Research article

Intelligent decision framework for optimal spacecraft shielding material against cosmic radiation under Ⅳ-𝑞-RPF settings

  • Published: 21 October 2025
  • MSC : 03E72, 94D05

  • This research presents two new Yager's ordered weighted aggregation operators using interval-valued $ q $-rung picture fuzzy (Ⅳ-$ q $-RPF) knowledge, namely the interval-valued $ q $-rung picture fuzzy Yager ordered weighted averaging operator (Ⅳ-$ q $-RPFYOWAO) and the interval-valued $ q $-rung picture fuzzy Yager ordered weighted geometric operator (Ⅳ-$ q $-RPFYOWGO). A pair of novel score and accuracy functions for interval-valued $ q $-rung picture fuzzy numbers (Ⅳ-$ q $-RPFNs) is formulated. A step-by-step process is designed to solve multi-attribute decision-making (MADM) problems using the proposed methods in Ⅳ-$ q $-RPF settings. In addition, these methods are efficiently applied to solve the MADM problem of identifying an optimal spacecraft shielding material against cosmic radiation. A detailed comparative study is presented to illustrate the validity of the suggested techniques in comparison with the existing knowledge.

    Citation: Loredana Ciurdariu, Najam Ul Sahar, Ahmed M. Zidan. Intelligent decision framework for optimal spacecraft shielding material against cosmic radiation under Ⅳ-𝑞-RPF settings[J]. AIMS Mathematics, 2025, 10(10): 24016-24060. doi: 10.3934/math.20251067

    Related Papers:

  • This research presents two new Yager's ordered weighted aggregation operators using interval-valued $ q $-rung picture fuzzy (Ⅳ-$ q $-RPF) knowledge, namely the interval-valued $ q $-rung picture fuzzy Yager ordered weighted averaging operator (Ⅳ-$ q $-RPFYOWAO) and the interval-valued $ q $-rung picture fuzzy Yager ordered weighted geometric operator (Ⅳ-$ q $-RPFYOWGO). A pair of novel score and accuracy functions for interval-valued $ q $-rung picture fuzzy numbers (Ⅳ-$ q $-RPFNs) is formulated. A step-by-step process is designed to solve multi-attribute decision-making (MADM) problems using the proposed methods in Ⅳ-$ q $-RPF settings. In addition, these methods are efficiently applied to solve the MADM problem of identifying an optimal spacecraft shielding material against cosmic radiation. A detailed comparative study is presented to illustrate the validity of the suggested techniques in comparison with the existing knowledge.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] R. R. Yager, Aggregation operators and fuzzy systems modeling, Fuzzy Sets Syst., 67 (1994), 129–145. https://doi.org/10.1016/0165-0114(94)90082-5 doi: 10.1016/0165-0114(94)90082-5
    [3] I. B. Turksen, Interval valued fuzzy sets based on normal forms, Fuzzy Sets Syst., 20 (1986), 191–210. https://doi.org/10.1016/0165-0114(86)90077-1 doi: 10.1016/0165-0114(86)90077-1
    [4] K. T. Atanassov, Intuitionistic fuzzy sets, Heidelberg: Springer, 1999. https://doi.org/10.1007/978-3-7908-1870-3
    [5] Z. S. Xu, Intuitionistic fuzzy aggregation operators, IEEE Trans. Fuzzy Syst., 15 (2007), 1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678 doi: 10.1109/TFUZZ.2006.890678
    [6] H. Zhao, Z. S. Xu, M. F. Ni, S. S. Liu, Generalized aggregation operators for intuitionistic fuzzy sets, Int. J. Intell. Syst., 25 (2010), 1–30. https://doi.org/10.1002/int.20386 doi: 10.1002/int.20386
    [7] C. Q. Tan, Generalized intuitionistic fuzzy geometric aggregation operator and its application to multi-criteria group decision making, Soft Comput., 15 (2011), 867–876. https://doi.org/10.1007/s00500-010-0554-6 doi: 10.1007/s00500-010-0554-6
    [8] C. Q. Tan, W. T. Yi, X. H. Chen, Generalized intuitionistic fuzzy geometric aggregation operators and their application to multi-criteria decision making, J. Oper. Res. Soc., 66 (2015), 1919–1938. https://doi.org/10.1057/jors.2014.104 doi: 10.1057/jors.2014.104
    [9] T. Y. Chen, H. P. Wang, Y. Y. Lu, A multicriteria group decision-making approach based on interval-valued intuitionistic fuzzy sets: a comparative perspective, Expert Syst. Appl., 38 (2011), 7647–7658. https://doi.org/10.1016/j.eswa.2010.12.096 doi: 10.1016/j.eswa.2010.12.096
    [10] S. M. Chen, M. W. Yang, S. W. Yang, T. W. Sheu, C. J. Liau, Multicriteria fuzzy decision making based on interval-valued intuitionistic fuzzy sets, Expert Syst. Appl., 39 (2012), 12085–12091. https://doi.org/10.1016/j.eswa.2012.04.021 doi: 10.1016/j.eswa.2012.04.021
    [11] R. R. Yager, A. M. Abbasov, Pythagorean membership grades, complex numbers, and decision making, Int. J. Intell. Syst., 28 (2013), 436–452. https://doi.org/10.1002/int.21584 doi: 10.1002/int.21584
    [12] G. Shahzadi, M. Akram, A. N. Al-Kenani, Decision-making approach under Pythagorean fuzzy Yager weighted operators, Mathematics, 8 (2020), 1–20. https://doi.org/10.3390/math8010070 doi: 10.3390/math8010070
    [13] X. D. Peng, Y. Yang, Some results for Pythagorean fuzzy sets, Int. J. Intell. Syst., 30 (2015), 1133–1160. https://doi.org/10.1002/int.21738 doi: 10.1002/int.21738
    [14] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [15] R. R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst., 25 (2017), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [16] P. D. Liu, P. Wang, Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making, Int. J. Intell. Syst., 33 (2018), 259–280. https://doi.org/10.1002/int.21927 doi: 10.1002/int.21927
    [17] P. D. Liu, J. L. Liu, Some q-rung orthopair fuzzy Bonferroni mean operators and their application to multi-attribute group decision making, Int. J. Intell. Syst., 33 (2018), 315–347. https://doi.org/10.1002/int.21933 doi: 10.1002/int.21933
    [18] P. D. Liu, S. M. Chen, P. Wang, Multiple-attribute group decision-making based on q-rung orthopair fuzzy power Maclaurin symmetric mean operators, IEEE Trans. Syst. Man Cybern. Syst., 50 (2020), 3741–3756. https://doi.org/10.1109/TSMC.2018.2852948 doi: 10.1109/TSMC.2018.2852948
    [19] C. Jana, G. Muhiuddin, M. Pal, Some Dombi aggregation of Q-rung orthopair fuzzy numbers in multiple-attribute decision making, Int. J. Intell. Syst., 34 (2019), 3220–3240. https://doi.org/10.1002/int.22191 doi: 10.1002/int.22191
    [20] H. Garg, S. M. Chen, Multiattribute group decision making based on neutrality aggregation operators of q-rung orthopair fuzzy sets, Inform. Sci., 517 (2020), 427–447. https://doi.org/10.1016/j.ins.2019.11.035 doi: 10.1016/j.ins.2019.11.035
    [21] H. Garg, J. Gwak, T. Mahmood, Z. Ali, Power aggregation operators and VIKOR methods for complex q-rung orthopair fuzzy sets and their applications, Mathematics, 8 (2020), 1–34. https://doi.org/10.3390/math8040538 doi: 10.3390/math8040538
    [22] Y. D. Uslu, H. Dinçer, S. Yüksel, E. Gedikli, E. Yılmaz, An integrated decision-making approach based on q-rung orthopair fuzzy sets in service industry, Int. J. Comput. Intell. Syst., 15 (2022), 14. https://doi.org/10.1007/s44196-022-00069-6 doi: 10.1007/s44196-022-00069-6
    [23] J. Ali, Norm-based distance measure of q-rung orthopair fuzzy sets and its application in decision-making, Comput. Appl. Math., 42 (2023), 184. https://doi.org/10.1007/s40314-023-02313-x doi: 10.1007/s40314-023-02313-x
    [24] B. P. Joshi, A. Singh, P. K. Bhatt, K. S. Vaisla, Interval valued q-rung orthopair fuzzy sets and their properties, J. Intell. Fuzzy Syst., 35 (2018), 5225–5230. https://doi.org/10.3233/JIFS-169806 doi: 10.3233/JIFS-169806
    [25] T. N. Parthasarathy, C. S. Thilagasree, T. Jayakumar, V. Simic, D. Pamucar, Stratified enhanced interval-valued q-rung orthopair picture bipolar fuzzy decision-making approach for municipal solid waste disposal technique selection, Int. J. Environ. Sci. Technol., 22 (2025), 13049–13068. https://doi.org/10.1007/s13762-025-06442-0 doi: 10.1007/s13762-025-06442-0
    [26] B. C. Cường, Picture fuzzy sets, J. Comput. Sci. Cybern., 30 (2014), 409. https://doi.org/10.15625/1813-9663/30/4/5032 doi: 10.15625/1813-9663/30/4/5032
