasing function, Math. Meth. Appl. Sci., 46 (2023), 14527–14546. https://doi.org/10.1002/mma.9334 doi: 10.1002/mma.9334
    [6] J. Hadamard, Ètude sur les propriètès des fonctions entières et en particulier d'une fonction considèrèe par Riemann, J. Math. Pure. Appl., 58 (1983), 171–215.
    [7] S. Ali, S. Mubeen, R. S. Ali, G. Rahman, A. Morsy, K. S. Nisar, M. Zakarya, Dynamical significance of generalized fractional integral inequalities via convexity, AIMS Math., 6 (2021), 9705–9730. https://doi.org/10.3934/math.2021565 doi: 10.3934/math.2021565
    [8] M. Samraiz, T. Atta, H. A. Nabwey, S. Naheed, S. Etemad, On a new $\alpha$-convexity with respect to a parameter: applications on the means and fractional inequalities, Fractals, 32 (2024), 2440035. https://doi.org/10.1142/S0218348X24400358 doi: 10.1142/S0218348X24400358
    [9] A. Almutairi, A. Kiliçman, New fractional inequalities of midpoint type via s-convexity and their application, J. Inequal. Appl., 2019 (2019), 1–19. https://doi.org/10.1186/s13660-019-2215-3 doi: 10.1186/s13660-019-2215-3
    [10] İ. İşcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935–942.
    [11] K. S. Zhang, J. P. Wan, $p$-Convex functions and their properties, Pure Appl. Math., 23 (2007), 130–133.
    [12] H. Kadakal, Hermite-Hadamard type inequalities for trigonometrically convex functions, Sci. Stud. Res. Ser. Math. Inform., 28 (2018), 19–28.
    [13] S. Ali, M. Samraiz, S. Naheed, M. Vivas-Cortez, Advancements in harmonic convexity and its role in modern mathematical analysis, J. Math., 1 (2025), 8847839. https://doi.org/10.1155/jom/8847839 doi: 10.1155/jom/8847839
    [14] S. Ali, M. Samraiz, S. Naheed, M. Vivas-Cortez, Y. Elmasryc, A refined class of harmonically convex functions and Bullen-Mercer-type inequalities, J. Math. Comput. Sci., 39 (2025), 500–521. https://doi.org/10.22436/jmcs.039.04.06 doi: 10.22436/jmcs.039.04.06
    [15] S. S. Dragomir, On the Hadamard's inequlality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math, 5 (2001), 775–788. https://doi.org/10.11650/twjm/1500574995 doi: 10.11650/twjm/1500574995
    [16] A. Almutairi, A. Kiliçman, New refinements of the Hadamard inequality on coordinated convex function, J. Inequal. Appl., 2019 (2019), 1–9. https://doi.org/10.1186/s13660-019-2143-2 doi: 10.1186/s13660-019-2143-2
    [17] M. A. Noor, K. I. Noor, M. U. Awan, Integral inequalities for coordinated harmonically convex functions, Complex Var. Elliptic Equ., 60 (2015), 776–786. https://doi.org/10.1080/17476933.2014.976814 doi: 10.1080/17476933.2014.976814
    [18] E. Set, İ. İşcan, Hermite-Hadamard type inequalities for harmonically convex functions on the co-ordinates, arXiv preprint, 2014. https://doi.org/10.48550/arXiv.1404.6397
    [19] M. Samraiz, F. Nawaz, S. Iqbal, T. Abdeljawad, G. Rahman, K. S. Nisar, Certain mean-type fractional integral inequalities via different convexities with applications, J. Inequal. Appl., 2020 (2020), 1–19. https://doi.org/10.1186/s13660-020-02474-x doi: 10.1186/s13660-020-02474-x
    [20] S. S. Dragomir, Lebesgue integral inequalities of Jensen type for $\lambda $-convex functions, Armen. J. Math., 10 (2018), 1–19. https://doi.org/10.52737/18291163-2018.10.8-1-19 doi: 10.52737/18291163-2018.10.8-1-19
    [21] M. Tunç, On some new inequalities for convex functions, Turkish J. Math., 36 (2012), 245–251.
    [22] M. A. Noor, K. I. Noor, S. Iftikhar, Hermite-Hadamard inequalities for harmonic nonconvex functions, MAGNT Res. Rep., 4 (2016), 24–40.
    [23] M. R. Delavar, S. M. Aslani, M. D. L. Sen, Hermite-Hadamard-Fejér inequality related to generalized convex functions via fractional integrals, J. Math., 2018 (2018). https://doi.org/10.1155/2018/5864091
    [24] M. Muddassar, M. I. Bhatti, M. Iqbal, Some new s-Hermite-Hadamard type inequalities for differentiable functions and their applications, Proc. Pakistan Acad. Sci., 49 (2012), 9–17. https://doi.org/10.1186/1029-242X-2012-267 doi: 10.1186/1029-242X-2012-267
    [25] M. Samraiz, M. Hammad, S. Naheed, A comprehensive study of refined Hermite-Hadamard inequalities and their applications, Filomat, 39 (2025), 683–696. https://doi.org/10.2298/FIL2502683S doi: 10.2298/FIL2502683S
    [26] S. I. Butt, M. Umar, D. Khan, Y. Seol, S. Tipurić-Spužević, Hermite-Hadamard-type inequalities for harmonically convex functions via proportional Caputo-Hybrid operators with applications, Fractal Fract., 9 (2025), 77. https://doi.org/10.3390/fractalfract9020077 doi: 10.3390/fractalfract9020077
    [27] S. S. Dragomir, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167 (1992), 49–56. https://doi.org/10.1016/0022-247X(92)90233-4 doi: 10.1016/0022-247X(92)90233-4
    [28] M. A. Noor, K. I. Noor, M. U. Awan, S. Khan, Hermite-Hadamard inequalities for s-Godunova-Levin preinvex functions, J. Adv. Math. Stud., 7 (2014), 12–19.
    [29] R. S. Ali, S. Mubeen, S. Ali, G. Rahman, J. Younis, A. Ali, Generalized Hermite-Hadamard-type integral inequalities for-Godunova-Levin functions, J. Funct. Spaces, 2022 (2022). https://doi.org/10.1155/2022/9113745
    [30] L. Fejèr, Über die fourierreihen, Ⅱ, Math. Naturwiss. Anz Ungar. Akad. Wiss., 24 (1906), 369–390.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(233) PDF downloads(21) Cited by(0)

Article outline

Figures and Tables

Figures(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog