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score and accuracy functions for interval-valued g-rung picture fuzzy numbers (IV-q-RPFNs) is
formulated. A step-by-step process is designed to solve multi-attribute decision-making (MADM)
problems using the proposed methods in IV-q-RPF settings. In addition, these methods are efficiently
applied to solve the MADM problem of identifying an optimal spacecraft shielding material against
cosmic radiation. A detailed comparative study is presented to illustrate the validity of the suggested
techniques in comparison with the existing knowledge.
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1. Introduction

Table 1 describes the list of abbreviations used in this work.
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Table 1. List of abbreviations.

Description Abbreviation | Description Abbreviation | Description Abbreviation
Aggregation operators | AOs Interval-valued IV-FS Picture fuzzy set PFS
fuzzy set
Multi-attribute MADM Intuitionistic fuzzy | IFS Interval-valued picture | IV-PFS
decision-making set fuzzy set
Interval-valued q - | IV-q-RPFSs | Interval-valued IV-IFS Interval-valued picture | IV-
rung picture fuzzy sets intuitionistic  fuzzy fuzzy Aczel-Alsina PFAAWAOs
set weighted aggregation
operators
Interval-valued q- | IV-q- Pythagorean fuzzy | PyFS Spherical fuzzy sets SFS
rung picture fuzzy | RPFYWAO | set
Yager weighted
averaging operator
Interval-valued q- | IV-q- g-rung  ortho-pair | g-ROFS Interval-valued IV-SFS
rung picture fuzzy | RPFYWGO | fuzzy set spherical fuzzy set
Yager weighted
geometric operator
Interval-valued q- | IV-q-RPFNs | Interval-valued g¢- | IV-q-ROFS | Interval-valued Iv-
rung picture fuzzy rung ortho-pair spherical fuzzy Dombi | SFDWAOs
numbers fuzzy set weighted aggregation
operators
Decision-making DM D.g-quasirung ortho- | p,g- g-rung picture fuzzy q-RPFS
pair fuzzy hybrid | QOFHA set
aggregation
Fuzzy set FS q-rung ortho-pair q-ROFHS (p,q,r)-spherical fuzzy | (p,q,r)-SFSs
fuzzy hyper soft set sets
Table 2 describes the list of symbols used in this study and their meanings.
Table 2. List of symbols.
Description Symbols
Membership a
Neutral B
Non-membership £
Operational parameter T
q-rung q
AIMS Mathematics Volume 10, Issue 10, 24016-24060.
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1.1. Background and literature review

Decision-making (DM) has gained prominence in the past few decades as an essential aspect
of solving complex challenges. Multi-attribute decision-making (MADM) techniques help
organizations evaluate multiple factors to choose the optimal solutions. These methods require
clear trade-offs and evaluations of both internal and external attributes. Traditional DM methods
using crisp set theory struggled with vague data, prompting researchers to create mathematical
models that would be applicable in engineering, medical diagnostics, and technology. In 1965,
Zadeh [1] developed fuzzy sets (FSs) to represent human judgment through membership functions.
Yager [2] proposed aggregation operators (AOs) based upon the basic concepts of Zadeh’s seminal
work to enable better integration of diverse fuzzy variables. Turksen [3] introduced interval-valued
fuzzy sets (IV-FSs). Atanassov [4] proposed the idea of intuitionistic fuzzy sets (IFSs). Xu [5]
investigated intuitionistic fuzzy aggregation operators (IFAOs). Zhao et al. [6] formulated
generalized AOs for IFSs. Tan and colleagues [7,8] developed generalized geometric AOs within
the framework of IFS knowledge. Chen [9] described a MADM approach employing interval-
valued intuitionistic fuzzy sets (IV-IFSs). Chen [10] considered the subject of a MADM technique
with IV-IFSs. Yager [11] introduced an improved framework of Pythagorean fuzzy sets (PyFSs).
The PyFS model has been widely applied in numerous fields [12—14]. Yager [15] put forward the
notion of g-rung ortho-pair fuzzy sets (q-ROFSs), whereby the sum of the gth powers of the MD
(membership degree) and NMD (non-membership degree) is less than or equal to 1. Liu and Wang [16]
explored q-ROF weighted AOs (WAOs). Liu and Liu [17] extended the concept of Bonferroni
mean WAOs to q-ROF information. A multi-attribute group decision-making (MAGDM)
approach with g-ROF power Maclaurin AOs was devised by [18]. The Dombi AOs for g-ROFS
were described by Jana et al. [19]. A fuzzy interpretation of MAGDM build upon neutrality
operators of q-ROFSs was introduced in [20]. Garg et al. [21] introduced power AOs and Vlse
Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR) methodologies for intricate g-ROFSs.
A complex DM structure based on q-ROFSs for optimization of evaluative approaches was
investigated in [22]. Ali [23] proposed a norm-based distance metric for g-ROFSs. Joshi et al. [24]
investigated the key properties of interval-valued q-ROFSs (IV-g-ROFSs). A stratified improved
interval-valued g-rung ortho-pair picture bipolar fuzzy (IV-g-ROPBF) DM technique to select the
method of solid waste disposal, was proposed in a study by Parthasarathy et al. [25].

Cuong [26] introduced the picture fuzzy set (PFS) framework which incorporates three elements—
yes, abstain, and no—to better represent uncertainty. Cuong and Kreinovich [27] further explored PFS
applications in computational intelligence. Garg [28] contributed by developing various AOs within
the PFS context. In [29], novel similarity and distance metrics for PFSs were proposed. The Einstein
AOs in PFS environments was introduced in [30]. Notably, Jana et al. [31] designed Dombi AOs using
PFSs. In [32], new operations on IV-PFS and IV picture fuzzy soft sets (IV-PFSSs) were proposed.
The interval-valued picture fuzzy Aczel-Alsina (IV-PFAA) AOs were investigated in [33]. Enhanced
artificial intelligence models with IV-PFSs and Sugeno-Weber triangular norms were investigated in [34].
Gundogdu and Kahraman [35] presented the concept of spherical fuzzy sets (SFSs). The successful
applications of SFSs across various fields can be found in [36—39]. The idea of interval-valued SFSs
(IV-SFSs) was developed in [40]. The efficiency of MADM methodologies based on interval-valued
T-spherical fuzzy aggregation operators (IV-TSFAOs) for investment policy assessments was
demonstrated in [41]. The importance of IV-SF Dombi strategies was discussed in [42].
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The introduction of the g-rung picture fuzzy set (q-RPFS), in which the g-th powers of MD and
NMD can reach a maximum of one, was presented by Li et al. [43]. A novel q-RPF methodology was
devised for group DM scenarios within g-RPF contexts in [44]. Analysis of solid waste segregation
based on artificial intelligence technologies through MADM and complex g-RPF frank aggregation
operators were addressed in [45]. Garg et al. [46] explored the process of integrating industry
technologies into logistic management within the industrial sector, employing hybrid g-RPF DM
methods. Khan and Ahmed [47] introduced MCGDM based on 2-tuple linguistic g-rung picture fuzzy
sets. The DM situations were addressed with intricacy under ambiguity using several types of g-rung
picture fuzzy Yager aggregation operators (q-RPFYAOs) in [48]. In addition, Cuong [49] presented
the concept of a Pythagorean picture fuzzy set (PyPFS).

Jiang et al. [50] introduced a comprehensive DM framework for large groups, utilizing a rough
integrated asymmetric cloud model inside a multi-granularity linguistic context to accurately capture
diverse expert evaluations. Liu et al. [51] employed a case-based reasoning methodology for the
categorization and detection of medical insurance fraud, underscoring the increasing application of
intelligent DM approaches in intricate real-world issues. Enhancing these advancements, our research
introduces IV-q-RPF Yager AOs, which offer a versatile and comprehensible framework for intricate
MADM in uncertainty.

The interval-valued g-RPFS (IV-q-RPFS) was established in [52]. Jia and Jia [53] suggested a
novel method for the estimation of the dependability of a ship’s equipment using symbolic information
integrated with IV-q-RPF projection methods. Yang et al. [54] proposed an innovative cognitive
information-based DM system using IV-g-RPFSs and Heronian mean operators. Shahzadi et al. [55]
studied the industrial risks under the environment of IV-g-RPFSs.

1.2. Literature gaps and motivations of the current study

In everyday DM, data often lacks clarity and uniformity. Conventional models like IFSs, PyFSs,
or q-ROFSs cannot be applied because they depend on single-valued inputs. Even advanced models
such as g-RPFSs fail to fully capture the uncertainty in expert judgment. On the other hand, IV-g-
RPFSs address this issue by allowing the use of interval-based degrees. To illustrate this limitation,
consider a simple decision problem of evaluating cybersecurity. Suppose that the experts must assess
a new security system. One expert states that the system is mostly reliable but with some uncertainty,
another gives a neutral response, while a third is hesitant because of missing data. If represented using
single values, this uncertainty is lost. By contrast, IV-q-RPFSs can express each degree (MD,
Neutral membership degree (NeD), and NMD) as intervals, e.g., MD € [0.55,0.75], NeD €
[0.15,0.25], NMD € [0.05,0.15], while the g-parameter adjusts the strictness of evaluation. This
example illustrates the superior flexibility of IV-q-RPFSs in modelling both the expert’s uncertainty
and varying attitudes toward uncertainty. They present a more adaptable framework that improves both
the accuracy and flexibility of judgments. It is especially helpful in complex and ambiguous situations.

IV-q-RPFSs offer a robust framework for modelling DM scenarios under significant uncertainty by
representing MD, NeD, and NMD as intervals rather than exact values. This framework accurately
captures both the expert’s uncertainty and measurement imprecision, providing a more realistic
representation of real-world scenarios. The g-parameter increases flexibility by controlling the feasible
range of degrees, where larger g values allow higher flexibility for uncertainty and smaller g values
impose stricter evaluations. This flexibility allows IV-g-RPFSs to handle a wide range of decision-maker
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attitudes toward risk. When compared with classical fuzzy, intuitionistic fuzzy (IF), or Pythagorean fuzzy
(PF) models, the use of interval representation and the g-rung structure make the model more expressive
and robust. These characteristics make the IV-q-RPFSs very appropriate in solving complex MADM
tasks in fields like medicine, cybersecurity, engineering design, and environmental management.

AOs play a vital role in DM by combining varied information and enabling evaluations under
uncertainty. Numerous AOs, including Dombi, Einstein, Hamacher, and Heronian AOs, have been
suggested; however, their dependence on inflexible numerical frameworks frequently constrains their
interpretability and adaptability in qualitative or unpredictable scenarios. Yager AOs are preferable, as
they provide an intuitive parameter that incorporates conjunctive and disjunctive behaviors, providing
decision-makers with enhanced flexibility. They also have advantageous theoretical attributes, like
commutativity, associativity, idempotency, and monotonicity, while ensuring consistency in both
extreme and intermediate scenarios. Moreover, Yager operators adeptly handle fuzzy and interval-
valued information, overcoming the over- or underestimating seen in various alternative methods, and
their alignment with ordered weighted aggregation (OWA)-type approaches renders them especially
potent in MADM under uncertainty. Consequently, we expand the IV-q-RPF framework to incorporate
novel Yager-based operators, as they offer the most comprehensible and versatile solution for tackling
intricate DM challenges in this study.

The novelty of the proposed interval-valued q -rung picture fuzzy Yager ordered weighted
averaging (IV-g-RPFYOWA) operators stems from their ability to combine both the expressive power
of IV-g-RPFSs and the mechanism of OWA as proposed by Yager. This combination effectively
addresses the limitations of existing IV-g-RPF operators that are mainly based on arithmetic or geometric
aggregation. Unlike conventional operators, the parameter-based aggregation functionality of interval-
valued g-rung picture fuzzy Yager ordered weighted aggregation operators (IV-g-RPFYOWAOs)
enables decision-makers to regulate the balance between optimism and pessimism, which gives them
fine-grained control over the integration of information. This dynamic adjustment makes it adaptable in
varying DM situations. The incorporation of the Yager concept into the IV-q-RPF framework creates a
powerful trade-off between accuracy and flexibility, allowing better treatment of interval uncertainty and
multi-dimensional assessments. This innovation greatly improves current practices by addressing the
shortcomings and enhancing the modelling of uncertainty, thus making a significant contribution to
decision science. The above discussion prompts us to present two new Yager ordered weighted
aggregation operators (YOWAOs) in the IV-g-RPF framework and the formulation of a new
mathematical process to solve MADM problems with the help of these operators in this article.

Cosmic radiation poses a serious threat to human missions beyond Earth. Astronauts’ health can
suffer, and spacecraft equipment can be damaged. In the absence of the shielding effect of Earth’s
atmosphere, space travellers will be subjected to high-energy protons, heavy ions, and subatomic
particles from cosmic rays and solar events. This kind of exposure may cause cancer, neurological
disorders, and acute radiation syndrome. It may also destroy electronic systems, exposing a mission to
failure. Conventional materials used in spacecraft, e.g. aluminium alloys, provide limited protection.
They are not very useful against heavy ions, which are the most harmful particles. In addition, their
dense nature makes them too heavy and expensive to carry on long-term missions.

Researchers are investigating new lightweight materials that exhibit good mechanical strength,
thermal resistance, and good radiation shielding. Polyethylene contains a high proportion of hydrogen
and has been demonstrated to be more effective than aluminium in the absorption of cosmic rays, and
is therefore useful in weight-sensitive missions. Nevertheless, it cannot be used in primary spacecraft
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construction because of its structural weakness. To alleviate this shortcoming new composite
materials, particularly those reinforced with boron nitride nanotubes, are more durable and radiation
resistant. Furthermore, multi-layer shielding systems contribute to the overall safety. Such
developments are essential to secure and sustained human presence on the Moon and Mars.

The key objectives of this research are as follows:

(a) To create a novel IV-g-RPFN ranking system that efficiently handles MADM issues;

(b) To delineate the essential Yager operational principles pertinent to IV-q-RPFNs;

(c) To present two innovative Yager OWAOs in the context of the IV-q-RPFs settings, tailored
to handle complex and ambiguous decision data and analyze their structural features;

(d) To develop a step-by-step mathematical procedure for MADM by utilizing the proposed
techniques executed in the IV-q-RPF context;

(e) To ensure the applicability and efficiency of the proposed methods by addressing a real-world
MADM problem of selecting an optimal spacecraft shielding material against cosmic radiation;

(f) To perform an in-depth comparison study, particularly highlighting the effectiveness of
recently suggested techniques relative to the existing ones.

The remaining portion of the paper is structured into several sections as follows. Section 2
discusses the essential concepts and rules of IV-q-RPFSs. Section 3 formulates innovative scoring and
accuracy functions for addressing MADM issues in IV-q-RPF scenarios. Section 4 introduces two new
YOWAOs within the IV-g-RPF framework and presents an analysis of their structural characteristics.
Section 5 develops a mathematical framework to tackle MADM challenges using the newly proposed
techniques. It includes the solution of the MADM problem of selecting an optimal spacecraft shielding
material against cosmic radiation using IV-q-RPFYOWAO:s. It also examines the effectiveness of
these new methodologies with the existing knowledge. Section 6 concludes the study by outlining the
impact that the research could have and summarizing the most important findings.

2. Preliminaries

This section explores the foundational facets of the subject presented in this article. We provide a
concise overview of the basic attributes, operations, and methodologies pertaining to IV-g-RPFSs
defined on a non-empty universal set.

Definition 2.1. /43] A q-RPFS L of ® is expressed as

L={(g.a:(9).B:(9).e:(9))|g € G}, (2.1)

where a;:® — [0,1], B::® — [0,1], and €;: ® — [0,1] represent the membership, neutral, and non-
membership functions, respectively, such that 0 < (a;(g)?+ (B:(g))1+ (e.(¢)1 <1, Vg€
®, and q is a positive integer.

Definition 2.2. /54] Assume that & represents the universe and C([0,1]) describes the collection of
all subintervals of [0,1]. An IV-q-RPFS < is defined as

T ={(g,ax(9). b=(9), £x(®))|g € G}, (2.2)

where as(g) = [az(9), az" (@], Bz(@) = [B<"(9),B<"(9)], and ex(g) = [e:1(9), &xY (9)],

respectively, represent the membership, neutral, and non-membership degrees of the element g to I
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suchthat 0 < az"(g) < azV(g) < 1,0 < B (g) < BzY(¢) <1, and 0 < e5-(g) < e:V(g) < 1.
Moreover, as:® — C([0,1]), B+:® — C([0,1]), and ex:® — C([0,1]) are, respectively, the
membership, neutral, and non-membership functions that satisfy the conditions 0 < (ag'(g))? +
(Bz" (@) + (2(9))7 <1 and 0 < (az" (@) + (Bz" (@) + (2" (@)1 <1,V g €6, and
q is a positive integer.

In the subsequent portion of the study, the membership, neutral, and non-membership degrees of
g € ® are represented by the symbol I = ([al, aV], [BE, BU], [€L, €V]). This specific representation
of the element I is termed as an IV-g-RPFN, where 0 < at, BL, &b, (a®)? + (BT + (e1)? < 1,
and 0< a¥, Y, eV, (a¥)1+ (BY)T + (V)1 < 1.
Definition 2.3. /27] Consider any two IV-PFNs $; = ([a,%, a,V], [B." B1P1[e1t, €.Y]) and K, =

([t Y1, [Bo") BoU1, [€25, €,V ]). The fundamental operations of K, and K, are described as
follows:

I S <K, iff ;b <yt Byt > Bt ek > &b aU < Y, BV > B,V and £,V > &,U;
. L L U U
1. 8 =8 iff a* :Lale:] B =B a6t = &b i’ = &%, B7 =B, and g” = &Y
al. - K$=(le" &L B By Llag, ar VD).

Definition 2.4. /2] Yager s t-conorm and t-norm on any (m,n) € [0,1]? and for any t€(0,0) are
given by

I S(m,n)=min {1, (m* + n’)%}.

II. T(m,n)=1-—min {1, (Q-m)y+Qa- /n)f)%}.

Definition 2.5. /48] Let A be a set of q-RPFNs, I; = {(a;, By, ¢&), i=12,...,4, and 9 =
(91,95, ..., 94)T be an associated weight vector of these q-RPFNs ¥; with 0 <9, < 1 such that
f;l 9; = 1. The q-RPFYWA operator is a mapping: A" — W specified by the expression below:

h
q— RPFYWAg(S:l, 3:2, ...,Siﬁ)z @izlﬂizi

q\/mm (1' (Zfél(ﬁi(ai)‘”))%)' q\/l —min (1' (S, (0.1 - (ﬁi)q)r))%>’ (2.3)

qjl - min (1, (0911 = @)0"))')

Moreover, the q-RPFYWG operator is a mapping: U™ — A specified by the expression below:

h
q — RPFYWGy(%, Ty, .., Tp)=2_ T

qjl —min (1, (32, (9:(1 ~ @)0")7), ij“‘ (1ERe@mY). | es

\ q\/min (1, OMACE ((Ei)‘"))%)
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The overall methodology workflow is depicted in Figure 1.

Empirical validation of the proposed operators

y

Sensitivity analysis of the parameters

Figure 1. Overall methodology workflow.
3. Formulation of a novel ranking mechanism for IV-q-RPFNs

In this section, a pair of novel score and accuracy functions for IV-g-RPFNs is developed for
MADM problems.
Definition 3.1. Consider an IV-q-RPFN as T = ([at, a], [BL, BY], [€, €Y]). The score function $
of T is formulated as

LG _plyg_( L9 UG _rpU~NqG_ (U4
() = @@ () +2(a =B here $(T) € [-1,1].

And accuracy function is defined as

@)1+ (BT +(eN) +(@?) T+ (8”14 (V)"
2

AR) =

, where A(Z) € [0,1].

This definition delineates the ranking criteria to any two IV-g-RPFNs I, and X, as follows:

AIMS Mathematics Volume 10, Issue 10, 24016-24060.
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L 9(F) > 9H(F,) = I, > I, which means that I, is stronger then I,;
1. $H(T)) < H(F,) = I, < Iy, which means that I, is weaker then T,;
1. 9, =95(F,) = I, ~ Ty, which means that T, and T, are equivalent.
Then if
(@) A(Zy) > A(T,) = T, > Ty,
(b) A(T1) <AF;) = T, <Ty;
(c) A(T) =AF) =T ~ Ty

To substantiate the efficacy of our proposed scoring function for IV-g-RPFNs, we delineate the
subsequent illustrative example.
Example 3.1. Consider any two IV-q-RPFNs ¥; = ([0.5,0.8],[0.2,0.4],[0.1,0.3]) and %, =
([0.6,0.7],[0.2,0.5],[0.2,0.4]), where q = 2. In view of Definition 3.1, we have $(¥;) = 0.295
and $H(T,) = 0.180.

Consequently, by Definition 3.1(I), we ascertain that I is superior to T,. This indicates that I,
is better than T ,.

4. Structural characteristics of IV-g-RPFYOWAOs

In this section, we introduce the Yager operations within the framework of the IV-q-RPF
environment. We introduce two innovative YOWAOs, namely the IV-g-RPFYOWA operator and the
IV-q-RPFYOWG operator, and analyze the essential characteristics inherent to these operators.
Definition 4.1. For any two IV-q-RPFNs T, = ([ayt, a1Y), [B5 BiY) [:5 &Y]) and T, =

([t a,V], [Bo) B2V [e25, €,Y]) , ©> 0, and w > 0. The operational laws for IV-q-RPFNs
based on Yager's t-conorm and t-norm are expressed as

["jm (1 (@D + @hny), "jm‘n (1 (@ <a2“>qf)1)\ ,

71_nnn<L(m—wﬁfyOT+(1—ﬂ%5¢ff>'

= min(1,((1- D"+ (- 60

L 116912: q\/
q

1—@fwf+(1—@fwff)

(¢
1—min| 1, ((

1—min <1,

J
7

1—@wa+crw@%ﬂ3ﬂ
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_‘1\/1 — min (1, (1= (@hH) +(1- (azL)q)T)%> ,_
_(:/1 — min (1, (1= @9 +(1- (az”)q)’)%)

I eI = : 1
H””’" <1' (CORE (ﬁzL)qT);>, qjmn (1, (8" + (ﬁzu)qf)?ﬂ
[q\/mm <1, (CRUE: («SzL)‘”)%> . qjmﬂin <1, ((&,Y)77 + (gzu)qr)i)]
[q\/mm (1. (W(alL)qT)% , q\/m/in (1, (w(a1U)qr)%)J ,
Jl min (1, (w (1~ (B, )q))>_
0w - j mm<1 A >,
J1 m/m<1 w(1—- (&) )
jl mm(l w(1 - (&" )q) )
Jl man ( 1,((1 - w(@"9) )1>_
J1 min (1,((1 - w(a,")7) )) |
v, Y=

[qjm<1,<w<ﬁs>qf>f>.jm¢n<1.<w<ﬂlv>qf>i)] '

[i/mfin (1, (w(le)qT)%), i/min (1, (w(elu)‘”)%)]

4.1. Fundamental characteristics of the IV-q-RPFYOWA operator

In the subsequent discussion, we propose the concept of the IV-g-RPFYOWAO and examine its
essential properties.
Definition 4.2. Ler A be a set of IV-q-RPFNs, T; = ([a;%, &;U), [B5 BV [e5 YD), i = 1,2, ..., A,
and 9 = (94,9,, ...,94)T be an associated weight vector of these IV-q-RPFNs ¥; with 0 <9, <1

such that 2{;1 9; = 1. Additionally, (p(l),p(Z),p(3),...,p(ﬁ)) is a permutation of {1,2,...,#}
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such that T,;_1y = Ty, Vi The IV-q-RPFYOWAQO is a mapping: U* — A and is defined by the
following rule:

IV —q— RPFYOWAy(Z1, %y, ) Tp)

A
= @_9%,q (4.1)

1

min| 1, <Z(z9i(ap(i)L)qr>

i=1

|
|
\

A
1—min| 1, <Z (9:(1 - o))

i=1

P

Q

;i__l = 8

A
= 1—min| 1, (Z 19 {(1- By )q)

i=1

i=1

M§~

(19 (1 (&) )q)

1—min| 1, Z 0(1- (& )q) >

1l
_

q
|1—m/in 1,
\J i

Physical interpretation of the IV-q-RPFYOWAO

The IV-g-RPFYOWAO offers significant physical interpretations in DM scenarios. The V-
q -RPFYOWAO functions as a balancing mechanism, aggregating uncertain attribute values
through a weighted average procedure that fairly and stably reflects the overall performance of all
attributes. In addition, IV-g-RPFYOWAO prioritises consensus and seamless compromise among
the attributes.

The following result shows that the aggregated value of any finite number of IV-q-RPFNs under
the IV-g-RPFYOWADO is itself an IV-q-RPFN.

Theorem 4.1. Consider £ to be number of IV-q-RPFNs, T; = ([a;%, ;Y1 [Bi", Bi¥1, [e2, &Y]), i =
2, ., R, and 9 = (91,9,, ...,9,)T be an associated weight vector of these IV-q-RPFNs X; with

0<9,<1 such that ¥ ,9,=1 and ©>0. Additionally, (p(1),p(2),p(3),...,p(#))

permutation of {1,2,...,A} such that T,;_1y = T,;), V i Then, the aggregated value of these IV-

q-RPFNs in the framework of an IV-q-RPFYOWA operator is an IV-q-RPFN and is formulated as
follows:

AIMS Mathematics Volume 10, Issue 10, 24016-24060.
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IV —q — RPFYOW Ay(T1, Ty, ., Tp)= O 10T 1)

Um(l CICAD) ’)1)7Jmm(1, (Zfalamapm”wﬁ)‘.
q\/l —min <1. (Zf‘ﬂ (19i(1 - (Bp(i)L)q)T))%>;

in <1 i 1 19 i(1- Bowy )q)

Il
g%—
3

1 min (1 19 (1 - (&0 )q) >

\jl — min <1 19 (1 — (& )q) )

Proof. The validity of this assertion is demonstrated by the application of mathematical induction on /.
Consider the base case when 4 = 2. Here, we have T; = ([a,%, a,V], [B." B1Y1, [€15, &.Y]) and

T, = ([agh a,V], [B2 BoY1, [€25, €,V]). Utilizing the formulated Yager operational laws for IV-g-
RPFNs as delineated in Definition 4.1, we obtain the following expressions:

qjmm (1’ (9200 L)qr)%> ’ qjmm <1, (ﬁl(ap(l)u)qr)%ﬂ ’
[1/1 min (1 91(1 = Boy)) )1>
9, T,1)= [J1 min (1,(8:(1 = Byy"H?)" )

~||H

1 men(l 191(1—(8,0(1) )q)

[\]1 mxm(l 191(1—(€p(1)u)q)

and

lq\]min (1, (ﬁz(ap(z)L)qT)%> ) qjmm (1, (192(ap(2)u)qr)%>] ,
["\/1 m4,n<1 9,(1 = (Boy")9) ) ) _
9,%,02)= [Jl min 1 ﬁ2(1—(ﬁp(z) )q) |

1 m¢n<1 192(1—(5,0(2) )q) >
jl rmn(l ﬂz(l—(gp(z)u)q) %>
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The aggregated value of ¥; and T, in the setting of Definition 4.2 is calculated as follows:

IV — q — RPFYOWAy(T1, %) = 9, T,1) D 9, T,02)

Hmm(l' (ﬁl(apuf)qr)%)ri/mm(lr (ﬁl(wv)‘”ﬁ)]. Hmm(l, <ﬁz<%(z)L)qr)%>_7mm<L (ﬁz(ap(z)u)qf)%)},
q\/l—min(l (0:(1= BawH)') ) “1 mn(l 011~ oo )
i

= [q\/l mm(l ¥,(1 - (ﬁp(nu)q)r)%)_ )
q\/l min <1 91 (1 = (gp0) )‘1) >. jl min <1 9,(1 = (g2 )q) )'
q 1\ 4 1

[\/m/in (1, (191 (ap(l)L)qT + 9, (ap(Z)L)qT)T) , \/min (1, (191 (Otp(l)u)q/1 + 9, (ap(z)u)qr)r>] ,

a T T% ]
j 1 - min <1, (9201 = Bony )" + (1~ Boy)?)’) )

1- meTl(l 9,(1 - Bozy )q)

:-H»—-

1- m¢n<1 191(1—(5,,(1)”)@

-l\b-'

<1 9,(1— (fp(z)u)q)

- q\/l (1 191(1 = Bow )q) +192(1 = Bo )q) ) )

1 —min 1 191(1 (sp(l)b)q)’+192(1—(sp(z)L)q)

i
H1 mm(l 91 (1 = (5,00 +9,(1 = (£,0")%) )1)

Consequently,

IV — q — RPFYOW A4(Z,,3,)

l J"””(l (32 (01(e50)" )1) Jmin(l. (Z%:ﬁi(apm")qr)%)‘.
Jl min 19 (1 - Boy")?) )) )

11 = min <1 19 (1 Boy)) ))

1 min (1 19 (1 — (& ©a) ))

|
l\/l mm(l 19(1 (Sp(i)u)q)r)f)‘

Hence, the statement is valid for A4 = 2.
Suppose that the result holds for A4 = s.
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IV — q — RPFYOWAy(Z1, Ty, ..., Ts) = B5,9,%,

Iq\/min (1 (Z 1(19 (ap(t) ) ) ) jm’in (1' (Z?n ﬂi(ap(i)u)qr)%)‘,
q\/l —min (1, (an (’9i(1 - (ﬁp(i)L)q)T))%>,

1 m/m(l Zf 1 ’9(1 Boy )q)

\jl min <1 X 1 19 (1 = (&) )q) >'
\/1 mm(l hH 19(1 (& )q) >
Now, for A4 = s + 1, we have

IV — q — RPFYOW Ag(Ty, Ty, ) T Tes1)
= OL19Tp0) DT p(s+1)

lqjmf”(l (32-s(01(ap")’ )1) me‘n(L(Z?:lﬁi(apm”)q’)i)‘,

[

71 — min (1, (. (00 - GwHD)))
= H1 mm(l i (9.1 - Boy™)?)))

[ 1—min 1 Xy 19(1 (CN0) )q) }

iomelo
[jl mm(l s (91 - ™))
Iq\/mm <1' (ﬁs+1(ap(s+1)L)qr)%> ' q\/mm (1’ (195+1(ap(5+1)u)qr)%>‘ :

q T :
Jl - min 1, (195+1(1 - (,Bp(s+1)L)q) )T)'

® \/1 min <1 Ys11(1 = Bogsen) )q) >
)
\]1 mm(l s+1(1—(3p(s+1) )q) T)
1
\/1 m/m<1 S+1(1—(€p(s+1)u)q) i
Consequently,
AIMS Mathematics
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Hmm(l (zer (9 (p)* )1> Jmm(l (it 20T )‘
qjl_mm< L(Z2 (0 - BHD))) )

IV —q — RPFYOW Ay(T1, Ty, oo, Tsy1)= le — min <1( 3 (91~ oo ) )
qjl — min (1' (Z (21 - (fme)q)T))%)’
1/1 — min (1( (01— (Spm")")r))i)

This shows that the result is therefore valid for 4 = s + 1. Thus, the aforementioned technique
demonstrates the fact that the result is valid for all positive integral values of A.

The following example illustrates the fact stated in Theorem 4.1.
Example 4.1. Suppose four clients assess a company’s customer service on the basis of their recent
experiences. The opinions of these clients are represented using IV-q-RPFNs,

[0.6,0.7], [0.5,0.8], [0.4,0.5], [0.5,0.9],
T, =|[0.2,04], |, T, =([03,05], |, T =( [0.2,03], | and T, = | [0.1,0.3],
[0.2,0.5] [0.3,0.4] [0.1,0.4] [0.1,0.5]

with 9 = (0.1,0.2,0.3,0.4)7 as an associated weighted vector (WV) of these IV-q-RPFNs.

In order to aggregate these IV-q-RPFNs using Definition 4.2, we proceed as follows.

Initially, compute the score values of these IV-q-RPFNs T;,i = 1,2,3,4 using Definition 3.1 for
q =4 as follows:

$H(T,) =0.139, H(T,) = 0.184, H(T3) = 0.026 and H(T,) = 0.324.
In view of the information above, these IV-q-RPFNs are arranged in descending order as Tq) =

T Tp) = T2, FTpz) = Ty,and Tq) = T3 . Then, these IV- q -RPFNs are aggregated using
Definition 4.2 for the operational parameter t = 2 as follows:

IV — q — RPFYOW Ay (T, Tp, T3, Tu) = B 19T s) |
Hmin (1' (zt, (ﬁi(ame)w@))%) , ‘*Jmm (1, (5L, (gi(ap(i)u)(‘*)(z))%)‘ |
le - (121 (0.1~ wpwf))%).
Hl —mn (1’( N CACEVAS DY )

li]l —min <1, ( o (191'(1 - (Ep(i)u)4)

N|>-

)J
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By substituting the values of IV-q-RPFNs and the associated WV 9; in the relation above, we obtain
IV —q — RPFYOW Ay4(T4,3,,35,34) = ([0.492,0.807], [0.243,0.383],[0.243,0.451]).

Thus, the abovementioned discussion establishes the validity of Theorem 4.1.

The following result establishes that when the IV-g-RPFYOWAO is applied to any finite number
of identical IV-q-RPFN:s, it yields the same value. This property is known as the idempotency property
of the IV-q-RPFYOWAO.

Theorem 4.2. (Idempotency) Consider # to be number of I[IV-g-RPFNs, ;=
([a;t, a;Y], [ﬁiL,ﬁiU], [l 6], i=12,.., 4, and 9 = (91,0,, ...,9,)T be an associated WV of
these IV-g-RPFNs %; with 0<9;<1 such that ¥",9,=1 and ©>0 . Additionally,

(p(D), p(2),p(3), ..., p(A)) is a permutation of {1,2,...,A} such that Toi-1 = Tpay Vi
. L U
Tty = Tp(ey Vi, where T= ([, @) [Bo) Boeo) | [E0t)™ €02) V1), then,

IV —q— RPFYOWAy(T1, Ty, Tp) = Tp(o)-

Proof. Giventhat ¥; = ([a;X, ;U1 [B:%, 8”1, &2, &Y]) = Tpoy i = 1,2, ..., . In view of Definition 2.3,

the relations above give  @,)* = @) Gy = %)’y Boy” = Bo) Bowr” = Bty » Epp” =

€py" and g,V = £,V By substituting the values of a;", oV, B, BV ek and €U in Eq (4.1),
we get

IV —q—RPFYOWA4(Z1,T,,..., Tp)
Hm(l (Z21(91(p)" )1) qjmm(l. (zfglamap(o)vwrﬁ)‘,
J1-min (12 (00 o))

- 71—m¢n<1,(2f=1(ﬁi(1 Bor)9)") >
[ <1,( (81 = ")) )]
IQJ1 — min (1. (2, (9:(1 = (50 )")) % ‘
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" [min 1,((ap(°)L)qf)% min (1, ((ap?) ‘”1
) o
j1 mm<1 1(ﬁp())q)))‘

Il
2 =
-
|

min (1 (1= B )
min <1 (1= (")) )

2 =
[EN
|

[q\/m/in(l, (@p)7), q\/m/in(l, (a,,(o)”)Q)] ,
‘1\/1 —min (1,(1= (B,"))),
["\/1 —min (1,(1- (ﬁp@)”)‘I))]'
“\/1 —min (1,(1= (g,y17)).
["\/1 —min (1,(1- (sp(o)u)q))]

It follows that
IV —q = RPFYOWA5(T1, %5, X4) = ([@p0" @p0)V ] [Bo)" Boo) '] €00 ™ 809" ]) = Tocoy

The following result describes that the aggregated value of any finite number of IV-g-RPFNs under
the IV-g-RPFYOWAO, which lies between the minimum and maximum bounds of the given IV-q-
RPFN. This is known as the boundedness property of an IV-g-RPFYOWAO.

Theorem 4.3. (Boundedness) Consider # to be number of IV-g-RPFNs, ;=
([a;%, ;Y1 185 B Y1 [, &V, i = 1,2, ., A, and O = (91,95, ...,94)T to be an associated WV
of these IV-g-RPFNs ¥; with 0<9; <1 such that Y%,9;,=1 and ©>0. Additionally,

(p(l),p(Z),p(S),...,p(h)) is a permutation of {1,2,...,h} such that T,;_1y = Zpp), Vi, If
_ . L . U L U L U

T = ([min;(a,iyh), min; (a,m)")] [max; (Bywy™), max; By )], [max; (€500 ), max; (e,i»y")])  and

T+ = ([max; (apmt) max; (a,i")] [ming Bow "), ming (Bow ], ming (,0)"), ming (e,0))1), then,

T~ < IV —q — RPFYOWAy(Z4, Ty, .., Tp) < T+

Proof. Consider the result obtained by using the [V-g-RPFYOWA operator with the set of [V-q-RPFNss,
represented as IV — q — RPFYOW A4(Z1, 5, ..., Tp) = ([at, aV], [BL, BY], [€X, €Y.
Suppose  that T~ = ([(«")7, (@D 7LIBH " BDTLIED DD and  TH=

(@), @D*LIBHY BT EDT D), where  (ah)™ = min(a,i)*), (@) =

min(a,i?), (B = maxi(Boy"), (BY)™ = max;(Byy”), (1) = max;(e,y*), (V)™ =

AIMS Mathematics Volume 10, Issue 10, 24016-24060.
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maxi(fp(i)u) (@)t = maxi(ap(i)L)) ()t = maxi(ap(i)u) . (BY* = min; (Bp(i)L)' B =

min; (Byy"), (€' = min; (e,(y"), and (e¥)* = min;(e,;)Y). Thus, for each IV-g-RPFN I,
we have
mfini(ap(i)L) < appt <max; (aiL)

= (min; (™))" < (apm)" < (maxi(aypt))™

= (Z (8:(mini(ap)) ™) )

(Z ((‘9i(“p(i)L) ) ) <Z o (maxi(ap(i)L))qr)>

IA

i=1 i=1

)
m<1,<§<(9,(W)M)>>’>

< fmn ( L (i(g (ma ()’ ))j

= \/mm (1 (S, 9,((ak)~ )‘”))) \/m/m( ( 1d 1((.9 (api* ) ) )1> < \/mm(l (S, ((aL)+)‘?T)))

i=1

i=1

= lrmn(l (Z 9 (mini(ap(i)L))qr)> ) < q

It follows that
(aL)— < (CZL) < ((XL)+. (42)
Similarly, by following the mathematical steps above, we can obtain the following expression for the

relation min;(a,(nY) < a,)Y <max; (a,;"):

(@¥)” < (a¥) < (@)™ (4.3)

Now, consider

max;(Bo") < Boy” < mini(Boy™) = (max(Boy))" < (Boy)” < (mini(Bpy"))"

(Z (1= (maxi(Bon")") >><Z ~ (Bo0")") )(Z (1 - (min(Bo* )))))

i i=1

...

| N ( \
al # T T g R AN

= il —-min| 1, <; (Si (1 - (maxi(ﬁp(i)L))q) )) < I1 —min \1, ( (-9,- (1 - (Bo") ) )> /
\

\

NgE

1l
=
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I 1

) '1'”““1<L<2§(%(1—("wn&&mfﬁf)3>r>

1 1
T

q

q‘ A A T
= [tomen 1*(2(9i(1—((ﬁL)->q>f)> < [1-min 1(2 = (Bo")’ ))
\l i=1 q i=1

jl —min (1 (L, - (BHYHDD)" )
It follows that
(B9 < B < (8" 9
By adopting the mathematical process above for the relations max; (,Bp(l-)U) < ,Bp(i)u <

miny(Boy”) , max (e,0)") < & < min(epy*), and max (g5”) < £o0” < min(g,”) -

we obtain their respective outcomes as follows:

4.5
BY)" < (BY) < (BV)", (4)
(1) < (eb) < ()", (30
and
(V)™ < (Y) < (D 4.7)

Hence, from the comparison of the relations (4.2)—(4.7), we get
I~ <IV—-—q—RPFYOWA4(Z,{,T,,...,T,) < T

The following result establishes that if a particular set containing a finite number of IV-q-RPFNs
exhibits improvement under the IV-g-RPFYOWAO with respect to another collection of finite number
of IV-q-RPFNs, then the overall outcome will not diminish. This is known as the monotonicity
property of an IV-g-RPFYOWAO.

Theorem 4.4. (Monotonicity) Let ;= ([af oY) 85 851 [e2 &%) and T =
(Ta;'t, ;"Y1 185 BV, [&, &' ], i =1,2,..., 4, be any two sets of IV-¢g-RPFNs, and let 9 =
(91,9;, ...,9,)T be an associated WV of these IV-q-RPFNs X; and I;' with 0 <9, < 1 such that

2 9;,=1 and t>0 . Additionally, (p(l),p(Z),p(S), ,p(h)) is a permutation of
{1.2,..., A} such that Z,i_1y=F,u Vi If Olp(i)L < “p(i)’L» ap(i)U =< ap(i),U' ﬁp(i)L =
Bod™s B 2 Bo'"s &0t 2 &o0'" and g 2 €)'V, Vi Then,

IV —q — RPFYOWA4(ZX,,%,,...,Z4) < IV —q—RPFYOWA(Z,, %, , ... T40).
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Proof. Consider
L 1L L A
0" < %n'™t = (@M < (20)™")

= (Z(ﬁi(%(if)qr)> < <Z(19i(“p(i)w)qr)>

1

= min (1, (2 (000" ) < min (1. (s (ar)"))')

[N

T

It follows that

| 1 | 1
T

q| / A ?\ q| / A
Imin 1'<Z(19i(“p(i)L)qT)> < |min 1.<Z(ﬁi(ap@w)“)> . (48)
\l i=1 \I i=1

Similarly, by following the aforementioned mathematical steps, we can establish the following

expression for the relation a,;)¥ < a,q)'V, we have

| 1\ | !
7

imn 1,<Z(ﬁi<apmv)‘”>> < |min 1,(Z<ei<apm'v)“)> . (49
Q i=1 w i=1

Now, consider

q

q
Boy" = Boy™ = Boy)? = (Boy™)
1

= (Z (ﬁi(l - (Bp(i)L)q)T)> < ( (0:(1- (,Bp(i)lL)q)T)>

i=1 i=
1

1
A T A §
=1-min| 1, <Z (191'(1 - (ﬁp(i)L)q)T)> =1=-min| 1, (Z(ﬁi(l a wp(i)lL)ﬂT)) .

i=1

It follows that

A

|
\il —min| 1, <; (191'(1 - (ﬁp(i)’“)q)r>> >

N F

AN A ‘ 4.10)
Il —min]| 1, Z(ﬁi(l - B ) | | *

\I i=1

By following the abovementioned mathematical procedure for the relations ,Bp(i)U = ﬁp(i)lus gp(i)L =

ep(i)’L and ep(i)U = sp(i)’U, we obtain their respective outcomes as follows:
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a i : a 4.11

Il — min (1 <; (19 (1- By Yya) )) \ 1-— m¢n( < (0:(1 = Boy’")9) )) \ ( )

L JA /

qi # % q #

J1 —min| 1, (Z (19 (1 - (e,»H)9) )) > [1-min 1 Z(ﬁ-(l — (™))" ) (4.12)
=1 \ i=1

and
qil —min| 1, (Z (ﬁi(l - (Sp(i)u)q)f)> > qu —min| 1, (Z(ﬁi(l — (gp(i)’U)q)T)> _ (4.13)

\ \

Comparing the relations from (4.8)—(4.13) and making use of Definition 2.3, we get
IV —q — RPFYOWA4(Z,,%,,...,Z,) < IV —q— RPFYOWAy(Z,, %, , ... T4,

4.2. Fundamental characteristics of the interval-valued q-rung picture fuzzy Yager ordered weighted
geometric operator (IV-g-RPFYOWGQO)

This subsection introduces the notion of the interval-valued g-rung picture fuzzy Yager ordered
weighted geometric operator (IV-g-RPFYOWGO) and analyzes its essential properties.
Definition 4.3. Let A be a collection of IV-q-RPFNs, ¥; = ([e;%, ;Y1 [B" B:Y), [e2, V1), i =
1,2,.., 4, and 9 = (91,9,, ...,9,)T be an associated weight vector of these IV-q-RPFNs I; with

0<9; <1 such that Y% ,9; = 1. Additionally, (p(l),p(Z),p(B), ...,p(/b)) is a permutation of

{1,2,..., A} such that T,_1y = Ty, Vi The IV-q-RPFYOWGO is a mapping: A - A and is
formulated by the following rule:

IV — q — RPFYOWGy(Z4, Ty, ., Tp)

qJ1 — min (1, (Zh (0:(1- (ap(i)L)q)T));)

(4.14)

q\]l —min (1,21{‘:1(191'(1 - (ap(i)U)q)T);>

1

HW(L (ml(ﬁi(ﬁ”ﬁf)qr))%>'q]"”"(* (Zle(ai(ﬁ,,ﬂﬂ)‘”))rﬂ .
Hmn <1( e ))1> q\/mn <1’ (Z{Ll(ﬁi(gpm”)qr))i>‘

AIMS Mathematics Volume 10, Issue 10, 24016-24060.




24037

Physical interpretation of the IV-q-RPFYOWGO

The IV-q-RPFYOWGO offers significant physical interpretations in DM scenarios. The 1V-g-
RPFYOWGO encapsulates a synergistic interaction among attributes via multiplicative aggregation,
whereby a less potent attribute can substantially influence the total result. Moreover, IV-q -
RPFYOWGO underscores sensitivity to the weakest link, rendering both operators suitable for
modelling real-world MADM contexts.

The following result shows that the aggregated value of any finite number of IV-q-RPFNs under
the IV-g-RPFYOWG{QO, is itself an [V-q-RPFN.

Theorem 4.5. Consider A to be number of 1V-q-RPFNs, T; = ([a;%, oY), [B:5 BV, [e:5 €YD,
i=12,..,4, andlet 9 = (91,9,,...,9,)T be an associated weight vector of these IV-q-RPFNs ¥;

with 0 <9; <1 such that Y19, =1 and t > 0. Additionally, (p(l),p(Z),p(3), ,p(/b)) is a

permutation of {1,2,..., A} such that Ti_1y = T,;), V i Then, the aggregated value of these IV-

q-RPFNs in the framework of the IV-q-RPFYOWGO is an IV-q-RPFN and is formulated as follows:

IV — q — RPFYOW Gy(Z1, Ty, .., Tp)=Q%, T,

\]1 — min (1 (e, (9:(1 = (@p9)))" )

4\/1 — min (1,21';1(191-(1 - (ap(i)U)q)T)%>
Hm(l,(z;;(gi(ﬁpﬁf>q’))5),"Jmm(l,(z;g(ﬁi(ﬁpm")q’))i)] |
Iq\/min <1. (Zfil(ﬁi(%ﬁf)qr))i) q\/min (1, (Zf:l(ﬁi(gp(i)u)qr))i>
Proof. The validity of this assertion is established by mathematical induction on 4. Consider the base
case when A =2 Here, we have I,= ([a;% V][R5 B ] [ €. Y]) and T, =

([t a,V], [Bo) B2, €%, €,V]). Utilizing the formulated Yager operational laws for IV-q-RPFNs
as delineated in Definition 4.1, we obtain the following expressions:

["jl = min (1,(01(1 = (@27)Y |
‘jl - man (1,011 = (@)’ |
Hmm<1,(ﬂl(ﬁpuf)‘")%),"jmm( AR ]
Er=ier=

9y
fl’p(l) =

and
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Y,
o) °=

1 - mm 1 (9,(1- (ap(Z)L)q) ) ]

{l \/1 - mm<1 (82(1 — (ayy))")" J
(

Hmm 1, ﬁz(ﬁp(z) ) q\/m/in( (ﬁz(ﬁp(Z) )! )i>] .

‘jmm (1, (ﬁz(gp(z)l‘)qr)i> : jmm (1' (ﬁZ(SP(Z)U)qTf)

The aggregated value of T,y and T, in the setting of Definition 4.3 is calculated as follows:

IV — q — RPFYOW Gy(Z1, T)=-F,01)"' ® T, ™

(92 (1~ (@p0®)?) ))

i
- <1, (61— (apm")")r)%)

q
Jl—min
q\/

Hm%qwmﬁfﬂjm%qwmwwﬂ]

q .
Jl — min (1, (9,(1 - (ap(Z)L)q) )T> )

q T = '
Jl —min <1, (192(1 - (ap(z)u)q) )T>

Hmm (1, (ﬁz(ep(Z)L)qT)%> _ qjmn (1, (ﬁz(gp(z)u)qr)%>

[q\/l - min (1’ (191(1 — (@p))9) +0,(1 - (“p(z)L)q)T)%> ]

q\/l —min (1, (191(1 - (ap(l)U)Q)T + 192(1 - (ap(Z)U)q)T)?>

lq\]mﬂl (1' (‘91 (:3p(1)L)qT +9; (ﬁp(z)L)qT);) ' qjm’in (1' (191 (ﬁp(l)u)m +9; (ﬁp(z)u)qr);>] '

It follows that

AIMS Mathematics

Iq\/min <1‘ (191 (Sp(l)L)qT +9, (Sp(Z)L)qr);> , q\jm’in (1, (191 (Sp(l)u)qr + 9, (&)(2)”)‘1‘[)?)\
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"’jl min (1. (2240010~ o)) l
N e i
H’m‘n (1' (Ziz=1(l9i(€p<if)qr))i>' jm (1: (2%=1(z9i(ep@v>"’))i)‘

Hence, the statement is valid for A4 = 2.
Suppose that the result holds for A4 = s.

V —q— RPFYOWG,(Z,, ;)=

IV — q — RPFYOWGy(Zy, Ty, ., T)=QF, Ty

qjl — min (1' (T (1 - (“p(if)q)r));)'

‘:/1 —min (1, o, (0:(1 - (ap(i)u)q)r)%) :
Hmn (1 (0807 ) qj% (1 (o2 (ﬁi(ﬁpaw)qr))%)] .

Iq\/min <1. (Z?=1(19i(gﬂ(i)l‘)qr));) ' ‘jmin (1' (Zil(ﬁi(gp(i)u)qt))i)]

Now, for A4 = s + 1, we have

IV — g — RPFYOWGy(Ty1, Ty, o, Ty, Tor 1)
=®%, Toiy? ® Tpgsrn ™!

i min (101 00 o)),

| J1=min (152,000~ n) }
Hmm(l. (55 (wm“))i),"jmm(l. (22 (ﬂi(ﬁpm”f))i)]
Hmm (1, (Zfﬂ(ﬂi(epaf)“))%)qjm‘n (1' (Zfﬂ(ﬂf(spm”)”))%)]
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’ 1 rmn 1 (D541 (1 = (@pseny )9)" ) l

[ 1-—7n411<1 Bera(1 = (@00 ")) )" J
Hmm (1 ( s+1(Bogsin)” )qr)%),qjmzin (1, (gsﬂ(ﬂp(sﬂ)u)qr)éﬂ '

It follows that

IV —q — RPFYOWGy(Z1, Ty, .., T

s+1)

j 1= min (1, (20,1 o2 )Y ).
jl - min (1.5240(1 - o) Y |
s 0 ) fin (3 52 0 )|
I"jmm<1,(z;g(ﬁi(w)qr))%),"Jm(1,(z;;;(ai(gp(,.)uyf)f)]

This shows that the result is therefore valid for # = s + 1. Thus, the aforementioned technique
demonstrates the fact that the result is valid for all positive integral values of 4.

The following example illustrates the fact stated in Theorem 4.5.
Example 4.2. In Example 4.1, we aggregated IV-q-RPFNs using an IV-q-RPFYOWAO. In the
following discussion, we aggregate the same [V-q-RPFNs within the scope of an IV-qg-RPFYOWGO
for q=4 and t= 2.

IV — q — RPFYOW Gy(F1, T, T3, T0)=Qk; T,i)”

N|

AIMS Mathematics

i=1

"1~ min (1, (i (8:(1- (ap(i)L)‘*)z))l).

4 4 l
1 —min <1Z (9:(1- (ap(i)u)4)2)2>
i=1

“ mm<1 (z

4

4

1
19 (ﬁp(t) )(4)(2) ) >.4 min (1 (

4

2.

i=1

9 (,Bp(l) (4)(2) >;>}

i

4

2.

i=1

1
L@ ’\ ¢
V; ( p(L) > B min 1,(

4

2.

i=1

(ﬂt(ep(i)”)(4)(2))>

)
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By substituting the values of the IV-qg-RPFNs and the associated WV 9; in the relation above, we
obtain

IV — q — RPFYOW Gy(F,, Ty, Ta, Ty) = ([0.493,0.763], [0.248,0.415], [0.246,0.467]).

The following result establishes that when the IV-g-RPFYOWGQO is applied to any finite number of
identical IV-q-RPFNs, it yields the same value. This property is known as the idempotency property
of an IV-q-RPFYOWGO.

Theorem 4.6. (Idempotency) Consider # to be number of I[V-g-RPFNs, I;=
(et ;U1 185 BiY1 [e5, &V, i = 1,2, ..., 4, and let O = (191,192, e, U)T be an associated WV
of these IV-¢g-RPFNs X; with 0 <9, S 1 such that ¥ ,9,=1 and ©>0. Additionally,

(p(l),p(Z),p(B),...,p(/L)) is a permutation of {1,2,...,A} such that Tpi_1) = Fpq), Vidf
. L U
Tty = Tp(ey Vi, where T= ([, @) [Bo) Boeo) | [E0t)™ €02) V1), then,

IV — q — RPFYOWGy(Ty, Tpp -, Tp) = Tp(o-

Proof. The proof of Theorem 4.2 and this theorem is analogous.

The following result describes the aggregated value of any finite number of IV-q-RPFNs under
the IV-q-RPFYOWGO, which lies between the minimum and maximum bounds of the given IV-q-
RPFN. This is known as the boundedness property of the IV-g-RPFYOWGO.
Theorem 4.7. (Boundedness) Consider # to be a number of I[V-g-RPFNs, ;=
(lait ;U1 185 BiY1 [e5, &1, i = 1,2, .., A, and O = (84,95, ..., 94)T to be an associated WV of
these IV-¢-RPFNs %; with 0<9,<1 such that Y%,9,=1 and ©>0. Additionally,

(p(D), p(2),p(3), ..., p(A)) is a permutation of {1,2,..., A} such that Toi-1 = Loy VI T =
([min(a,h), min; (a,¢")] [max; (B,iy"), max; (B, )], [max; (g,y"), max; (6,y"))  and

Tt = ([max; (a,b), max; (a,")] [min; B,o"), min; (B, D] [ming (e,¢)"), min; (€,9")])-
Then,
T~ < IV — q— RPFYOWGy(Ty, Ty, ..., Tp) < T

Proof. The proof of Theorem 4.3 and this theorem are analogous. Therefore, we omit the repetition
here.

The following result establishes that if a particular set containing a finite number of IV-q-RPFNs
exhibits improvement under the IV-qg-RPFYOWGO with respect to another collection of a finite
number of IV-g-RPFNss, then the overall outcome will not diminish. This is known as the monotonicity
property of the IV-g-RPFYOWGO.

Theorem 4.8. (Monotonicily) Let T, = ([a% ;%) B B [ &%) and T =
([a;"t, ;"Y1 1B, BV, [&'E, &'V D), i = 1,2, ..., 4, be any two collections of IV-q-RPFNs, and let
9 = (91,9, ...,ﬁﬁ)T be an associated WV of these IV-q-RPFNs T; and I;" with 0 < 9; < 1 such that

Zlﬁ:l 9; =1 and t© > 0. Additionally, (p(l),p(Z),p(3), ...,p(/L)) is a permutation of {1,2,..., 7}
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, L U
such that Tp1) 2 Tpay Vi I apw” < @™ @i < 6wy Boy 2 Bow'™s By 2
ﬂp(i)’U, Ep(i)L = Ep(i)’l’, and Ep(i)u = Sp(i)’U, Vi. Then,

IV —q— RPFYOWGy(Ty, Ty ., Tp) < IV — q — RPEYOWGo(T,, Ty, ) Tp').

Proof. Since the proof is analogous to that of Theorem 4.4, we omit the details.
5. Application of proposed strategies operators in MADM

In this section, we present a DM approach employing the recently proposed IV-g-RPFYOWAOs
for MADM situations, where the weights of the attributes are real numbers and the values of the
attributes are IV-q-RPFNs. Suppose that M = {M,;, M5, ..., M,.} is a collection of alternatives, and let
N = {N,, N,, ..., Ng} be the set of attributes. In addition, 9=(9;,0,, ..., 9)T denotes the corresponding
WV of attributes, where 0<9Y; <1 for all /=1,2,...,s such that Y)j_;9, = 1. Additionally,

(p(l),p(Z),p(B), ...,p(s)) is a permutation of {1,2,...,s} such that T,;_1) = T,(;y, VI Assume

that the decision-maker assesses the available alternatives on the basis of many attributes and
articulates his/her preferred values using IV- g -RPFNs, which are expressed as I, =
(lak, a1, [BE, BE), [k, 21D, where k = 1,2,3,...,7; | = 1,2,3, ..., s. The information supplied by
the decision-maker is encapsulated in an IV-q-RPF decision matrix D=[T;;];xs-

The suggested methodology, using the IV-g-RPFYOWAOs for resolving MADM issues,
primarily comprises the following steps.
Step 1. Create an IV-q-RPF decision matrix D=[%,],xs using the data obtained from the decision-
maker as follows:

[ [afl' a{Jl]ﬂ
[.Bflr :Blul]'
[e11, €1h]
[aTl"l' af‘ll]l

1871, Bral,

[afZ' Q{IZ],
[ﬁfo B{JZ]J
[e12, 1]

L- U]

[ath Ar2l,

1872, Bral,

lats, ais]\ |
115, Bis),

[ets. €16

lars, ars,

[B%s, Brs],

[er1, €71 [er2, £57] [efs, 5]
Step 2. To obtain the IV-q-RPF permuted decision matrix D) = [Ip(kl)]rxs’ we follow the

subsequent two stages.
(1) Calculate the score values of all attributes N;, corresponding to each alternative M, of the IV-
q-RPF decision matrix D, using Definition 3.1.

(2) Arrange the calculated values from the previous stage in descending order to obtain the IV-g-
RPF permuted decision matrix D).

Step 3. (a) Calculate the aggregated values ¥ = ([ak, all, [BL, BY ), ek, &7 ]) of each alternatives
M, corresponding to all attributes N; using the [IV-q-RPFYOWA operator in the following way:
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i{k =]V — q-— RPFYOWA(‘IM, zkz, ey st)
[ 1 ]

q s AKX s . T ]
min| 1, (Z(ﬁl(ap(kl)L)q ) , |min| 1, <Z(ﬁl(ap(kl)u)q ) |.
=1 =1

N -

1
T

1—min 1,( (19[(1 - (ﬂp(kl)l‘)q)‘t)>
l

1
s =

(191(1 - (Bp(kl)u)q)T)) , k=1.2,..,r.

= 1—min| 1,

1
T

(191(1 - (gp(kl)L)q)T)) ,

1—min| 1,

1

1—min 1,< (ﬁl(l - (Ep(kl)u)q)‘r)>
=1

(b) Calculate the aggregated values T, = ([ak, al], [BE, ¥, [ek, Y1) of each alternatives M,
corresponding to all attributes N; using the [IV-qg-RPFYOWG operator in the following way:

Ik =]V — q— RPFYOWG(zk]J zkz, ...,Iks)

q\/l — min (1, (5 (0 (1 - (ap(kl)L)q)T));)’

l q\/l — min <1, Y (9(1 - (a’p(kl)u)q)r);> J

1

[qjmm (1' (2 (o (ﬁp(kl)L)qT))%> : q\/min <1, (s (9, (ﬁp(m)u)qr))fﬂ

Iq\/min <1, (27=1(‘9l(€p<sz)‘”))%> | qjmm <1’ (Z§=1(l9l(£p<kz>”)qf))i>]

Step 4. Determine the score values of I, k = 1,2, ...,r using Definition 3.1.
Step 5. Rank all the alternatives utilizing the information obtained from the preceding step and select
the most optimal choice.

A pictorial representation of the algorithm above is depicted in Figure 2.
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STEP 1 * Formulate the decision matrix

STEP 2 * Obtain the I'V-g-RPF permuted decision matrix

* Calculate the aggregated values using IV-q-

STEP 3 RPFYOWA/IV--RPFYOWG
STEP 4 e Obtain the score values
STEP 5 ¢ Select the most favorable choice

Figure 2. Schematic workflow of the algorithm based on the IV-g-RPFYOWA/IV-q-
RPFYOWG operators.

5.1. Case study: selection of an optimal spacecraft shielding materials against cosmic radiation

Human missions beyond Earth’s atmosphere face significant challenges from cosmic radiation,
which poses serious risks to astronauts and equipment. High-energy cosmic rays and solar particle
events can damage spacecraft and human tissue, leading to increased cancer risks, nervous system
harm, and acute radiation sickness. Unlike Earth, where atmospheric protection exists, space missions
rely solely on engineered materials for shielding. The selection of appropriate materials is crucial for
the safety and success of lunar and Martian constructions. Space radiation differs from terrestrial
radiation, consisting of rapid-moving protons, heavy ions, and subatomic particles that can have
destructive cellular effects. Spacecraft electronics are at risk from high-energy particles that cause
memory bit flips, degrade systems, and lead to mission failures. This challenge intensifies for extended
Moon and Mars missions, where astronauts may exceed radiation limits during travel. Protecting
astronauts from space radiation is crucial for their survival. Current spacecraft predominantly utilize
aluminum alloys to provide structural integrity and some level of radiation shielding, but these
materials are insufficient to counter the most dangerous cosmic rays—heavy ions—posing significant
risks to space missions.

Aluminum’s high density makes it unsuitable for deep-space missions, making them costly and
complex. Scientists are exploring other materials that can be lightweight and yet flexible with greater
radiation protection. The ideal shielding materials should have four main characteristics: High
radiation attenuation, lightweight, strong mechanical properties, and thermal tolerance. The
combination of polymers, hydrogen technology, and nanotechnology is being explored, and various
mission-specific shielding proposals require independent assessments.

Polyethylene has a high hydrogen content that makes it an ideal candidate to use as radiation
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shielding in space because it is able to scatter and absorb cosmic rays. Laboratory experiments show
that polyethylene shields are more protective than aluminium, especially when weight is taken into
account, as observed on the International Space Station. Pure polyethylene is not suitable as a
primary spacecraft material. Scientists are working on creating composite materials that are
structurally sound yet protective against radiation, with boron nitride nanotubes being a leading
candidate due to their high strength and ability to block radiation. The most effective shielding
systems are those that use well-spaced multilayered materials to optimize the stopping power. These
developments are essential for establishing human settlements on other celestial bodies during future
missions. The feasibility of shielding solutions will be determined by their practicality, which
includes the cost and compatibility with current technologies, and these factors will determine how
they are used in space. Radiation protection is a critical consideration in safe human exploration, and
the materials selected today will determine the future of human space exploration over the next few
generations.

5.2, Illustrated example

This study offers a structured framework to test spacecraft shielding materials to protect
against cosmic radiation through application of the IV-g-RPFS model. The space research agency
is concerned by space exploration missions extending beyond short durations because of the
damaging effects of cosmic radiation on the astronauts and equipment. To secure the mission’s
goals and the astronaut’s safety, an aerospace materials engineer examines shielding materials by
considering important properties, intending to design a structurally robust spacecraft to protect
against cosmic radiations.

The engineer selects four shielding materials (alternatives) {M;, M,, M3, M, }.

M, : Polyethylene,

M;: Aluminium alloy,

M3: Boron nitride nanotubes,
M,: A Multi-layered composite.

Furthermore, the engineer specifies four key attributes {N;, N,, N3, N, } that affect the efficiency
and appropriateness of these alternatives:

N;: Radiation shielding effectiveness,
N,: Structural stability,

N;: Weight efficiency, and

N,: Thermal resilience.

The engineer assigns 9 = (0.3,0.2,0.2,0.3)7 as an associated WV to these attributes such that
Yi=1 9 = 1.

This MADM problem is solved within the framework of IV-g-RPFYOWAUOs as follows.
Step 1. Table 3 specifies the [V-q-RPF decision matrix representing the researcher’s estimation for
each alternative My, k = 1,2,3,4 relative to each attribute N; in the form of an IV-q-RPFN.
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Table 3. IV-q-RPF decision matrix representing the evaluation of alternatives across

multiple attributes under IV-g-RPF information.

[0.6,0.8],
[0.3,0.5]
[0.3,0.6]

0.4,0.7],
0.3,0.5],
[0.2,0.4]

[0.5,0.6],
[0.2,0.5],
[0.2,0.5],

( 3 ( )
) ()
g )

[0.6,0.7]
[0.4,0.6]
[0.2,0.5]

[0.4,0.7],
[0.3,0.6],
[0.1,0.3]

[0.6,0.9],
[0.4,0.5],
[0.4,0.6]

[0.5,0.9]
[0.2,0.6]

<m40ﬂ
[0.4,0.6],
[0.3,0.5],
[0.2,0.4]

[0.6,0.9],
[0.2,0.6],
[0.4,0.6]

[0.5,0.8]
[0.2,0.3]
[0.3,0.6]

|
)
)
)

[0.4,0.8],
[0.3,0.6],
[0.3,0.5]

[0.5,0.8],
[0.3,0.4]
(030ﬂ>
<m5oﬂ>

[0.2,0.4]
[0.3,0.4]

[0.6,0.9],
[0.2,0.6],
[0.4,0.5]

Step 2. In order to obtain the [V-q-RPF permuted decision matrix, we proceed to the subsequent two stages.
(1) Calculate the score values of all attributes N,, relative to each alternative M, of the IV-q-RPF
decision matrix above using Definition 3.1 for a particular value of q = 3.

FOI‘ Ml? g)(zll) = 0.116, gj( %12) = 0.073, 5( 113) = 0.112, 5(114) = 0.091.

For M,,

$(Tyy) = 0.224, $(Tp,) = 0.131, $( T,3) = 0.028, $(T,,) = 0.197.

For M, $( Tsy) = 0.092, $( Ts,) = 0.068, $( Tas) = 0.221, $(Ts,) = 0.152.

For M,,

$(Tay) = 0.038, H(IT4y) = 0.238, $( T,43) = 0.179, $(Tuy) = 0.266.

(2) Arrange the calculated values in descending order to obtain the IV-q-RPF permuted decision
matrix.

The outcomes of this mathematical procedure are listed in Table 4.

Table 4. IV-q-RPF permuted decision matrix after arranging the attributes in descending order.

N, N, Nj N,
M, [0.6,0.8], [0.5,0.9], [0.4,0.8], [0.6,0.7],
[0.3,0.5], [0.2,0.6], [0.3,0.6], [0.4,0.6],
[0.3,0.6] [0.4,0.7] [0.3,0.5] [0.2,0.5]
M, [0.5,0.9], [0.5,0.8], [0.5,0.8], [0.4,0.6],
[0.1,0.5], [0.3,0.4], [0.2,0.5], [0.3,0.5],
[0.4,0.6] [0.3,0.5] [0.3,0.6] [0.2,0.4]
M; [0.6,0.9], [0.5,0.7], [0.4,0.7], [0.4,0.7],
[0.2,0.6], [0.2,0.4], [0.3,0.5], [0.3,0.6],
[0.4,0.6] [0.3,0.4] [0.2,0.4] [0.1,0.3]
M, [0.6,0.9], [0.6,0.9], [0.5,0.8], [0.6,0.7],
[0.2,0.6], [0.4,0.5], [0.2,0.3], [0.2,0.5],
[0.4,0.5] [0.4,0.6] [0.3,0.6] [0.2,0.5]
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Part A: Solution of the MADM problem using an IV-q-RPFYOWA operator

Step 3. Obtain the aggregated values I, k = 1,2,3,4 of each alternative M, by applying an IV-g-
RPFYOWA to the IV-g-RPFNs listed in Table 4 for particular value of g = 3 and an operational
parameter T = 2. The outcomes of this process are tabulated in Table 5.

Table 5. Aggregated values of alternatives under the IV-qg-RPFYOWA operator.

Alternatives X
M, ([0.563,0.804], [0.325,0.573], [0.307,0.577])
M, ([0.463,0.807], [0.372,0.484], [0.319,0.532])
M, ([0.517,0.788], [0.260,0.549], [0.297,0.532])
M, ([0.586,0.840], [0.268,0.451], [0.343,0.544])

Step 4. Evaluate the score values of all IV-q-RPF numbers obtained in Table 5 using Definition 3.1 as
follows:

$(T1) =0.129, H(T,) =0.164, H(T3)=0.163, and H(T,)=0.223.

Step 5. Since H(T,) > H(T,) > H(T3) > H(T,), the ranking order of the alternatives is M, >
M, > M3 > M,.

Consequently, the multi-layered composite is the most optimal shielding material against cosmic
radiation according to the IV-g-RPFYOWA model.

A graphical representation of the selection of the most suitable alternative using the IV-q-
RPFYOWA is depicted in Figure 3.

IV-g-RPFYOWA

0.3 0.223

0.164 0.163
0.2

0.1

score values

0
IV-g-RPFYOWA  0.129 0.164 0.163 0.223

Figure 3. Ranking of alternatives using the IV-qg-RPFYOWA operator.

Part B: Solution of the MADM problem using the IV-q-RPFYOWG operator

Step 3. Obtain the aggregated values I, k = 1,2,3,4 of each alternative M, by applying the IV-g-
RPFYOWG to IV-q-RPFNs listed in Table 4 for a particular value of g = 3 and an operational
parameter T = 2. The outcomes of this process are tabulated in Table 6.
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Table 6. Aggregated values of alternatives under the IV-q-RPFYOWG operator.

Alternatives X
M, ([0.549,0.787],[0.342,0.577],[0.326,0.578])
M, ([0.474,0.767],[0.269,0.487],[0.334,0.506])
M, ([0.493,0.756], [0.271,0.562], [0.339,0.547])
M, ([0.582,0.813],[0.225,0.508], [0.306,0.576])

Step 4. Evaluate the score values of all IV-q-RPF numbers obtained in Table 5 using Definition 3.1 as
follows:

$(T1) =0.086, H(T,) =0.108, H(T3)=0.094, and H(T,)=0.171.

Step 5. Since $H(T,) > H(T,) > H(T3) > H(T,), the ranking order of alternatives is M, > M, >
M3 > M.

Consequently, the multi-layered composite is the most optimal shielding material against cosmic
radiation according to the [IV-g-RPFYOWG model.

A graphical representation of the selection of the most suitable alternative using the IV-q-
RPFYOWG is depicted in Figure 4.

IV-g-RPFYOWG

0.171
0.2

0.086 0.108 0.094
0.1

score values

0
IV-g-RPFYOWG  0.086 0.108 0.094 0.171

Figure 4. Ranking of alternatives using the IV-qg-RPFYOWG operator.
5.3. Comparative analysis

This comparison study intends to demonstrate the effectiveness and robustness of our suggested
techniques by evaluating several existing methods, including T-spherical fuzzy ordered weighted
averaging (IV-TSFOWA) [41], T-spherical fuzzy ordered weighted geometric (IV-TSFOWG) [41],
spherical fuzzy Dombi ordered weighted averaging (IV-SFDOWA) [42], spherical fuzzy Dombi
ordered weighted geometric (IV-SFDOWG) [42], rung picture fuzzy Yager ordered weighted
averaging (q-RPFYOWA) [48] and rung picture fuzzy Yager ordered weighted geometric (q-
RPFYOWG) [48]. Table 7 summarizes the aggregated values of the alternatives derived by various
techniques, while Table 8 shows their corresponding rankings.
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Table 7. Aggregated values of alternatives obtained with different existing operators.

IV-TSFOWA [41] IV-TSFOWG [41] IV-SFDOWA [42] IV-SFDOWG [42]

My [0.556,0.807], [0.534,0.788], [0.564,0.837], [0.497,0.766],
[0.300,0.568], [0.300,0.280], [0.265,0.557], [0.336,0.578],
[0.280,0.564] [0.303,0.586] [0.248,0.543] [0.318,0.605]
M [0.475,0.809], [0.468,0.759], [0.478,0.850], [0.455,0.699],
[0.198,0.478], [0.198,0.478], [0.133,0.468], [0.260,0.485],
[0.289,0.512] [0.317,0.538] [0.251,0.476] [0.332,0.551]
M3 [0.502,0.793], [0.472,0.753], [0.518,0.843], [0.444,0.729],
[0.245,0.534], [0.245,0.534], [0.227,0.498], [0.265,0.564],
[0.216,0.414] [0.303,0.468] [0.133,0.364] [0.321,0.501]
M, [0.584,0.845], [0.579,0.815], [0.587,0.872], [0.569,0.779],
[0.229,0.477], [0.229,0.477], [0.210,0.405], [0.291,0.529],
[0.306,0.538] [0.341,0.546] [0.255,0.528] [0.355,0.552]

Table 8. Score values and ranking of alternatives using different existing techniques.

Operators $(T1) H(T,) $(T3) H(T4) Ranking

IV-TSFOWA [41] 0.143 0.181 0.188 0.248 M, >M;>M,>M,
IV-TSFOWG [41] 0.181 0.118 0.117 0.206 M, >M, >M,> M,
IV-SFDOWA [41] 0.199 0.247 0.276 0.313 M, >M;>M, > M,
IV-SFDOWG [41] 0.044 0.050 0.059 0.136 M, >M;>M,>M,
IV-g¢-RPFYOWA 0.129 0.164 0.163 0.223 M, >M,>M; > M,
IV-¢-RPFYOWG 0.086 0.108 0.094 0.171 M, > M, >M; > M,

e The methodologies presented in this article offer more advanced and flexible aggregation
methods compared with the techniques presented in [41], particularly in contexts characterized
by high uncertainty and hesitation. By leveraging the g-rung picture structure, IV-gq -
RPFYOWAO s allow a more nuanced expression of membership, non-membership, and
abstention degrees, thereby enabling finer discrimination among alternatives. Unlike IV-
TSFOWAOs, which are constrained by the spherical fuzzy model, IV-q-RPFYOWAOs
effectively encapsulate acceptance, rejection, and indeterminacy within an interval-valued
framework, enhancing both robustness and the decision’s precision. By enabling finer
discrimination among competing alternatives and enhancing aggregation robustness, 1V-q-
RPFYOWAOs significantly improve the accuracy and reliability of MADM processes.
Therefore, they are particularly well-suited for tackling intricate real-world DM problems
involving multiple conflicting criteria and imprecise information.

e The methodologies proposed in this article offer a more adaptable and resilient approach to
OWA in MADM compared with the strategies outlined in [42], specifically in complex and
uncertain environments. The techniques in [42] rely on fixed exponential-like functions, which
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may constrain adaptability when handling high levels of uncertainty and hesitation. In contrast,
the recently developed IV-q-RPFYOWAOs introduce a configurable parameter structure
within the g-rung picture fuzzy framework, enabling dynamic adjustment of MD, NeD, and
NMD. This structural flexibility empowers decision-makers to better accommodate varying
levels of hesitation, ambiguity, and risk preferences, aspects that are often oversimplified in
traditional IV-SF Dombi-based models. Furthermore, by integrating interval-valued
information with the g-rung picture fuzzy environment, IV-q-RPFYOWAUOs enhance the
accuracy, robustness, and contextual relevance of the aggregation process, leading to more
reliable and decision-sensitive outcomes in MADM tasks marked by deep uncertainty.

e Numerous drawbacks affect the approaches introduced in [48]. The q-RPFS framework has
excellent uncertain information management but its single-digit membership degrees create
potential information loss during DM, whereas the proposed strategies improve existing the
models by incorporating intervals for membership, neutral, and non-membership degrees. This
upgraded method extends uncertainty clusters enabling decision-makers to consider a wider
range of possible values while delivering more accurate representations of real-world
ambiguity. The newly proposed modelling methods establish sophisticated and dependable
foundations for complex DM applications which generate more efficient and precise results.

The proposed IV-g-RPFYOWAOs offer a more flexible and robust alternative to the existing
methods by incorporating Yager’s ordered weighted averaging and tunable g-parameterization within
an interval-valued g-rung picture framework. Unlike earlier models that rely on fixed exponential
functions or single-valued memberships, these approaches better handle ambiguity and hesitation in
complex decision-making scenarios. As a result, they provide more accurate, adaptable, and
contextually relevant outcomes in MADM under profound uncertainty.

A graphical view of the information presented in Tables 7 and 8 is depicted in Figure 5.

0.35
03 B IV-g-RPFYOWA
0.25 m [V-TSFOWA
0.2 ® IV-SFDOWA
0.15 m [V-g-RPFYOWG
0.1 1 = IV-TSFOWG
0.05 -
® IV-SFDOWG
0 .

Figure 5. Graphical illustration of the ranking of alternatives using the recently proposed
and existing methodologies.

5.4. Empirical analysis
Table 9 outlines an empirical evaluation of the proposed strategies in comparison with the existing
models like fuzzy technique for order of preference by similarity to ideal solution (TOPSIS), fuzzy

multi-objective optimaztion on the basis of ratio analysis (MOORA) and fuzzy analytic hierarchy
process (AHP).

AIMS Mathematics Volume 10, Issue 10, 24016-24060.



24051

Table 9. Empirical analysis of the proposed operators in comparison with the existing models.

Criteria IV-g-RPFYWAOs Fuzzy Fuzzy MORA (e.g., Fuzzy AHP
(proposed) TOPSIS VIKOR/PROMETHEE)

Representation of | Highest. Uses Moderate. Moderate. Handles fuzzy Low to moderate.

uncertainty interval-valued g- Uses fuzzy numbers, but treatment of | Relies on crisp or
rung picture fuzzy numbers; no | hesitation is limited fuzzy pairwise
sets, capturing direct comparisons;
membership, non modelling of hesitation is
membership, and hesitation often lost in
hesitation as defuzzification
intervals with
tunable parameter q
for flexibility

Discriminatory High. The q Moderate. Moderate to high. VIKOR | Low to moderate.

power parameter adjusts Close produces compromize Small differences
the emphasis to alternatives rankings; PROMETHEE in pairwise
separate close often have may leave incomparable scores may be
alternatives; avoids similar hidden
excessive ties closeness

scores

Parameter Controlled q tuning | High. The Medium. The compromise | High.

sensitivity allows targeted distance coefficient influences the Consistency ratio
adaptability without | metric choice | rankings and scale affect
great instability affects the weights

results

Interpretability High. Experts can High. Medium. Outranking logic | Medium.
understand the effect | Geometric is less intuitive for non- hierarchy is clear
of q and Yager closeness is technical users but fuzziness in
weights; intervals intuitive the judgments is
explain hesitation harder to explain

Weight flexibility Very high. Works High. Any High. Supports different Medium.
with equal, expert, weights are weighting schemes Weights must
entropy, or hybrid applicable come from
weights pairwise

judgments

Robustness to Excellent Good Good Low

noisy/conflicting

data
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5.5. Sensitivity analysis for parameter q

Tables 10 and 11 encapsulate the score values and ranking of alternatives utilizing IV-q-
RPFYOWAO and IV-qg-RPFYOWGO, respectively, for different values of the parameter q.

For the IV-q-RPFYOWAUO, the rankingat ¢ =1 is M, > M; > M, > M; ; however, from
q = 2 onwards, it stabilizes to M, > M, > M; > M, . The operator's sensitivity indicates a
preference change between M, and M5, while consistently favouring M, as the most preferred
and M; as the least favored. By contrast, the [V-g-RPFYOWGO has increased variability: When
q = 1, the ranking is M, > M; > M, > M,. At q = 2,3, it transitions to M, > M, > M; > M,.
For q = 4, it stabilizes at M, > M, > M; > M,. Overall, M, consistently, emerges as the best
choice among both operators, while the intermediate rankings fluctuate, depending on the value
of g, underscoring the impact of parametric modifications on aggregation sensitivity and the
decision’s results.

Table 10. Score values and ranking of alternatives using the IV-g-RPFYOWAO for
different values of q.

q H(Tq) H(T,) H(T3) H(Ty) Ranking of the alternatives
1 0.192 -0.125 -0.093 -0.080 My>M; >M,> M,
2 0.055 0.102 0.116 0.163 My>M; >M,> M,
3 0.129 0.164 0.163 0.223 My>M, >M; > M,
4 0.146 0.174 0.166 0.227 My>M, >M; > M,
5 0.141 0.167 0.155 0.213 My>M, >M;> M,
6 0.130 0.153 0.142 0.194 My>M, >M; > M,
7 0.117 0.139 0.129 0.175 M,>M, >Ms> M,
8 0.104 0.125 0.117 0.157 My>M, >My> M,
9 0.093 0.112 0.105 0.140 My>M, >M;> M,
10 0.083 0.099 0.095 0.126 M,>M, >Ms> M,
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Table 11. Score values and ranking of alternatives using the IV-g-RPFYOWGO for
different values of gq.

q H(Tq) H(T,) H(T3) H(Ty) Ranking of the alternatives
1 -0.226 20.173 -0.154 -0.125 My>M; >M,> M,
2 0.012 0.046 0.045 0.109 My > M, >M; > M;
3 0.086 0.108 0.094 0.171 M,>M, >M;> M,
4 0.104 0.121 0.101 0.179 My>M, >M, > M,
5 0.102 0.117 0.095 0.168 My>M, >M, > M,
6 0.093 0.108 0.086 0.152 M,>M, >M, > M,
7 0.083 0.097 0.077 0.135 M,>M, >M, > M;
8 0.073 0.086 0.068 0.119 M,>M, >M, > Ms
9 0.063 0.076 0.059 0.106 My>M, >M, > My
10 0.055 0.067 0.053 0.094 M,>M, >M, > M;

5.6. Sensitivity analysis for parameter T

Tables 12 and 13 present the score values and rankings of alternatives based on varying values of
the operational parameter 7, utilizing the [IV-g-RPFYOWAO and IV-g-RPFYOWGQO, respectively.
For the IV-g-RPFYOWAO (Table 12), the ranking at T = 1,2 is M, > M, > M3 > M,; however,
from 7 > 3 onwards, the ranking alters and stabilizes as M, > M; > M, > M,. This suggests that
elevated values of 7 enhance the superiority of M5 relative to M,, although M, constantly remains
the most favoured and M; the least favored. On the other hand, the IV-g-RPFYOWGO (Table 13)
exhibits greater variability: At T = 1, the rankingis M, > M3 > M, > M;;at t = 2,3, it transitions
to My, > M, > M; > M,; and from t© > 4, it stabilizes as M, > M, > M; > M;. Consequently, in
view of the discussion above, M, emerges as the most robust alternative across both operators
regardless of the value of 7, whereas the shifts among M, and M, highlight the sensitivity of
middle-ranked alternatives to variations in the operational parameter.
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Table 12. Score values and ranking of alternatives using the IV-q-RPFYOWAO for
different values of the operational parameter t.

T H(T,) H(T,) H(T3) H(Ty) Ranking of the alternatives
1 0.112 0.141 0.135 0.207 My>M, >Ms > M,
2 0.129 0.164 0.163 0.223 My>M, >My> M,

3 0.145 0.182 0.189 0.237 M,>Ms >M, > M,

4 0.158 0.196 0213 0.248 My>M; >M,> M,

5 0.169 0.207 0.232 0.258 My>M; >M,> M,

6 0.181 0217 0.248 0.266 M,>Ms >M, > M,

7 0.190 0.225 0.261 0.273 M, >M; >M,> M,
8 0.198 0.232 0.272 0.278 M,>Ms >M, > M,
9 0.206 0.238 0.281 0.283 My>Ms >M, > M,
10 0213 0.243 0.286 0.288 My>M; >M,> M,

Table 13. Score values and ranking of alternatives using the IV-q-RPFYOWGO for
different values of the operational parameter 7.

T H(T,) H(T,) H(T3) H(TY) Ranking of the alternatives
1 0.112 0.141 0.135 0.207 My>M; >M,> M,
2 0.086 0.108 0.094 0.171 M,>M, >Ms> M,
3 0.062 0.082 0.065 0.142 My>M, >M; > M,
4 0.042 0.062 0.045 0.119 My>M, >M, > M,
5 0.025 0.045 0.030 0.101 My>M, >M, > My
6 0.011 0.032 0.019 0.087 M,>M, >M, > M;
7 -0.001 0.022 0.011 0.075 M,>M, >M, > M,
8 -0.011 0.013 0.005 0.066 M,>M, >M, > M,
9 -0.019 0.006 -0.001 0.058 My>M, >M; > M,
10 -0.027 0.001 -0.005 0.051 My>M, >M, > M,
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Computational complexity of the proposed methods

The computational complexity of the proposed IV-g-RPFYOW AOs is delineated by three principal
steps: Computing the score and accuracy functions for each alternative, necessitating O(mn)
operations for m alternatives and n attributes; weighting and ordering the interval-valued g-rung
picture fuzzy numbers, which entails a sorting step of O(n log n); and executing the final aggregation
in O(n). Consequently, the total complexity is O (mn + nlogn), meaning that the operators
exhibit computational efficiency and scalability for DM challenges involving larger datasets.

Real-world feasibility and constraints of the suggested techniques

The real-world feasibility of IV-g-RPFYOWAOs in MADM problems is attributed to their superior
capacity to model uncertainty, hesitation, and incomplete information compared with traditional fuzzy
methods, rendering them appropriate for domains such as financial risk management, engineering design,
medical diagnosis, and cybersecurity assessments. Their interval-valued and g-rung frameworks afford
adaptability in encapsulating varied expert perspectives, whilst Yager’s OWA presents a balanced
aggregation methodology. Nevertheless, practical constraints of the suggested operators encompass
heightened computational complexity for extensive problems; the difficulty of selecting suitable q-
parameters and weight vectors, which can profoundly influence the results; and the necessity for
decision-makers to possess adequate knowledge to deliver consistent and meaningful input data.

More practical implications of the suggested techniques

This study’s results have numerous implications for daily life. In real-world scenarios including
financial risk assessments, engineering material selection, medical diagnosis, and evaluations of
cybersecurity systems, decision-makers often encounter uncertainty, hesitancy, and inadequate
knowledge. By using IV-g-RPFYOWAGOs, they may better manage these issues. The adaptability of
the g-rung and interval-valued structures enables experts to articulate viewpoints with enhanced
precision, while Yager’s OWAOs consolidates varied preferences, resulting in more resilient and
comprehensible outcomes. These attributes augment the dependability of intricate DM procedures and
provide organizations with a systematic, flexible framework that is applicable to real-world challenges
necessitating both accuracy and versatility.

The proposed methodologies assist managers, mission planners, and materials engineers in assessing
shielding materials by incorporating essential factors such as radiation protection, structural integrity,
weight efficiency, and cost under unknown conditions. These approaches integrate expert assessments into
a clear ranking system, ensuring that the selected materials adequately protect against cosmic radiation
while adhering to the mission’s requirements, thus improving safety and cost-effectiveness in space
exploration. Furthermore, the IV-g-RPFYOWAOs equip managers with systematic tools for resolving
trade-offs among competing criteria, thus diminishing dependence on subjective evaluations. By explicitly
addressing the uncertainty inherent in expert opinions, they enhance the robustness and reliability of
material selection decisions, increase confidence in the selected shielding technologies, and facilitate long-
term strategic planning for sustainable and reliable space operations.

6. Conclusions

In this study, we have introduced two new Yager’s OWAOs, namely the IV-g-RPFYOWAO and
IV-q-RPFYOWGQO, and have analyzed their structural features. We have also designed a novel
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ranking mechanism for IV-g-RPFNs and have presented a step-by-step mathematical approach to
handle MADM situations with the newly developed techniques. Furthermore, we have implemented
these methodologies to resolve the MADM challenge of selecting an optimal spacecraft shielding
material against cosmic radiation. Finally, we have thoroughly compared our technical approaches
against existing knowledge to verify their effectiveness.

6.1. Limitations of the current study
Despite the contributions of proposed strategies, it is important to acknowledge their limitations.
(1) The computational complexity of the proposed operators escalates with elevated values of g
and longer interval datasets, potentially impacting their efficiency in extensive applications.
(2) The procedure necessitates precise identification of the weight vectors; any erroneous
allocation may affect the dependability of outcomes.
6.2. Future research recommendations
We will extend the study of YAOs within the scope of complex interval-valued g-rung picture
fuzzy sets, along with linguistic and probabilistic variants, to capture deeper uncertainty in our
future studies. In addition, the suggested models will be further adapted for diverse decision-
making scenarios, particularly in healthcare diagnostics, cybersecurity protection, Internet of
Things enabled networks, disaster management, and sustainable environmental systems.
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