    [27] B. C. Cuong, V. Kreinovich, Picture fuzzy sets–a new concept for computational intelligence problems, In: 2013 Third World Congress on Information and Communication Technologies (WICT 2013), 2013, 1–6. https://doi.org/10.1109/WICT.2013.7113099
    [28] H. Garg, Some picture fuzzy aggregation operators and their applications to multicriteria decision-making, Arab. J. Sci. Eng., 42 (2017), 5275–5290. https://doi.org/10.1007/s13369-017-2625-9 doi: 10.1007/s13369-017-2625-9
    [29] N. V. Dinh, N. X. Thao, Some measures of picture fuzzy sets and their application in multi-attribute decision making, Int. J. Math. Sci. Comput., 4 (2018), 23–41. https://doi.org/10.5815/ijmsc.2018.03.03 doi: 10.5815/ijmsc.2018.03.03
    [30] S. Khan, S. Abdullah, S. Ashraf, Picture fuzzy aggregation information based on Einstein operations and their application in decision making, Math. Sci., 13 (2019), 213–229. https://doi.org/10.1007/s40096-019-0291-7 doi: 10.1007/s40096-019-0291-7
    [31] C. Jana, T. Senapati, M. Pal, R. R. Yager, Picture fuzzy Dombi aggregation operators: application to MADM process, Appl. Soft Comput., 74 (2019), 99–109. https://doi.org/10.1016/j.asoc.2018.10.021 doi: 10.1016/j.asoc.2018.10.021
    [32] A. M. Khalil, S. G. Li, H. Garg, H. X. Li, S. Q. Ma, New operations on interval-valued picture fuzzy set, interval-valued picture fuzzy soft set and their applications, IEEE Access, 7 (2019), 51236–51253. https://doi.org/10.1109/ACCESS.2019.2910844 doi: 10.1109/ACCESS.2019.2910844
    [33] K. Jabeen, K. Ullah, M. Akram, I. Haleemzai, Interval valued picture fuzzy Aczel-Alsina aggregation operators and their application by using the multiattribute decision making problem, J. Math., 2023 (2023), 1707867. https://doi.org/10.1155/2023/1707867 doi: 10.1155/2023/1707867
    [34] R. Gul, M. Sarfraz, Enhancing artificial intelligence models with interval-valued picture fuzzy sets and Sugeno-Weber triangular norms, Spectrum Eng. Manag. Sci., 3 (2025), 126–146. https://doi.org/10.31181/sems31202540g doi: 10.31181/sems31202540g
    [35] F. K. Gündoğdu, C. Kahraman, Spherical fuzzy sets and spherical fuzzy TOPSIS method, J. Intell. Fuzzy Syst., 36 (2018), 337–352. https://doi.org/10.3233/JIFS-181401 doi: 10.3233/JIFS-181401
    [36] F. K. Gündoğdu, C. Kahraman, Spherical fuzzy sets and decision making applications, In: Intelligent and fuzzy techniques in big data analytics and decision making, Cham: Springer, 2020,979–987. https://doi.org/10.1007/978-3-030-23756-1_116
    [37] S. Ashraf, S. Abdullah, M. Aslam, M. Qiyas, M. A. Kutbi, Spherical fuzzy sets and its representation of spherical fuzzy t-norms and t-conorms, J. Intell. Fuzzy Syst., 36 (2019), 6089–6102. https://doi.org/10.3233/JIFS-181941 doi: 10.3233/JIFS-181941
    [38] R. Chinram, S. Ashraf, S. Abdullah, P. Petchkaew, Decision support technique based on spherical fuzzy Yager aggregation operators and their application in wind power plant locations: a case study of Jhimpir, Pakistan, J. Math., 2020 (2020), 8824032. https://doi.org/10.1155/2020/8824032 doi: 10.1155/2020/8824032
    [39] T. Mahmood, K. Ullah, Q. Khan, N. Jan, An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets, Neural Comput. Appl., 31 (2019), 7041–7053. https://doi.org/10.1007/s00521-018-3521-2 doi: 10.1007/s00521-018-3521-2
    [40] F. K. Gündoğdu, C. Kahraman, A novel fuzzy TOPSIS method using emerging interval-valued spherical fuzzy sets, Eng. Appl. Artif. Intell., 85 (2019), 307–323. https://doi.org/10.1016/j.engappai.2019.06.003 doi: 10.1016/j.engappai.2019.06.003
    [41] K. Ullah, N. Hassan, T. Mahmood, N. Jan, M. Hassan, Evaluation of investment policy based on multi-attribute decision-making using interval valued T-spherical fuzzy aggregation operators, Symmetry, 11 (2019), 1–27. https://doi.org/10.3390/sym11030357 doi: 10.3390/sym11030357
    [42] A. Hussain, M. Bari, W. Javed, Performance of the multi attributed decision-making process with interval-valued spherical fuzzy Dombi aggregation operators, J. Innov. Res. Math. Compu. Sci., 1 (2022), 1–32.
    [43] L. Li, R. T. Zhang, J. Wang, X. P. Shang, K. Y. Bai, A novel approach to multi-attribute group decision-making with q-rung picture linguistic information, Symmetry, 10 (2018), 1–24. https://doi.org/10.3390/sym10050172 doi: 10.3390/sym10050172
    [44] A. Pinar, F. E. Boran, A novel distance measure on q-rung picture fuzzy sets and its application to decision making and classification problems, Artif. Intell. Rev., 55 (2022), 1317–1350. https://doi.org/10.1007/s10462-021-09990-2 doi: 10.1007/s10462-021-09990-2
    [45] M. Fathima Banu, S. Petchimuthu, H. Kamacı, T. Senapati, Evaluation of artificial intelligence-based solid waste segregation technologies through multi-criteria decision-making and complex q-rung picture fuzzy Frank aggregation operators, Eng. Appl. Artif. Intell., 133 (2024), 108154. https://doi.org/10.1016/j.engappai.2024.108154 doi: 10.1016/j.engappai.2024.108154
    [46] G. Garg, H. Dhumras, On Industry 4.0 supply chain management system in production sector using hybrid q-rung picture fuzzy decision-making techniques, Ann. Oper. Res., 2024, 1–23. https://doi.org/10.1007/s10479-024-06408-4 doi: 10.1007/s10479-024-06408-4
    [47] A. Khan, U. Ahmad, Multi-criteria group decision-making based on 2-tuple linguistic q-rung picture fuzzy sets, Granul. Comput., 9 (2024), 8. https://doi.org/10.1007/s41066-023-00441-7 doi: 10.1007/s41066-023-00441-7
    [48] P. D. Liu, G. Shahzadi, M. Akram, Specific types of q-rung picture fuzzy Yager aggregation operators for decision-making, Int. J. Comput. Intell. Syst., 13 (2020), 1072–1091. https://doi.org/10.2991/ijcis.d.200717.001 doi: 10.2991/ijcis.d.200717.001
    [49] B. C. Cuong, Pythagorean picture fuzzy sets, part 1–Basic notions, J. Comput. Sci. Cybern., 35 (2019), 293–304. https://doi.org/10.15625/1813-9663/35/4/13898 doi: 10.15625/1813-9663/35/4/13898
    [50] J. C. Jiang, X. D. Liu, Z. W. Wang, W. P. Ding, S. T. Zhang, H. Xu, Large group decision-making with a rough integrated asymmetric cloud model under multi-granularity linguistic environment, Inform. Sci., 678 (2024), 120994. https://doi.org/10.1016/j.ins.2024.120994 doi: 10.1016/j.ins.2024.120994
    [51] X. D. Liu, S. S. Zhang, Z. W. Wang, S. T. Zhang, Classification and identification of medical insurance fraud: a case-based reasoning approach, Technol. Econ. Dev. Econ., 31 (2025), 1–27. https://doi.org/10.3846/tede.2025.23597 doi: 10.3846/tede.2025.23597
    [52] M. Naeem, M. Qiyas, S. Abdullah, An approach of interval-valued picture fuzzy uncertain linguistic aggregation operator and their application on supplier selection decision-making in logistics service value concretion, Math. Probl. Eng., 2021 (2021), 8873230. https://doi.org/10.1155/2021/8873230 doi: 10.1155/2021/8873230
    [53] X. P. Jia, B. Z. Jia, A ship equipment reliability evaluation method based on symbolic information and interval-valued q-rung picture fuzzy projection, Ocean Eng., 299 (2024), 117003. https://doi.org/10.1016/j.oceaneng.2024.117003 doi: 10.1016/j.oceaneng.2024.117003
    [54] Z. L. Yang, X. Li, H. Garg, M. Qi, A cognitive information-based decision-making algorithm using interval-valued q-rung picture fuzzy numbers and Heronian mean operators, Cogn. Comput., 13 (2021), 357–380. https://doi.org/10.1007/s12559-020-09811-8 doi: 10.1007/s12559-020-09811-8
    [55] G. Shahzadi, M. Sarwar, M. Deveci, Study of occupational hazards under the environment of interval valued q-rung picture fuzzy sets, Appl. Soft Comput., 177 (2025), 113185. https://doi.org/10.1016/j.asoc.2025.113185 doi: 10.1016/j.asoc.2025.113185
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(280) PDF downloads(25) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog