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Abstract: This research presents two new Yager’s ordered weighted aggregation operators using 

interval-valued 𝑞 -rung picture fuzzy (IV-𝑞 -RPF) knowledge, namely the interval-valued 𝑞 -rung 

picture fuzzy Yager ordered weighted averaging operator (IV-𝑞-RPFYOWAO) and the interval-valued 

𝑞-rung picture fuzzy Yager ordered weighted geometric operator (IV-𝑞-RPFYOWGO). A pair of novel 

score and accuracy functions for interval-valued 𝑞 -rung picture fuzzy numbers (IV-𝑞 -RPFNs) is 

formulated. A step-by-step process is designed to solve multi-attribute decision-making (MADM) 

problems using the proposed methods in IV-𝑞-RPF settings. In addition, these methods are efficiently 

applied to solve the MADM problem of identifying an optimal spacecraft shielding material against 

cosmic radiation. A detailed comparative study is presented to illustrate the validity of the suggested 

techniques in comparison with the existing knowledge. 
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1. Introduction 

Table 1 describes the list of abbreviations used in this work. 
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Table 1. List of abbreviations. 

Description Abbreviation Description  Abbreviation Description Abbreviation 

Aggregation operators AOs Interval-valued 

fuzzy set 

IV-FS Picture fuzzy set PFS 

Multi-attribute 

decision-making 

MADM Intuitionistic fuzzy 

set 

IFS Interval-valued picture 

fuzzy set 

IV-PFS 

Interval-valued 𝑞 -

rung picture fuzzy sets 

IV-𝑞-RPFSs Interval-valued 

intuitionistic fuzzy 

set 

IV-IFS Interval-valued picture 

fuzzy Aczel-Alsina 

weighted aggregation 

operators 

IV-

PFAAWAOs 

Interval-valued 𝑞-

rung picture fuzzy 

Yager weighted 

averaging operator 

IV-𝑞-

RPFYWAO 

Pythagorean fuzzy 

set 

PyFS Spherical fuzzy sets SFS 

Interval-valued 𝑞-

rung picture fuzzy 

Yager weighted 

geometric operator 

IV-𝑞-

RPFYWGO 

𝑞-rung ortho-pair 

fuzzy set 

𝑞-ROFS Interval-valued 

spherical fuzzy set 

IV-SFS 

Interval-valued 𝑞-

rung picture fuzzy 

numbers 

IV-𝑞-RPFNs Interval-valued 𝑞-

rung ortho-pair 

fuzzy set 

IV-𝑞-ROFS Interval-valued 

spherical fuzzy Dombi 

weighted aggregation 

operators 

IV-

SFDWAOs 

Decision-making DM p,q-quasirung ortho-

pair fuzzy hybrid 

aggregation 

p,q-

QOFHA 

𝑞-rung picture fuzzy 

set 

𝑞-RPFS 

Fuzzy set FS 𝑞-rung ortho-pair 

fuzzy hyper soft set 

𝑞-ROFHS (p,q,r)-spherical fuzzy 

sets 

(p,q,r)-SFSs 

Table 2 describes the list of symbols used in this study and their meanings. 

Table 2. List of symbols. 

Description Symbols 

Membership 𝛼 

Neutral 𝛽 

Non-membership 𝜀 

Operational parameter 𝜏 

𝑞-rung 𝑞 
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1.1. Background and literature review 

Decision-making (DM) has gained prominence in the past few decades as an essential aspect 

of solving complex challenges. Multi-attribute decision-making (MADM) techniques help 

organizations evaluate multiple factors to choose the optimal solutions. These methods require 

clear trade-offs and evaluations of both internal and external attributes. Traditional DM methods 

using crisp set theory struggled with vague data, prompting researchers to create mathematical 

models that would be applicable in engineering, medical diagnostics, and technology. In 1965, 

Zadeh [1] developed fuzzy sets (FSs) to represent human judgment through membership functions. 

Yager [2] proposed aggregation operators (AOs) based upon the basic concepts of Zadeh’s seminal 

work to enable better integration of diverse fuzzy variables. Turksen [3] introduced interval-valued 

fuzzy sets (IV-FSs). Atanassov [4] proposed the idea of intuitionistic fuzzy sets (IFSs). Xu [5] 

investigated intuitionistic fuzzy aggregation operators (IFAOs). Zhao et al. [6] formulated 

generalized AOs for IFSs. Tan and colleagues [7,8] developed generalized geometric AOs within 

the framework of IFS knowledge. Chen [9] described a MADM approach employing interval-

valued intuitionistic fuzzy sets (IV-IFSs). Chen [10] considered the subject of a MADM technique 

with IV-IFSs. Yager [11] introduced an improved framework of Pythagorean fuzzy sets (PyFSs). 

The PyFS model has been widely applied in numerous fields [12—14]. Yager [15] put forward the 

notion of 𝑞-rung ortho-pair fuzzy sets (𝑞-ROFSs), whereby the sum of the 𝑞th powers of the MD 

(membership degree) and NMD (non-membership degree) is less than or equal to 1. Liu and Wang [16] 

explored 𝑞-ROF weighted AOs (WAOs). Liu and Liu [17] extended the concept of Bonferroni 

mean WAOs to 𝑞 -ROF information. A multi-attribute group decision-making (MAGDM) 

approach with 𝑞-ROF power Maclaurin AOs was devised by [18]. The Dombi AOs for 𝑞-ROFS 

were described by Jana et al. [19]. A fuzzy interpretation of MAGDM build upon neutrality 

operators of 𝑞-ROFSs was introduced in [20]. Garg et al. [21] introduced power AOs and Vlse 

Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR) methodologies for intricate 𝑞-ROFSs. 

A complex DM structure based on 𝑞 -ROFSs for optimization of evaluative approaches was 

investigated in [22]. Ali [23] proposed a norm-based distance metric for 𝑞-ROFSs. Joshi et al. [24] 

investigated the key properties of interval-valued 𝑞-ROFSs (IV-𝑞-ROFSs). A stratified improved 

interval-valued 𝑞-rung ortho-pair picture bipolar fuzzy (IV-𝑞-ROPBF) DM technique to select the 

method of solid waste disposal, was proposed in a study by Parthasarathy et al.  [25]. 

Cuong [26] introduced the picture fuzzy set (PFS) framework which incorporates three elements–

yes, abstain, and no–to better represent uncertainty. Cuong and Kreinovich [27] further explored PFS 

applications in computational intelligence. Garg [28] contributed by developing various AOs within 

the PFS context. In [29], novel similarity and distance metrics for PFSs were proposed. The Einstein 

AOs in PFS environments was introduced in [30]. Notably, Jana et al. [31] designed Dombi AOs using 

PFSs. In [32], new operations on IV-PFS and IV picture fuzzy soft sets (IV-PFSSs) were proposed. 

The interval-valued picture fuzzy Aczel-Alsina (IV-PFAA) AOs were investigated in [33]. Enhanced 

artificial intelligence models with IV-PFSs and Sugeno-Weber triangular norms were investigated in [34]. 

Gundogdu and Kahraman [35] presented the concept of spherical fuzzy sets (SFSs). The successful 

applications of SFSs across various fields can be found in [36–39]. The idea of interval-valued SFSs 

(IV-SFSs) was developed in [40]. The efficiency of MADM methodologies based on interval-valued 

T-spherical fuzzy aggregation operators (IV-TSFAOs) for investment policy assessments was 

demonstrated in [41]. The importance of IV-SF Dombi strategies was discussed in [42]. 
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The introduction of the 𝑞-rung picture fuzzy set (𝑞-RPFS), in which the 𝑞-th powers of MD and 

NMD can reach a maximum of one, was presented by Li et al. [43]. A novel 𝑞-RPF methodology was 

devised for group DM scenarios within 𝑞-RPF contexts in [44]. Analysis of solid waste segregation 

based on artificial intelligence technologies through MADM and complex 𝑞-RPF frank aggregation 

operators were addressed in [45]. Garg et al. [46] explored the process of integrating industry 

technologies into logistic management within the industrial sector, employing hybrid 𝑞-RPF DM 

methods. Khan and Ahmed [47] introduced MCGDM based on 2-tuple linguistic 𝑞-rung picture fuzzy 

sets. The DM situations were addressed with intricacy under ambiguity using several types of 𝑞-rung 

picture fuzzy Yager aggregation operators (𝑞-RPFYAOs) in [48]. In addition, Cuong [49] presented 

the concept of a Pythagorean picture fuzzy set (PyPFS). 

Jiang et al. [50] introduced a comprehensive DM framework for large groups, utilizing a rough 

integrated asymmetric cloud model inside a multi-granularity linguistic context to accurately capture 

diverse expert evaluations. Liu et al. [51] employed a case-based reasoning methodology for the 

categorization and detection of medical insurance fraud, underscoring the increasing application of 

intelligent DM approaches in intricate real-world issues. Enhancing these advancements, our research 

introduces IV-𝑞-RPF Yager AOs, which offer a versatile and comprehensible framework for intricate 

MADM in uncertainty. 

The interval-valued 𝑞-RPFS (IV-𝑞-RPFS) was established in [52]. Jia and Jia [53] suggested a 

novel method for the estimation of the dependability of a ship’s equipment using symbolic information 

integrated with IV-𝑞 -RPF projection methods. Yang et al. [54] proposed an innovative cognitive 

information-based DM system using IV-𝑞-RPFSs and Heronian mean operators. Shahzadi et al. [55] 

studied the industrial risks under the environment of IV-𝑞-RPFSs. 

1.2. Literature gaps and motivations of the current study 

In everyday DM, data often lacks clarity and uniformity. Conventional models like IFSs, PyFSs, 

or 𝑞-ROFSs cannot be applied because they depend on single-valued inputs. Even advanced models 

such as 𝑞-RPFSs fail to fully capture the uncertainty in expert judgment. On the other hand, IV-𝑞-

RPFSs address this issue by allowing the use of interval-based degrees. To illustrate this limitation, 

consider a simple decision problem of evaluating cybersecurity. Suppose that the experts must assess 

a new security system. One expert states that the system is mostly reliable but with some uncertainty, 

another gives a neutral response, while a third is hesitant because of missing data. If represented using 

single values, this uncertainty is lost. By contrast, IV-𝑞-RPFSs can express each degree (MD, 

Neutral membership degree (NeD), and NMD) as intervals, e.g., MD∈ [0.55,0.75], NeD∈

[0.15,0.25], NMD∈[0.05,0.15], while the 𝑞-parameter adjusts the strictness of evaluation. This 

example illustrates the superior flexibility of IV-𝑞-RPFSs in modelling both the expert’s uncertainty 

and varying attitudes toward uncertainty. They present a more adaptable framework that improves both 

the accuracy and flexibility of judgments. It is especially helpful in complex and ambiguous situations. 

IV-𝑞-RPFSs offer a robust framework for modelling DM scenarios under significant uncertainty by 

representing MD, NeD, and NMD as intervals rather than exact values. This framework accurately 

captures both the expert’s uncertainty and measurement imprecision, providing a more realistic 

representation of real-world scenarios. The 𝑞-parameter increases flexibility by controlling the feasible 

range of degrees, where larger 𝑞 values allow higher flexibility for uncertainty and smaller 𝑞 values 

impose stricter evaluations. This flexibility allows IV-𝑞-RPFSs to handle a wide range of decision-maker 
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attitudes toward risk. When compared with classical fuzzy, intuitionistic fuzzy (IF), or Pythagorean fuzzy 

(PF) models, the use of interval representation and the 𝑞-rung structure make the model more expressive 

and robust. These characteristics make the IV-𝑞-RPFSs very appropriate in solving complex MADM 

tasks in fields like medicine, cybersecurity, engineering design, and environmental management. 

AOs play a vital role in DM by combining varied information and enabling evaluations under 

uncertainty. Numerous AOs, including Dombi, Einstein, Hamacher, and Heronian AOs, have been 

suggested; however, their dependence on inflexible numerical frameworks frequently constrains their 

interpretability and adaptability in qualitative or unpredictable scenarios. Yager AOs are preferable, as 

they provide an intuitive parameter that incorporates conjunctive and disjunctive behaviors, providing 

decision-makers with enhanced flexibility. They also have advantageous theoretical attributes, like 

commutativity, associativity, idempotency, and monotonicity, while ensuring consistency in both 

extreme and intermediate scenarios. Moreover, Yager operators adeptly handle fuzzy and interval-

valued information, overcoming the over- or underestimating seen in various alternative methods, and 

their alignment with ordered weighted aggregation (OWA)-type approaches renders them especially 

potent in MADM under uncertainty. Consequently, we expand the IV-𝑞-RPF framework to incorporate 

novel Yager-based operators, as they offer the most comprehensible and versatile solution for tackling 

intricate DM challenges in this study. 

The novelty of the proposed interval-valued 𝑞 -rung picture fuzzy Yager ordered weighted 

averaging (IV-𝑞-RPFYOWA) operators stems from their ability to combine both the expressive power 

of IV-𝑞-RPFSs and the mechanism of OWA as proposed by Yager. This combination effectively 

addresses the limitations of existing IV-𝑞-RPF operators that are mainly based on arithmetic or geometric 

aggregation. Unlike conventional operators, the parameter-based aggregation functionality of interval-

valued 𝑞-rung picture fuzzy Yager ordered weighted aggregation operators (IV-𝑞-RPFYOWAOs) 

enables decision-makers to regulate the balance between optimism and pessimism, which gives them 

fine-grained control over the integration of information. This dynamic adjustment makes it adaptable in 

varying DM situations. The incorporation of the Yager concept into the IV-𝑞-RPF framework creates a 

powerful trade-off between accuracy and flexibility, allowing better treatment of interval uncertainty and 

multi-dimensional assessments. This innovation greatly improves current practices by addressing the 

shortcomings and enhancing the modelling of uncertainty, thus making a significant contribution to 

decision science. The above discussion prompts us to present two new Yager ordered weighted 

aggregation operators (YOWAOs) in the IV-𝑞-RPF framework and the formulation of a new 

mathematical process to solve MADM problems with the help of these operators in this article. 

Cosmic radiation poses a serious threat to human missions beyond Earth. Astronauts’ health can 

suffer, and spacecraft equipment can be damaged. In the absence of the shielding effect of Earth’s 

atmosphere, space travellers will be subjected to high-energy protons, heavy ions, and subatomic 

particles from cosmic rays and solar events. This kind of exposure may cause cancer, neurological 

disorders, and acute radiation syndrome. It may also destroy electronic systems, exposing a mission to 

failure. Conventional materials used in spacecraft, e.g. aluminium alloys, provide limited protection. 

They are not very useful against heavy ions, which are the most harmful particles. In addition, their 

dense nature makes them too heavy and expensive to carry on long-term missions. 

Researchers are investigating new lightweight materials that exhibit good mechanical strength, 

thermal resistance, and good radiation shielding. Polyethylene contains a high proportion of hydrogen 

and has been demonstrated to be more effective than aluminium in the absorption of cosmic rays, and 

is therefore useful in weight-sensitive missions. Nevertheless, it cannot be used in primary spacecraft 
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construction because of its structural weakness. To alleviate this shortcoming new composite 

materials, particularly those reinforced with boron nitride nanotubes, are more durable and radiation 

resistant. Furthermore, multi-layer shielding systems contribute to the overall safety. Such 

developments are essential to secure and sustained human presence on the Moon and Mars. 

The key objectives of this research are as follows: 

(a) To create a novel IV-𝑞-RPFN ranking system that efficiently handles MADM issues; 

(b) To delineate the essential Yager operational principles pertinent to IV-𝑞-RPFNs; 

(c) To present two innovative Yager OWAOs in the context of the IV-𝑞-RPFs settings, tailored 

to handle complex and ambiguous decision data and analyze their structural features; 

(d) To develop a step-by-step mathematical procedure for MADM by utilizing the proposed 

techniques executed in the IV-𝑞-RPF context; 

(e) To ensure the applicability and efficiency of the proposed methods by addressing a real-world 

MADM problem of selecting an optimal spacecraft shielding material against cosmic radiation; 

(f) To perform an in-depth comparison study, particularly highlighting the effectiveness of 

recently suggested techniques relative to the existing ones. 

The remaining portion of the paper is structured into several sections as follows. Section 2 

discusses the essential concepts and rules of IV-𝑞-RPFSs. Section 3 formulates innovative scoring and 

accuracy functions for addressing MADM issues in IV-𝑞-RPF scenarios. Section 4 introduces two new 

YOWAOs within the IV-𝑞-RPF framework and presents an analysis of their structural characteristics. 

Section 5 develops a mathematical framework to tackle MADM challenges using the newly proposed 

techniques. It includes the solution of the MADM problem of selecting an optimal spacecraft shielding 

material against cosmic radiation using IV-𝑞-RPFYOWAOs. It also examines the effectiveness of 

these new methodologies with the existing knowledge. Section 6 concludes the study by outlining the 

impact that the research could have and summarizing the most important findings. 

2. Preliminaries 

This section explores the foundational facets of the subject presented in this article. We provide a 

concise overview of the basic attributes, operations, and methodologies pertaining to IV-𝑞 -RPFSs 

defined on a non-empty universal set. 

Definition 2.1. [43] A 𝑞-RPFS ℒ of 𝔊 is expressed as 

ℒ = {(ℊ, 𝛼ℒ(ℊ), 𝛽ℒ(ℊ), 𝜀ℒ(ℊ))|ℊ ∈ 𝔊}, (2.1) 

where 𝛼ℒ: 𝔊 → [0,1], 𝛽ℒ: 𝔊 → [0,1], and 𝜀ℒ: 𝔊 → [0,1] represent the membership, neutral, and non-

membership functions, respectively, such that 0 ≤ (𝛼ℒ(ℊ))
𝑞 + (𝛽ℒ(ℊ))

𝑞 + (𝜀ℒ(ℊ))
𝑞 ≤ 1, ∀ℊ ∈

𝔊, and 𝑞 is a positive integer. 

Definition 2.2. [54] Assume that 𝔊 represents the universe and 𝒞([0,1]) describes the collection of 

all subintervals of [0,1]. An IV-𝑞-RPFS 𝔗 is defined as 

𝔗 = {(ℊ, 𝛼𝔗(ℊ), 𝛽𝔗(ℊ), 𝜀𝔗(ℊ))|ℊ ∈ 𝔊}, (2.2) 

where  𝛼𝔗(ℊ) = [𝛼𝔗
𝐿(ℊ), 𝛼𝔗

𝑈(ℊ)], 𝛽𝔗(ℊ) = [𝛽𝔗
𝐿(ℊ), 𝛽𝔗

𝑈(ℊ)] , 𝑎𝑛𝑑  𝜀𝔗(ℊ) = [𝜀𝔗
𝐿(ℊ), 𝜀𝔗

𝑈(ℊ)], 
respectively, represent the membership, neutral, and non-membership degrees of the element ℊ to 𝔗 
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such that 0 ≤ 𝛼𝔗
𝐿(ℊ) < 𝛼𝔗

𝑈(ℊ) ≤ 1, 0 ≤ 𝛽𝔗
𝐿(ℊ) < 𝛽𝔗

𝑈(ℊ) ≤ 1, and 0 ≤ 𝜀𝔗
𝐿(ℊ) < 𝜀𝔗

𝑈(ℊ) ≤ 1. 

Moreover,  𝛼𝔗: 𝔊 → 𝒞([0,1]) , 𝛽𝔗: 𝔊 → 𝒞([0,1]),  and 𝜀𝔗: 𝔊 → 𝒞([0,1])  are, respectively, the 

membership, neutral, and non-membership functions that satisfy the conditions 0 ≤ (𝛼𝔗
𝐿(ℊ))𝑞 +

(𝛽𝔗
𝐿(ℊ))𝑞 + (𝜀𝔗

𝐿(ℊ))𝑞 ≤ 1  and  0 ≤ (𝛼𝔗
𝑈(ℊ))𝑞 + (𝛽𝔗

𝑈(ℊ))𝑞 + (𝜀𝔗
𝑈(ℊ))𝑞 ≤ 1 , ∀ ℊ ∈ 𝔊,  and 

𝑞 is a positive integer. 

In the subsequent portion of the study, the membership, neutral, and non-membership degrees of 

ℊ ∈  𝔊 are represented by the symbol 𝔗 = ([𝛼𝐿, 𝛼𝑈], [𝛽𝐿 , 𝛽𝑈], [𝜀𝐿 , 𝜀𝑈]). This specific representation 

of the element 𝔗  is termed as an IV-𝑞-RPFN, where 0 ≤ 𝛼𝐿,  𝛽𝐿 , 𝜀𝐿 , (𝛼𝐿)𝑞 + (𝛽𝐿)𝑞 + (𝜀𝐿)𝑞 ≤ 1, 

and 0 ≤ 𝛼𝑈 ,  𝛽𝑈 , 𝜀𝑈 , (𝛼𝑈)𝑞 + (𝛽𝑈)𝑞 + (𝜀𝑈)𝑞 ≤ 1. 

Definition 2.3. [27] Consider any two IV-PFNs 𝔎1 = ([𝛼1
𝐿 , 𝛼1

𝑈], [𝛽1
𝐿 , 𝛽1

𝑈],[𝜀1
𝐿 , 𝜀1

𝑈])
  

and 𝔎2 =

([𝛼2
𝐿 , 𝛼2

𝑈], [𝛽2
𝐿 , 𝛽2

𝑈], [𝜀2
𝐿 , 𝜀2

𝑈]).  The fundamental operations of 𝔎1  and 𝔎2  are described as 

follows: 

I. 𝔎1 < 𝔎2 iff 𝛼1
𝐿 < 𝛼2

𝐿 ,  𝛽1
𝐿 > 𝛽2

𝐿 ,  𝜀1
𝐿 > 𝜀2

𝐿 ,  𝛼1
𝑈 < 𝛼2

𝑈 , 𝛽1
𝑈 > 𝛽2

𝑈 𝑎𝑛𝑑 𝜀1
𝑈 > 𝜀2

𝑈; 

II. 𝔎1 = 𝔎2 iff 𝛼1
𝐿 = 𝛼2

𝐿 ,  𝛽1
𝐿 = 𝛽2

𝐿 ,  𝜀1
𝐿 = 𝜀2

𝐿 , 𝛼1
𝑈 = 𝛼2

𝑈 ,  𝛽1
𝑈 = 𝛽2

𝑈 𝑎𝑛𝑑 𝜀1
𝑈 = 𝜀2

𝑈; 

III. 𝔎1
𝑐=([𝜀1

𝐿, 𝜀1
𝑈], [𝛽1

𝐿 , 𝛽1
𝑈],[𝛼1

𝐿 , 𝛼1
𝑈]). 

Definition 2.4. [2] Yager’s t-conorm and t-norm on any (𝓂,𝓃) ∈ [0, 1]2 and for any 𝜏𝜖(0,∞) are 

given by 

I. 𝒮(𝓂,𝓃) = 𝑚𝑖𝑛 {1, (𝓂𝜏 +𝓃𝜏)
1

𝜏}. 

II. 𝒯(𝓂,𝓃) = 1 −𝑚𝑖𝑛 {1, ((1 −𝓂)𝜏 + (1 − 𝓃)𝜏)
1

𝜏}. 

Definition 2.5. [48] Let 𝔄  be a set of 𝑞 -RPFNs, 𝔗𝑖 = 〈𝛼𝑖 , 𝛽𝑖 , 𝜀𝑖〉 , 𝑖 = 1,2, … , 𝒽 , and 𝜗 =

(𝜗1, 𝜗2, … , 𝜗𝒽)
𝑇 be an associated weight vector of these 𝑞-RPFNs 𝔗𝑖 with 0 ≤ 𝜗i ≤ 1 such that 

∑ 𝜗i = 1𝒽
𝑖=1 . The 𝑞-RPFYWA operator is a mapping: 𝔄𝒽 → 𝔄 specified by the expression below: 

𝑞 − 𝑅𝑃𝐹𝑌𝑊𝐴𝜗(𝔗1, 𝔗2, … , 𝔗𝒽)=⊕i=1

𝒽
ϑi𝔗i 

=

(

 
 
 √𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛼𝑖)

𝑞𝜏)𝒽
𝑖=1 )

1

𝜏)
𝑞

, √1 − 𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛽𝑖)
𝑞)𝜏)𝒽

𝑖=1 )
1

𝜏)
𝑞

,

√1 − 𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝜀𝑖)
𝑞)𝜏)𝒽

𝑖=1 )
1

𝜏)
𝑞

)

 
 
 

. 

(2.3) 

Moreover, the 𝑞-RPFYWG operator is a mapping: 𝔄𝒽 → 𝔄 specified by the expression below: 

𝑞 − 𝑅𝑃𝐹𝑌𝑊𝐺𝜗(𝔗1, 𝔗2, … , 𝔗𝒽)=⊗i=1

𝒽
𝔗i

ϑi 

=

(

 
 
 
 √1 −𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛼𝑖)

𝑞)𝜏)𝒽
𝑖=1 )

1

𝜏)
𝑞

, √𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛽𝑖)
𝑞𝜏)𝒽

𝑖=1 )
1

𝜏)
𝑞

,

√𝑚𝒾𝑛 (1, (∑ (𝜗𝑖((𝜀𝑖)
𝑞𝜏)𝒽

𝑖=1 )
1

𝜏)
𝑞

)

 
 
 
 

  

(2.4) 
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The overall methodology workflow is depicted in Figure 1. 

 

Figure 1. Overall methodology workflow. 

3. Formulation of a novel ranking mechanism for IV-𝒒-RPFNs 

In this section, a pair of novel score and accuracy functions for IV-𝑞-RPFNs is developed for 

MADM problems. 

Definition 3.1. Consider an IV-𝑞-RPFN as 𝔗 = ([𝛼𝐿, 𝛼𝑈], [𝛽𝐿 , 𝛽𝑈], [𝜀𝐿 , 𝜀𝑈]). The score function ℌ 

of 𝔗 is formulated as 

ℌ(𝔗) =
(𝛼𝐿)𝑞−(𝛽𝐿)𝑞−(𝜀𝐿)

𝑞
+(𝛼𝑈)𝑞−(𝛽𝑈)𝑞−(𝜀𝑈)

𝑞

2
, where ℌ(𝔗) ∈ [−1,1]. 

And accuracy function is defined as 

𝐴(𝔗) =
(𝛼𝐿)𝑞+(𝛽𝐿)𝑞+(𝜀𝐿)

𝑞
+(𝛼𝑈)𝑞+(𝛽𝑈)𝑞+(𝜀𝑈)

𝑞

2
, where  𝐴(𝔗) ∈ [0,1]. 

This definition delineates the ranking criteria to any two IV-𝑞-RPFNs 𝔗1 and 𝔗2 as follows: 
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I. ℌ(𝔗1) > ℌ(𝔗2) ⇒ 𝔗1 > 𝔗2, which means that 𝔗1 is stronger then 𝔗2; 

II. ℌ(𝔗1) < ℌ(𝔗2) ⇒ 𝔗1 < 𝔗2, which means that 𝔗1 is weaker then 𝔗2; 

III. ℌ(𝔗1) = ℌ(𝔗2) ⇒ 𝔗1 ∼ 𝔗2, which means that 𝔗1 and 𝔗2 are equivalent. 

Then if 

(a) 𝐴(𝔗1) > 𝐴(𝔗2) ⇒ 𝔗1 > 𝔗2; 

(b) 𝐴(𝔗1) < 𝐴(𝔗2) ⇒ 𝔗1 < 𝔗2; 

(c) 𝐴(𝔗1) = 𝐴(𝔗2) ⇒ 𝔗1 ∼ 𝔗2. 

To substantiate the efficacy of our proposed scoring function for IV-𝑞-RPFNs, we delineate the 

subsequent illustrative example. 

Example 3.1. Consider any two IV- q -RPFNs 𝔗1 = ([0.5,0.8], [0.2,0.4], [0.1,0.3])
  

and 𝔗2 =

([0.6,0.7], [0.2,0.5], [0.2,0.4]) , where q = 2 . In view of Definition 3.1, we have ℌ(𝔗1) = 0.295 

and  ℌ(𝔗2) = 0.180. 

Consequently, by Definition 3.1(I), we ascertain that 𝔗1 is superior to 𝔗2. This indicates that 𝔗1 

is better than 𝔗2. 

4. Structural characteristics of IV-𝑞-RPFYOWAOs 

In this section, we introduce the Yager operations within the framework of the IV-𝑞 -RPF 

environment. We introduce two innovative YOWAOs, namely the IV-𝑞-RPFYOWA operator and the 

IV-𝑞-RPFYOWG operator, and analyze the essential characteristics inherent to these operators. 

Definition 4.1. For any two IV- 𝑞 -RPFNs 𝔗1 = ([𝛼1
𝐿 , 𝛼1

𝑈], [𝛽1
𝐿 , 𝛽1

𝑈], [𝜀1
𝐿 , 𝜀1

𝑈])
  

and 𝔗2 =

 ([𝛼2
𝐿 , 𝛼2

𝑈], [𝛽2
𝐿 , 𝛽2

𝑈], [𝜀2
𝐿 , 𝜀2

𝑈]) , 𝜏 > 0 , and 𝓌 > 0.  The operational laws for IV-𝑞 -RPFNs 

based on Yager’s t-conorm and t-norm are expressed as 

I. 𝔗1⊕𝔗2 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 [√𝑚𝒾𝑛 (1, ((𝛼1

𝐿)𝑞𝜏 + (𝛼2
𝐿)𝑞𝜏)

1

𝜏)
𝑞

, √𝑚𝒾𝑛 (1, ((𝛼1
𝑈)𝑞𝜏 + (𝛼2

𝑈)𝑞𝜏)
1

𝜏)
𝑞

] ,

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, ((1 − (𝛽1

𝐿)𝑞)
𝜏
+ (1 − (𝛽2

𝐿)𝑞)
𝜏
)

1

𝜏
)

𝑞

,

√1 − 𝑚𝒾𝑛 (1, ((1 − (𝛽1
𝑈)𝑞)

𝜏
+ (1 − (𝛽2

𝑈)𝑞)
𝜏
)

1

𝜏
)

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, ((1 − (𝜀1

𝐿)𝑞)
𝜏
+ (1 − (𝜀2

𝐿)𝑞)
𝜏
)

1

𝜏
)

𝑞

,

√1 −𝑚𝒾𝑛 (1, ((1 − (𝜀1
𝑈)𝑞)

𝜏
+ (1 − (𝜀2

𝑈)𝑞)
𝜏
)

1

𝜏
)

𝑞

]
 
 
 
 
 

)
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II. 𝔗1⊗𝔗2 =

(

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, ((1 − (𝛼1

𝐿)𝑞)
𝜏
+ (1 − (𝛼2

𝐿)𝑞)
𝜏
)

1

𝜏
)

𝑞

,

√1 − 𝑚𝒾𝑛 (1, ((1 − (𝛼1
𝑈)𝑞)

𝜏
+ (1 − (𝛼2

𝑈)𝑞)
𝜏
)

1

𝜏
)

𝑞

]
 
 
 
 
 

,

[√𝑚𝒾𝑛 (1, ((𝛽1
𝐿)
𝑞𝜏
+ (𝛽2

𝐿)𝑞𝜏)

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, ((𝛽1
𝑈)

𝑞𝜏
+ (𝛽2

𝑈)𝑞𝜏)

1

𝜏
)

𝑞

]

[√𝑚𝒾𝑛 (1, ((𝜀1
𝐿)𝑞𝜏 + (𝜀2

𝐿)𝑞𝜏)
1

𝜏)
𝑞

, √𝑚𝒾𝑛 (1, ((𝜀1
𝑈)𝑞𝜏 + (𝜀2

𝑈)𝑞𝜏)
1

𝜏)
𝑞

]

)

 
 
 
 
 
 
 
 
 
 
 

  

III. 𝓌𝔗1 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
[√𝑚𝒾𝑛 (1, (𝓌(𝛼1

𝐿)𝑞𝜏)
1

𝜏)
𝑞

, √𝑚𝒾𝑛 (1, (𝓌(𝛼1
𝑈)𝑞𝜏)

1

𝜏)
𝑞

] ,

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, (𝓌(1 − (𝛽1

𝐿)𝑞)
𝜏
)

1

𝜏
)

𝑞

,

√1 − 𝑚𝒾𝑛 (1, (𝓌(1 − (𝛽1
𝑈)𝑞)

𝜏
)

1

𝜏
)

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, (𝓌(1 − (𝜀1

𝐿)𝑞)
𝜏
)

1

𝜏
)

𝑞

,

√1 −𝑚𝒾𝑛 (1, (𝓌(1 − (𝜀1
𝑈)𝑞)

𝜏
)

1

𝜏
)

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

  

IV. 𝔗1
𝓌 =

(

 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, ((1 −𝓌(𝛼1

𝐿)𝑞)
𝜏
)

1

𝜏
)

𝑞

,

√1 − 𝑚𝒾𝑛 (1, ((1 −𝓌(𝛼1
𝑈)𝑞)

𝜏
)

1

𝜏
)

𝑞

]
 
 
 
 
 

,

[√𝑚𝒾𝑛 (1, (𝓌(𝛽1
𝐿)
𝑞𝜏
)

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (𝓌(𝛽1
𝑈)

𝑞𝜏
)

1

𝜏
)

𝑞

]

[√𝑚𝒾𝑛 (1, (𝓌(𝜀1
𝐿)𝑞𝜏)

1

𝜏)
𝑞

, √𝑚𝒾𝑛 (1, (𝓌(𝜀1
𝑈)𝑞𝜏)

1

𝜏)
𝑞

]
)

 
 
 
 
 
 
 
 
 
 

. 

4.1. Fundamental characteristics of the IV-𝑞-RPFYOWA operator 

In the subsequent discussion, we propose the concept of the IV-𝑞-RPFYOWAO and examine its 

essential properties. 

Definition 4.2. Let 𝔄 be a set of IV-𝑞-RPFNs, 𝔗𝑖 = ([𝛼𝑖
𝐿 , 𝛼𝑖

𝑈], [𝛽𝑖
𝐿 , 𝛽𝑖

𝑈], [𝜀𝑖
𝐿 , 𝜀𝑖

𝑈]), 𝑖 = 1,2, … , 𝒽, 

and 𝜗 = (𝜗1, 𝜗2, … , 𝜗𝒽)
𝑇  be an associated weight vector of these IV-𝑞 -RPFNs 𝔗𝑖  with 0 ≤ 𝜗i ≤ 1 

such that ∑ 𝜗i = 1𝒽
𝑖=1 .  Additionally, (𝜌(1), 𝜌(2), 𝜌(3), … , 𝜌(𝒽))  is a permutation of {1,2, . . . , 𝒽} 
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such that 𝔗𝜌(𝑖−1) ≥ 𝔗𝜌(𝑖), ∀ 𝑖 . The IV-𝑞 -RPFYOWAO is a mapping: 𝔄𝒽 → 𝔄  and is defined by the 

following rule: 

𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐴𝜗(𝔗1, 𝔗2, … , 𝔗𝒽) 

=⊕
i=1

𝒽
𝜗i𝔗𝜌(𝑖)               (4.1) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 

√
  
  
  
  
  

𝑚𝒾𝑛

(

 
 
1,(∑(𝜗𝑖(𝛼𝜌(𝑖)

𝐿)
𝑞𝜏

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

,

√
  
  
  
  
  

𝑚𝒾𝑛

(

 
 
1, (∑𝜗𝑖(𝛼𝜌(𝑖)

𝑈)𝑞𝜏
𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  

1 −𝑚𝒾𝑛

(

 
 
1, (∑(𝜗𝑖(1 − (𝛽𝜌(𝑖)

𝐿)𝑞)
𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

,

√
  
  
  
  
  

1 −𝑚𝒾𝑛

(

 
 
1, (∑(𝜗𝑖(1 − (𝛽𝜌(𝑖)

𝑈)𝑞)
𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

]
 
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  

1 −𝑚𝒾𝑛

(

 
 
1, (∑(𝜗𝑖(1 − (𝜀𝜌(𝑖)

𝐿)𝑞)
𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

,

√
  
  
  
  
  

1 −𝑚𝒾𝑛

(

 
 
1,(∑(𝜗𝑖(1 − (𝜀𝜌(𝑖)

𝑈)𝑞)
𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

]
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Physical interpretation of the IV-𝑞-RPFYOWAO 

The IV-𝑞-RPFYOWAO offers significant physical interpretations in DM scenarios. The IV-

𝑞 -RPFYOWAO functions as a balancing mechanism, aggregating uncertain attribute values 

through a weighted average procedure that fairly and stably reflects the overall performance of all 

attributes. In addition, IV-𝑞-RPFYOWAO prioritises consensus and seamless compromise among 

the attributes. 

The following result shows that the aggregated value of any finite number of IV-𝑞-RPFNs under 

the IV-𝑞-RPFYOWAO is itself an IV-𝑞-RPFN. 

Theorem 4.1. Consider 𝒽 to be number of IV-𝑞-RPFNs, 𝔗𝑖 = ([𝛼𝑖
𝐿, 𝛼𝑖

𝑈], [𝛽𝑖
𝐿 , 𝛽𝑖

𝑈], [𝜀𝑖
𝐿 , 𝜀𝑖

𝑈]), 𝑖 =
1,2, … ,𝒽, and 𝜗 = (𝜗1, 𝜗2, … , 𝜗𝒽)

𝑇 be an associated weight vector of these IV-𝑞-RPFNs 𝔗𝑖 with 

0 ≤ 𝜗i ≤ 1  such that ∑ 𝜗i = 1𝒽
𝑖=1   and 𝜏 > 0 . Additionally, (𝜌(1), 𝜌(2), 𝜌(3), … , 𝜌(𝒽))  is a 

permutation of {1,2, . . . , 𝒽}  such that 𝔗𝜌(𝑖−1) ≥ 𝔗𝜌(𝑖), ∀ 𝑖. Then, the aggregated value of these IV-

𝑞-RPFNs in the framework of an IV-𝑞-RPFYOWA operator is an IV-𝑞-RPFN and is formulated as 

follows: 
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𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐴ϑ(𝔗1, 𝔗2, … , 𝔗𝒽)=⊕i=1
𝒽 ϑi𝔗𝜌(i) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 [√𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛼𝜌(𝑖)

𝐿)
𝑞𝜏𝒽

𝑖=1 )

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (∑ 𝜗𝑖(𝛼𝜌(𝑖)
𝑈)𝑞𝜏𝒽

𝑖=1 )
1

𝜏)
𝑞

] ,

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛽𝜌(𝑖)

𝐿)𝑞)
𝜏
)𝒽

𝑖=1 )

1

𝜏
)

𝑞

,

√1 −𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛽𝜌(𝑖)
𝑈)𝑞)

𝜏
)𝒽

𝑖=1 )

1

𝜏
)

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝜀𝜌(𝑖)

𝐿)𝑞)
𝜏
)𝒽

𝑖=1 )

1

𝜏
)

𝑞

,

√1 −𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝜀𝜌(𝑖)
𝑈)𝑞)

𝜏
)𝒽

𝑖=1 )

1

𝜏
)

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

Proof. The validity of this assertion is demonstrated by the application of mathematical induction on 𝒽. 

Consider the base case when  𝒽 = 2.  Here, we have 𝔗1 = ([𝛼1
𝐿 , 𝛼1

𝑈], [𝛽1
𝐿 , 𝛽1

𝑈], [𝜀1
𝐿 , 𝜀1

𝑈])  and 

𝔗2 = ([𝛼2
𝐿, 𝛼2

𝑈], [𝛽2
𝐿 , 𝛽2

𝑈], [𝜀2
𝐿 , 𝜀2

𝑈]).  Utilizing the formulated Yager operational laws for IV-𝑞 -

RPFNs as delineated in Definition 4.1, we obtain the following expressions: 

ϑ1𝔗𝜌(1)=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 [√𝑚𝒾𝑛 (1, (𝜗1(𝛼𝜌(1)

𝐿)
𝑞𝜏
)

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (𝜗1(𝛼𝜌(1)
𝑈)

𝑞𝜏
)

1

𝜏
)

𝑞

] ,

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, (𝜗1(1 − (𝛽𝜌(1)

𝐿)𝑞)
𝜏
)

1

𝜏
)

𝑞

,

√1 −𝑚𝒾𝑛 (1, (𝜗1(1 − (𝛽𝜌(1)
𝑈)𝑞)

𝜏
)

1

𝜏
)

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, (𝜗1(1 − (𝜀𝜌(1)

𝐿)𝑞)
𝜏
)

1

𝜏
)

𝑞

,

√1 −𝑚𝒾𝑛 (1, (𝜗1(1 − (𝜀𝜌(1)
𝑈)𝑞)

𝜏
)

1

𝜏
)

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

and 

ϑ2𝔗𝜌(2)=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 [√𝑚𝒾𝑛 (1, (𝜗2(𝛼𝜌(2)

𝐿)
𝑞𝜏
)

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (𝜗2(𝛼𝜌(2)
𝑈)

𝑞𝜏
)

1

𝜏
)

𝑞

] ,

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, (𝜗2(1 − (𝛽𝜌(2)

𝐿)𝑞)
𝜏
)

1

𝜏
)

𝑞

,

√1 −𝑚𝒾𝑛 (1, (𝜗2(1 − (𝛽𝜌(2)
𝑈)𝑞)

𝜏
)

1

𝜏
)

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, (𝜗2(1 − (𝜀𝜌(2)

𝐿)𝑞)
𝜏
)

1

𝜏
)

𝑞

,

√1 − 𝑚𝒾𝑛 (1, (𝜗2(1 − (𝜀𝜌(2)
𝑈)𝑞)

𝜏
)

1

𝜏
)

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 
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The aggregated value of 𝔗1 and 𝔗2 in the setting of Definition 4.2 is calculated as follows: 

𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐴ϑ(𝔗1, 𝔗2) = ϑ1𝔗𝜌(1)⊕ϑ2𝔗𝜌(2) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 [√𝑚𝒾𝑛 (1, (𝜗1(𝛼𝜌(1)

𝐿)
𝑞𝜏
)
1
𝜏)

𝑞

, √𝑚𝒾𝑛 (1, (𝜗1(𝛼𝜌(1)
𝑈)

𝑞𝜏
)
1
𝜏)

𝑞

] ,

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, (𝜗1(1 − (𝛽𝜌(1)

𝐿)𝑞)
𝜏
)

1
𝜏
)

𝑞

,

√1 − 𝑚𝒾𝑛 (1, (𝜗1(1 − (𝛽𝜌(1)
𝑈)𝑞)

𝜏
)

1
𝜏
)

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, (𝜗1(1 − (𝜀𝜌(1)

𝐿)𝑞)
𝜏
)

1
𝜏
)

𝑞

,

√1 − 𝑚𝒾𝑛 (1, (𝜗1(1 − (𝜀𝜌(1)
𝑈)𝑞)

𝜏
)

1
𝜏
)

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

⊕

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 [√𝑚𝒾𝑛 (1, (𝜗2(𝛼𝜌(2)

𝐿)
𝑞𝜏
)
1
𝜏)

𝑞

, √𝑚𝒾𝑛 (1, (𝜗2(𝛼𝜌(2)
𝑈)

𝑞𝜏
)
1
𝜏)

𝑞

] ,

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, (𝜗2(1 − (𝛽𝜌(2)

𝐿)𝑞)
𝜏
)

1
𝜏
)

𝑞

,

√1 − 𝑚𝒾𝑛 (1, (𝜗2(1 − (𝛽𝜌(2)
𝑈)𝑞)

𝜏
)

1
𝜏
)

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, (𝜗2(1 − (𝜀𝜌(2)

𝐿)𝑞)
𝜏
)

1
𝜏
)

𝑞

,

√1 − 𝑚𝒾𝑛 (1, (𝜗2(1 − (𝜀𝜌(2)
𝑈)𝑞)

𝜏
)

1
𝜏
)

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 [√𝑚𝒾𝑛 (1, (𝜗1(𝛼𝜌(1)

𝐿)
𝑞𝜏
+ 𝜗2(𝛼𝜌(2)

𝐿)𝑞𝜏)

1
𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (𝜗1(𝛼𝜌(1)
𝑈)

𝑞𝜆
+ 𝜗2(𝛼𝜌(2)

𝑈)𝑞𝜏)

1
𝜏
)

𝑞

] ,

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, (𝜗1(1 − (𝛽𝜌(1)

𝐿)𝑞)
𝜏
+ 𝜗2(1 − (𝛽𝜌(2)

𝐿)𝑞)
𝜏
)

1
𝜏
)

𝑞

,

√1 − 𝑚𝒾𝑛 (1, (𝜗1(1 − (𝛽𝜌(1)
𝑈)𝑞)

𝜏
+ 𝜗2(1 − (𝛽𝜌(2)

𝑈)𝑞)
𝜏
)

1
𝜏
)

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, (𝜗1(1 − (𝜀𝜌(1)

𝐿)𝑞)
𝜏
+ 𝜗2(1 − (𝜀𝜌(2)

𝐿)𝑞)
𝜏
)

1
𝜏
)

𝑞

,

√1 − 𝑚𝒾𝑛 (1, (𝜗1(1 − (𝜀𝜌(1)
𝑈)𝑞)

𝜏
+ 𝜗2(1 − (𝜀𝜌(2)

𝑈)𝑞)
𝜏
)

1
𝜏
)

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Consequently, 

𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐴ϑ(𝔗1, 𝔗2) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 [√𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛼𝜌(𝑖)

𝐿)
𝑞𝜏2

𝑖=1 )

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (∑ 𝜗𝑖(𝛼𝜌(𝑖)
𝑈)𝑞𝜏2

𝑖=1 )
1

𝜏)
𝑞

] ,

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛽𝜌(𝑖)

𝐿)𝑞)
𝜏
)2

𝑖=1 )

1

𝜏
)

𝑞

,

√1 −𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛽𝜌(𝑖)
𝑈)𝑞)

𝜏
)2

𝑖=1 )

1

𝜏
)

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝜀𝜌(𝑖)

𝐿)𝑞)
𝜏
)2

𝑖=1 )

1

𝜏
)

𝑞

,

√1 − 𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝜀𝜌(𝑖)
𝑈)𝑞)

𝜏
)2

𝑖=1 )

1

𝜏
)

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Hence, the statement is valid for 𝒽 = 2. 

Suppose that the result holds for 𝒽 = 𝑠. 
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𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐴ϑ(𝔗1, 𝔗2, … , 𝔗𝑠) =⊕i=1
s ϑi𝔗𝜌(𝑖) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 [√𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛼𝜌(𝑖)

𝐿)
𝑞𝜏𝑠

𝑖=1 )

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (∑ 𝜗𝑖(𝛼𝜌(𝑖)
𝑈)𝑞𝜏𝑠

𝑖=1 )
1

𝜏)
𝑞

] ,

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛽𝜌(𝑖)

𝐿)𝑞)
𝜏
)𝑠

𝑖=1 )

1

𝜏
)

𝑞

,

√1 −𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛽𝜌(𝑖)
𝑈)𝑞)

𝜏
)𝑠

𝑖=1 )

1

𝜏
)

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝜀𝜌(𝑖)

𝐿)𝑞)
𝜏
)𝑠

𝑖=1 )

1

𝜏
)

𝑞

,

√1 − 𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝜀𝜌(𝑖)
𝑈)𝑞)

𝜏
)𝑠

𝑖=1 )

1

𝜏
)

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Now, for 𝒽 = 𝑠 + 1, we have 

𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐴ϑ(𝔗1, 𝔗2, … , 𝔗𝑠, 𝔗𝑠+1) 

=⊕i=1
s ϑi𝔗𝜌(𝑖)⊕ϑs𝔗𝜌(𝑠+1) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 [√𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛼𝜌(𝑖)

𝐿)
𝑞𝜏𝑠

𝑖=1 )

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (∑ 𝜗𝑖(𝛼𝜌(𝑖)
𝑈)𝑞𝜏𝑠

𝑖=1 )
1

𝜏)
𝑞

] ,

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛽𝜌(𝑖)

𝐿)𝑞)
𝜏
)𝑠

𝑖=1 )

1

𝜏
)

𝑞

,

√1 −𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛽𝜌(𝑖)
𝑈)𝑞)

𝜏
)𝑠

𝑖=1 )

1

𝜏
)

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝜀𝜌(𝑖)

𝐿)𝑞)
𝜏
)𝑠

𝑖=1 )

1

𝜏
)

𝑞

,

√1 −𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝜀𝜌(𝑖)
𝑈)𝑞)

𝜏
)𝑠

𝑖=1 )

1

𝜏
)

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

⊕

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 [√𝑚𝒾𝑛 (1, (𝜗𝑠+1(𝛼𝜌(𝑠+1)

𝐿)
𝑞𝜏
)

1
𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (𝜗𝑠+1(𝛼𝜌(𝑠+1)
𝑈)

𝑞𝜏
)

1
𝜏
)

𝑞

] ,

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, (𝜗𝑠+1(1 − (𝛽𝜌(𝑠+1)

𝐿)𝑞)
𝜏
)

1
𝜏
)

𝑞

,

√1 −𝑚𝒾𝑛 (1, (𝜗𝑠+1(1 − (𝛽𝜌(𝑠+1)
𝑈)𝑞)

𝜏
)

1
𝜏
)

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, (𝜗𝑠+1(1 − (𝜀𝜌(𝑠+1)

𝐿)𝑞)
𝜏
)

1
𝜏
)

𝑞

,

√1 − 𝑚𝒾𝑛 (1, (𝜗𝑠+1(1 − (𝜀𝜌(𝑠+1)
𝑈)𝑞)

𝜏
)

1
𝜏
)

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Consequently, 
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𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐴ϑ(𝔗1, 𝔗2, … , 𝔗𝑠+1)=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 [√𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛼𝜌(𝑖)

𝐿)
𝑞𝜏𝑠+1

𝑖=1 )

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (∑ 𝜗𝑖(𝛼𝜌(𝑖)
𝑈)𝑞𝜏𝑠+1

𝑖=1 )
1

𝜏)
𝑞

] ,

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛽𝜌(𝑖)

𝐿)𝑞)
𝜏
)𝑠+1

𝑖=1 )

1

𝜏
)

𝑞

,

√1 −𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛽𝜌(𝑖)
𝑈)𝑞)

𝜏
)𝑠+1

𝑖=1 )

1

𝜏
)

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝜀𝜌(𝑖)

𝐿)𝑞)
𝜏
)𝑠+1

𝑖=1 )

1

𝜏
)

𝑞

,

√1 − 𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝜀𝜌(𝑖)
𝑈)𝑞)

𝜏
)𝑠+1

𝑖=1 )

1

𝜏
)

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

This shows that the result is therefore valid for 𝒽 = 𝑠 + 1 . Thus, the aforementioned technique 

demonstrates the fact that the result is valid for all positive integral values of 𝒽. 

The following example illustrates the fact stated in Theorem 4.1. 

Example 4.1. Suppose four clients assess a company’s customer service on the basis of their recent 

experiences. The opinions of these clients are represented using IV-q-RPFNs, 

𝔗1 = (

[0.6,0.7],
[0.2,0.4],
[0.2,0.5]

) ,  𝔗2 =(

[0.5,0.8],
[0.3,0.5],
[0.3,0.4]

) ,  𝔗3 =(

[0.4,0.5],
[0.2,0.3],
[0.1,0.4]

)  𝑎𝑛𝑑 𝔗4 = (

[0.5,0.9],
[0.1,0.3],
[0.1,0.5]

) 

with 𝜗 = (0.1,0.2,0.3,0.4)𝑇 as an associated weighted vector (WV) of these IV-q-RPFNs. 

In order to aggregate these IV-𝑞-RPFNs using Definition 4.2, we proceed as follows. 

Initially, compute the score values of these IV-q-RPFNs 𝔗i, i = 1,2,3,4 using Definition 3.1 for 

q = 4 as follows: 

ℌ(𝔗1) = 0.139, ℌ(𝔗2) = 0.184, ℌ(𝔗3) = 0.026 and  ℌ(𝔗4) = 0.324. 

In view of the information above, these IV-q-RPFNs are arranged in descending order as 𝔗ρ(1) =

𝔗4, 𝔗ρ(2) = 𝔗2, 𝔗ρ(3) = 𝔗1, and 𝔗ρ(4) = 𝔗3 . Then, these IV- q -RPFNs are aggregated using 

Definition 4.2 for the operational parameter τ = 2 as follows: 

𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐴𝜗(𝔗1, 𝔗2, 𝔗3, 𝔗4)=⊕i=1
4 ϑi𝔗𝜌(𝑖) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 [√𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛼𝜌(𝑖)

𝐿)
(4)(2)4

𝑖=1 )

1

2
)

4

, √𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛼𝜌(𝑖)
𝑈)

(4)(2)4
𝑖=1 )

1

2
)

4

] ,

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛽𝜌(𝑖)

𝐿)4)
2
)4

𝑖=1 )

1

2
)

4

,

√1 − 𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛽𝜌(𝑖)
𝑈)4)

2
)4

𝑖=1 )

1

2
)

4

]
 
 
 
 
 

,

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝜀𝜌(𝑖)

𝑈)4)
2
)4

𝑖=1 )

1

2
)

4

,

√1 − 𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝜀𝜌(𝑖)
𝑈)4)

2
)4

𝑖=1 )

1

2
)

4

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 
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By substituting the values of IV-q-RPFNs and the associated WV ϑi in the relation above, we obtain 

𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐴𝜗(𝔗1, 𝔗2, 𝔗3, 𝔗4) = ([0.492,0.807], [0.243,0.383], [0.243,0.451]).
 

Thus, the abovementioned discussion establishes the validity of Theorem 4.1. 

The following result establishes that when the IV-𝑞-RPFYOWAO is applied to any finite number 

of identical IV-𝑞-RPFNs, it yields the same value. This property is known as the idempotency property 

of the IV-𝑞-RPFYOWAO. 

Theorem 4.2. (Idempotency) Consider 𝒽  to be number of IV-𝑞-RPFNs, 𝔗𝑖 =

([𝛼𝑖
𝐿, 𝛼𝑖

𝑈], [𝛽𝑖
𝐿 , 𝛽𝑖

𝑈], [𝜀𝑖
𝐿 , 𝜀𝑖

𝑈]) , 𝑖 = 1,2,… , 𝒽 , and 𝜗 = (𝜗1, 𝜗2, … , 𝜗𝒽)
𝑇  be an associated WV of 

these IV-𝑞-RPFNs  𝔗𝑖  with 0 ≤ 𝜗i ≤ 1  such that ∑ 𝜗i = 1𝒽
𝑖=1   and 𝜏 > 0 . Additionally, 

(𝜌(1), 𝜌(2), 𝜌(3), … , 𝜌(𝒽))  is a permutation of {1,2, . . . , 𝒽}   such that 𝔗𝜌(𝑖−1) ≥ 𝔗𝜌(𝑖), ∀ 𝑖 . If 

𝔗𝜌(𝑖) = 𝔗𝜌(∘), ∀ 𝑖, where 𝔗 = ([𝛼𝜌(∘)
𝐿 , 𝛼𝜌(∘)

𝑈], [𝛽𝜌(∘)
𝐿 , 𝛽𝜌(∘)

𝑈], [𝜀𝜌(∘)
𝐿 , 𝜀𝜌(∘)

𝑈]), then, 

𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐴𝜗(𝔗1, 𝔗2, . . . , 𝔗𝒽) = 𝔗𝜌(∘). 

Proof. Given that 𝔗𝑖 = ([𝛼𝑖
𝐿, 𝛼𝑖

𝑈], [𝛽𝑖
𝐿 , 𝛽𝑖

𝑈], [𝜀𝑖
𝐿 , 𝜀𝑖

𝑈]) = 𝔗𝜌(∘), 𝑖 = 1,2, … , 𝒽. In view of Definition 2.3, 

the relations above give  𝛼𝜌(𝑖)
𝐿 = 𝛼𝜌(∘)

𝐿,  𝛼𝜌(𝑖)
𝑈 = 𝛼𝜌(∘)

𝑈 ,  𝛽𝜌(𝑖)
𝐿 = 𝛽𝜌(∘)

𝐿 ,  𝛽𝜌(𝑖)
𝑈 = 𝛽𝜌(∘)

𝑈 , 𝜀𝜌(𝑖)
𝐿 =

𝜀𝜌(∘)
𝐿 , and  𝜀𝜌(𝑖)

𝑈 = 𝜀𝜌(∘)
𝑈. By substituting the values of 𝛼𝑖

𝐿, 𝛼𝑖
𝑈, 𝛽𝑖

𝐿 , 𝛽𝑖
𝑈 , 𝜀𝑖

𝐿 , and 𝜀𝑖
𝑈 in Eq (4.1), 

we get 

𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐴𝜗(𝔗1, 𝔗2, . . . , 𝔗𝒽) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 [√𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛼𝜌(∘))

𝑞𝜏𝒽
𝑖=1 )

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (∑ 𝜗𝑖(𝛼𝜌(∘)
𝑈)𝑞𝜏𝒽

𝑖=1 )
1

𝜏)
𝑞

] ,

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛽𝜌(∘)

𝐿)𝑞)
𝜏
)𝒽

𝑖=1 )

1

𝜏
)

𝑞

,

√1 −𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛽𝜌(∘)
𝑈)𝑞)

𝜏
)𝒽

𝑖=1 )

1

𝜏
)

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝜀𝜌(∘)

𝐿)𝑞)
𝜏
)𝒽

𝑖=1 )

1

𝜏
)

𝑞

,

√1 − 𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝜀𝜌(∘)
𝑈)𝑞)

𝜏
)𝒽

𝑖=1 )

1

𝜏
)

𝑞

]
 
 
 
 
 

)
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=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 [√𝑚𝒾𝑛 (1, ((𝛼𝜌(∘)

𝐿)
𝑞𝜏
)

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, ((𝛼𝜌(∘)
𝑈)

𝑞𝜏
)

1

𝜏
)

𝑞

] ,

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, ((1 − (𝛽𝜌(∘)

𝐿)𝑞)
𝜏
)

1

𝜏
)

𝑞

,

√1 −𝑚𝒾𝑛 (1, ((1 − (𝛽𝜌(∘)
𝑈)𝑞)

𝜏
)

1

𝜏
)

𝑞

]
 
 
 
 
 

,

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, ((1 − (𝜀𝜌(∘)

𝐿)𝑞)
𝜏
)

1

𝜏
)

𝑞

,

√1 −𝑚𝒾𝑛 (1, ((1 − (𝜀𝜌(∘)
𝑈)𝑞)

𝜏
)

1

𝜏
)

𝑞

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 
 
 
[√𝑚𝒾𝑛(1, (𝛼𝜌(∘)

𝐿)𝑞)
𝑞

, √𝑚𝒾𝑛(1, (𝛼𝜌(∘)
𝑈)𝑞)

𝑞

] ,

[
 
 
 √1 −𝑚𝒾𝑛 (1, (1 − (𝛽𝜌(∘)

𝐿)𝑞))
𝑞

,

√1 − 𝑚𝒾𝑛 (1, (1 − (𝛽𝜌(∘)
𝑈)𝑞))

𝑞

]
 
 
 

,

[
 
 
 √1 −𝑚𝒾𝑛 (1, (1 − (𝜀𝜌(∘)

𝐿)𝑞))
𝑞

,

√1 − 𝑚𝒾𝑛 (1, (1 − (𝜀𝜌(∘)
𝑈)𝑞))

𝑞

]
 
 
 

)

 
 
 
 
 
 
 
 
 

. 

It follows that 

𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐴𝜗(𝔗1, 𝔗2, . . . , 𝔗𝒽) = ([𝛼𝜌(∘)
𝐿 , 𝛼𝜌(∘)

𝑈], [𝛽𝜌(∘)
𝐿 , 𝛽𝜌(∘)

𝑈], [𝜀𝜌(∘)
𝐿 , 𝜀𝜌(∘)

𝑈]) = 𝔗𝜌(∘). 

The following result describes that the aggregated value of any finite number of IV-𝑞-RPFNs under 

the IV-𝑞-RPFYOWAO, which lies between the minimum and maximum bounds of the given IV-𝑞-

RPFN. This is known as the boundedness property of an IV-𝑞-RPFYOWAO. 

Theorem 4.3. (Boundedness) Consider 𝒽  to be number of IV-𝑞-RPFNs, 𝔗𝑖 =

([𝛼𝑖
𝐿, 𝛼𝑖

𝑈], [𝛽𝑖
𝐿 , 𝛽𝑖

𝑈], [𝜀𝑖
𝐿 , 𝜀𝑖

𝑈]), 𝑖 = 1,2,… , 𝒽, and  𝜗 = (𝜗1, 𝜗2, … , 𝜗𝒽)
𝑇 to be an associated WV 

of these IV-𝑞-RPFNs 𝔗𝑖  with 0 ≤ 𝜗i ≤ 1  such that ∑ 𝜗i = 1𝒽
𝑖=1   and 𝜏 > 0 . Additionally, 

(𝜌(1), 𝜌(2), 𝜌(3), … , 𝜌(𝒽))  is a permutation of {1,2, . . . , 𝒽}   such that 𝔗𝜌(𝑖−1) ≥ 𝔗𝜌(𝑖), ∀ 𝑖 . If 

𝔗− = ([𝑚𝒾𝑛𝑖(𝛼𝜌(𝑖)
𝐿),𝑚𝒾𝑛𝑖  (𝛼𝜌(𝑖)

𝑈)], [𝑚𝑎𝑥𝑖  (𝛽𝜌(𝑖)
𝐿),𝑚𝑎𝑥𝑖  (𝛽𝜌(𝑖)

𝑈)], [𝑚𝑎𝑥𝑖  (𝜀𝜌(𝑖)
𝐿),𝑚𝑎𝑥𝑖  (𝜀𝜌(𝑖)

𝑈)])  and 

𝔗+ = ([𝑚𝑎𝑥𝑖  (𝛼𝜌(𝑖)
𝐿),𝑚𝑎𝑥𝑖   (𝛼𝜌(𝑖)

𝑈)], [𝑚𝒾𝑛𝑖  (𝛽𝜌(𝑖)
𝐿),𝑚𝒾𝑛𝑖  (𝛽𝜌(𝑖)

𝑈)], [𝑚𝒾𝑛𝑖  (𝜀𝜌(𝑖)
𝐿),𝑚𝒾𝑛𝑖  (𝜀𝜌(𝑖)

𝑈)]), then, 

𝔗− ≤ 𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐴𝜗(𝔗1, 𝔗2, … , 𝔗𝒽) ≤ 𝔗+. 

Proof. Consider the result obtained by using the IV-𝑞-RPFYOWA operator with the set of IV-𝑞-RPFNs, 

represented as 𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐴𝜗(𝔗1, 𝔗2, … , 𝔗𝒽) = ([𝛼𝐿 , 𝛼𝑈], [𝛽𝐿 , 𝛽𝑈], [𝜀𝐿 , 𝜀𝑈]). 

Suppose that 𝔗− = ([(𝛼𝐿)−, (𝛼𝑈)−], [(𝛽𝐿)−, (𝛽𝑈)−], [(𝜀𝐿)−, (𝜀𝑈)−])  and 𝔗+ =

([(𝛼𝐿)+, (𝛼𝑈)+], [(𝛽𝐿)+, (𝛽𝑈)+], [(𝜀𝐿)+, (𝜀𝑈)+]) , where (𝛼𝐿)− = 𝑚𝒾𝑛𝑖(𝛼𝜌(𝑖)
𝐿) ,  (𝛼𝑈)− =

𝑚𝒾𝑛𝑖(𝛼𝜌(𝑖)
𝑈) , (𝛽𝐿)− = 𝑚𝑎𝑥𝑖(𝛽𝜌(𝑖)

𝐿) ,  (𝛽𝑈)− = 𝑚𝑎𝑥𝑖(𝛽𝜌(𝑖)
𝑈) ,  (𝜀𝐿)− = 𝑚𝑎𝑥𝑖(𝜀𝜌(𝑖)

𝐿) ,  (𝜀𝑈)− =
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𝑚𝑎𝑥𝑖(𝜀𝜌(𝑖)
𝑈) , (𝛼𝐿)+ = 𝑚𝑎𝑥𝑖(𝛼𝜌(𝑖)

𝐿) ,  (𝛼𝑈)+ = 𝑚𝑎𝑥𝑖(𝛼𝜌(𝑖)
𝑈) , (𝛽𝐿)+ = 𝑚𝒾𝑛𝑖 (𝛽𝜌(𝑖)

𝐿),  (𝛽𝑈)+ =

𝑚𝒾𝑛𝑖 (𝛽𝜌(𝑖)
𝑈), (𝜀𝐿)+ = 𝑚𝒾𝑛𝑖 (𝜀𝜌(𝑖)

𝐿), and (𝜀𝑈)+ = 𝑚𝒾𝑛𝑖(𝜀𝜌(𝑖)
𝑈). Thus, for each IV-𝑞-RPFN 𝔗𝑖, 

we have 

𝑚𝒾𝑛𝑖(𝛼𝜌(𝑖)
𝐿) ≤ 𝛼𝜌(𝑖)

𝐿 ≤𝑚𝑎𝑥𝑖  (𝛼𝑖
𝐿) 

⟹ (𝑚𝒾𝑛𝑖(𝛼𝜌(𝑖)
𝐿))

𝑞𝜏
≤ (𝛼𝜌(𝑖)

𝐿)
𝑞𝜏
≤ (𝑚𝑎𝑥𝑖(𝛼𝜌(𝑖)

𝐿))
𝑞𝜏

 

⟹(∑(ϑi(𝑚𝒾𝑛𝑖(𝛼𝜌(𝑖)
𝐿))

𝑞𝜏
)

𝒽

𝑖=1

)

1
𝜏

≤ (∑((ϑi(𝛼𝜌(𝑖)
𝐿)
𝑞𝜏
))

𝒽

𝑖=1

)

1
𝜏

≤ (∑(𝜗i(𝑚𝑎𝑥𝑖(𝛼𝜌(𝑖)
𝐿))

𝑞𝜏
)

𝒽

𝑖=1

)

1
𝜏

 

⟹

√
  
  
  
  
  

𝑚𝒾 n

(

 
 
1, (∑(ϑi(𝑚𝒾𝑛𝑖(𝛼𝜌(𝑖)

𝐿))
𝑞𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

≤

√
  
  
  
  
  

𝑚𝒾𝑛

(

 
 
1,(∑((ϑi(𝛼𝜌(𝑖)

𝐿)
𝑞𝜏
))

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

 

≤

√
  
  
  
  
  

𝑚𝒾𝑛

(

 
 
1,(∑(ϑi(𝑚𝑎𝑥𝑖(𝛼𝜌(𝑖)

𝐿))
𝑞𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

 

⟹ √𝑚𝒾𝑛 (1, (∑ (ϑi((𝛼
𝐿)−)𝑞𝜏)𝒽

𝑖=1 )
1

𝜏)
𝑞

≤ √𝑚𝒾𝑛 (1, (∑ ((ϑi(𝛼𝜌(𝑖)
𝐿)
𝑞𝜏
))𝒽

𝑖=1 )

1

𝜏
)

𝑞

≤ √𝑚𝒾𝑛 (1, (∑ (ϑi((𝛼
𝐿)+)𝑞𝜏)𝒽

𝑖=1 )
1

𝜏)
𝑞

. 

It follows that 

(𝛼𝐿)− ≤ (𝛼𝐿) ≤ (𝛼𝐿)+.  (4.2) 

Similarly, by following the mathematical steps above, we can obtain the following expression for the 

relation 𝑚𝒾𝑛𝑖(𝛼𝜌(𝑖)
𝑈) ≤ 𝛼𝜌(𝑖)

𝑈 ≤𝑚𝑎𝑥𝑖 (𝛼𝜌(𝑖)
𝑈): 

(𝛼𝑈)− ≤ (𝛼𝑈) ≤ (𝛼𝑈)+.  (4.3) 

Now, consider 

𝑚𝑎𝑥𝑖(𝛽𝜌(𝑖)
𝐿) ≤ 𝛽𝜌(𝑖)

𝐿 ≤ 𝑚𝒾𝑛𝑖(𝛽𝜌(𝑖)
𝐿)⟹ (𝑚𝑎𝑥𝑖(𝛽𝜌(𝑖)

𝐿))
𝑞
≤ (𝛽𝜌(𝑖)

𝐿)
𝑞
≤ (𝑚𝒾𝑛𝑖(𝛽𝜌(𝑖)

𝐿))
𝑞
 

⟹(∑(ϑi (1 − (𝑚𝑎𝑥𝑖(𝛽𝜌(𝑖)
𝐿))

𝑞
)
𝜏
)

𝒽

𝑖=1

)

1
𝜏

≥ (∑(ϑi (1 − (𝛽𝜌(𝑖)
𝐿)
𝑞
)
𝜏
)

𝒽

𝑖=1

)

1
𝜏

≥ (∑(ϑi (1 − (𝑚𝒾𝑛𝑖(𝛽𝜌(𝑖)
𝐿))

𝑞
)
𝜏
)

𝒽

𝑖=1

)

1
𝜏

 

⟹

√
  
  
  
  
  

1 −𝑚𝒾 n

(

 
 
1,(∑(ϑi (1 − (𝑚𝑎𝑥𝑖(𝛽𝜌(𝑖)

𝐿))
𝑞
)
𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

≤

√
  
  
  
  
  
  

1 −𝑚𝒾𝑛

(

 
 
1, (∑(ϑi (1 − (𝛽𝜌(𝑖)

𝐿)
𝑞
)
𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 𝑞
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≤

√
  
  
  
  
  

1 −𝑚𝒾𝑛

(

 
 
1, (∑(ϑi (1 − (𝑚𝒾𝑛𝑖(𝛽𝜌(𝑖)

𝐿))
𝑞
)
𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

 

⟹

√
  
  
  
  
  

1 −𝑚𝒾 n

(

 
 
1, (∑(ϑi(1 − ((𝛽𝐿)−)𝑞)𝜏)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

≤

√
  
  
  
  
  

1 −𝑚𝒾𝑛

(

 
 
1, (∑(ϑi (1 − (𝛽𝜌(𝑖)

𝐿)
𝑞
)
𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

 

≤ √1 −𝑚𝒾𝑛 (1, (∑ (ϑi(1 − ((𝛽𝐿)+)𝑞)𝜏)𝒽
𝑖=1 )

1

𝜏)
𝑞

. 

It follows that 

(𝛽𝐿)− ≤ (𝛽𝐿) ≤ (𝛽𝐿)+. (4.4) 

By adopting the mathematical process above for the relations 𝑚𝑎𝑥𝑖(𝛽𝜌(𝑖)
𝑈) ≤ 𝛽𝜌(𝑖)

𝑈 ≤

𝑚𝒾𝑛𝑖(𝛽𝜌(𝑖)
𝑈) ,  𝑚𝑎𝑥

𝑖
(𝜀𝜌(𝑖)

𝐿) ≤ 𝜀𝜌(𝑖)
𝐿 ≤ 𝑚𝒾𝑛

𝑖
(𝜀𝜌(𝑖)

𝐿) ,  and 𝑚𝑎𝑥
𝑖

(𝜀𝜌(𝑖)
𝑈) ≤ 𝜀𝜌(𝑖)

𝑈 ≤ 𝑚𝒾𝑛
𝑖
(𝜀𝜌(𝑖)

𝑈) , 

we obtain their respective outcomes as follows: 

(𝛽𝑈)− ≤ (𝛽𝑈) ≤ (𝛽𝑈)+, 
(4.5) 

(𝜀𝐿)− ≤ (𝜀𝐿) ≤ (𝜀𝐿)+, 
(4.6) 

and 

(𝜀𝑈)− ≤ (𝜀𝑈) ≤ (𝜀𝑈)+. (4.7) 

Hence, from the comparison of the relations (4.2)–(4.7), we get 

𝔗− ≤ 𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐴𝜗(𝔗1, 𝔗2, … , 𝔗𝒽) ≤ 𝔗+. 

The following result establishes that if a particular set containing a finite number of IV-𝑞 -RPFNs 

exhibits improvement under the IV-𝑞-RPFYOWAO with respect to another collection of finite number 

of IV-𝑞 -RPFNs, then the overall outcome will not diminish. This is known as the monotonicity 

property of an IV-𝑞-RPFYOWAO. 

Theorem 4.4. (Monotonicity) Let 𝔗𝑖 = ([𝛼𝑖
𝐿, 𝛼𝑖

𝑈], [𝛽𝑖
𝐿 , 𝛽𝑖

𝑈], [𝜀𝑖
𝐿 , 𝜀𝑖

𝑈])  and 𝔗𝑖′ =
([𝛼𝑖′

𝐿, 𝛼𝑖′
𝑈], [𝛽𝑖′

𝐿 , 𝛽𝑖′
𝑈], [𝜀𝑖′

𝐿 , 𝜀𝑖′
𝑈]) , 𝑖 = 1,2,… ,𝒽 , be any two sets of IV-𝑞-RPFNs, and let 𝜗 =

(𝜗1, 𝜗2, … , 𝜗𝒽)
𝑇 be an associated WV of these IV-𝑞-RPFNs 𝔗𝑖 and 𝔗𝑖′ with 0 ≤ 𝜗i ≤ 1 such that 

∑ 𝜗i = 1𝒽
𝑖=1   and 𝜏 > 0 . Additionally, (𝜌(1), 𝜌(2), 𝜌(3), … , 𝜌(𝒽))  is a permutation of 

{1,2, . . . , 𝒽}  such that 𝔗𝜌(𝑖−1) ≥ 𝔗𝜌(𝑖),  ∀ 𝑖.  If 𝛼𝜌(𝑖)
𝐿 ≤ 𝛼𝜌(𝑖)′

𝐿 ,  𝛼𝜌(𝑖)
𝑈 ≤ 𝛼𝜌(𝑖)′

𝑈 ,  𝛽𝜌(𝑖)
𝐿 ≥

𝛽𝜌(𝑖)′
𝐿 ,  𝛽𝜌(𝑖)

𝑈 ≥ 𝛽𝜌(𝑖)′
𝑈 , 𝜀𝜌(𝑖)

𝐿 ≥ 𝜀𝜌(𝑖)′
𝐿 , 𝑎𝑛𝑑 𝜀𝜌(𝑖)

𝑈 ≥ 𝜀𝜌(𝑖)′
𝑈, ∀ 𝑖. Then, 

𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐴𝜗(𝔗1, 𝔗2, … , 𝔗𝒽) ≤ 𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐴𝜗(𝔗1
′, 𝔗2

′, … , 𝔗𝒽
′). 
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Proof. Consider 

𝛼𝜌(i)
𝐿 ≤ 𝛼𝜌(i)′

𝐿 ⟹ (𝛼𝜌(i)
𝐿)𝑞 ≤ (𝛼𝜌(i)′

𝐿)
𝑞
 

⟹(∑(𝜗𝑖(𝛼𝜌(i)
𝐿)
𝑞𝜏
)

𝒽

𝑖=1

)

1
𝜏

≤ (∑(𝜗𝑖(𝛼𝜌(i)′
𝐿)
𝑞𝜏
)

𝒽

𝑖=1

)

1
𝜏

 

⟹𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛼𝜌(𝑖)
𝐿)
𝑞𝜏
)𝒽

𝑖=1 )

1

𝜏
) ≤ 𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛼𝜌(𝑖)′

𝐿)
𝑞𝜏
)𝒽

𝑖=1 )

1

𝜏
). 

It follows that 

√
  
  
  
  
  

𝑚𝒾𝑛

(

 
 
1, (∑(𝜗𝑖(𝛼𝜌(𝑖)

𝐿)
𝑞𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

≤

√
  
  
  
  
  

𝑚𝒾𝑛

(

 
 
1,(∑(𝜗𝑖(𝛼𝜌(𝑖)′

𝐿)
𝑞𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

. 
(4.8) 

Similarly, by following the aforementioned mathematical steps, we can establish the following 

expression for the relation 𝛼𝜌(i)
𝑈 ≤ 𝛼𝜌(i)′

𝑈
, we have 

√
  
  
  
  
  

𝑚𝒾𝑛

(

 
 
1,(∑(𝜗𝑖(𝛼𝜌(𝑖)

𝑈)
𝑞𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

≤

√
  
  
  
  
  

𝑚𝒾𝑛

(

 
 
1,(∑(𝜗𝑖(𝛼𝜌(𝑖)′

𝑈)
𝑞𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

. 
(4.9) 

Now, consider 

𝛽𝜌(𝑖)
𝐿 ≥ 𝛽𝜌(𝑖)′

𝐿 ⟹ (𝛽𝜌(𝑖)
𝐿)𝑞 ≥ (𝛽𝜌(𝑖)′

𝐿)
𝑞
 

⟹(∑(𝜗𝑖(1 − (𝛽𝜌(𝑖)
𝐿)𝑞)

𝜏
)

𝒽

𝑖=1

)

1
𝜏

≤ (∑(𝜗𝑖(1 − (𝛽𝜌(𝑖)′
𝐿)𝑞)

𝜏
)

𝒽

𝑖=1

)

1
𝜏

 

⟹ 1−𝑚𝒾𝑛

(

 
 
1, (∑(𝜗𝑖(1 − (𝛽𝜌(𝑖)

𝐿)𝑞)
𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 
≥ 1 −𝑚𝒾𝑛

(

 
 
1, (∑(𝜗𝑖(1 − (𝛽𝜌(𝑖)′

𝐿)𝑞)
𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 
. 

It follows that 

√
  
  
  
  
  

1 −𝑚𝒾𝑛

(

 
 
1, (∑(𝜗𝑖(1 − (𝛽𝜌(𝑖)

𝐿)𝑞)
𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

≥

√
  
  
  
  
  

1 −𝑚𝒾𝑛

(

 
 
1, (∑(𝜗𝑖(1 − (𝛽𝜌(𝑖)′

𝐿)𝑞)
𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

. (4.10) 

By following the abovementioned mathematical procedure for the relations 𝛽𝜌(i)
𝑈 ≥ 𝛽𝜌(i)′

𝑈, 𝜀𝜌(i)
𝐿 ≥

𝜀𝜌(i)′
𝐿  and  𝜀𝜌(i)

𝑈 ≥ 𝜀𝜌(i)′
𝑈, we obtain their respective outcomes as follows: 
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√
  
  
  
  
  

1 −𝑚𝒾𝑛

(

 
 
1, (∑(𝜗𝑖(1 − (𝛽𝜌(𝑖)

𝑈)𝑞)
𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

≥

√
  
  
  
  
  

1 −𝑚𝒾𝑛

(

 
 
1,(∑(𝜗𝑖(1 − (𝛽𝜌(𝑖)′

𝑈)𝑞)
𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

, 
(4.11) 

√
  
  
  
  
  

1 −𝑚𝒾𝑛

(

 
 
1, (∑(𝜗𝑖(1 − (𝜀𝜌(𝑖)

𝐿)𝑞)
𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

≥

√
  
  
  
  
  

1 −𝑚𝒾𝑛

(

 
 
1,(∑(𝜗𝑖(1 − (𝜀𝜌(𝑖)′

𝐿)𝑞)
𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

, (4.12) 

and 

√
  
  
  
  
  

1 −𝑚𝒾𝑛

(

 
 
1, (∑(𝜗𝑖(1 − (𝜀𝜌(𝑖)

𝑈)𝑞)
𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

≥

√
  
  
  
  
  

1 −𝑚𝒾𝑛

(

 
 
1,(∑(𝜗𝑖(1 − (𝜀𝜌(𝑖)′

𝑈)𝑞)
𝜏
)

𝒽

𝑖=1

)

1
𝜏

)

 
 

𝑞

. (4.13) 

Comparing the relations from (4.8)–(4.13) and making use of Definition 2.3, we get 

𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐴𝜗(𝔗1, 𝔗2, … , 𝔗𝒽) ≤ 𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐴𝜗(𝔗1
′, 𝔗2

′, … , 𝔗𝒽
′). 

4.2. Fundamental characteristics of the interval-valued q-rung picture fuzzy Yager ordered weighted 

geometric operator (IV-𝑞-RPFYOWGO) 

This subsection introduces the notion of the interval-valued q-rung picture fuzzy Yager ordered 

weighted geometric operator (IV-𝑞-RPFYOWGO) and analyzes its essential properties. 

Definition 4.3. Let 𝔄  be a collection of IV-𝑞 -RPFNs, 𝔗𝑖 = ([𝛼𝑖
𝐿, 𝛼𝑖

𝑈], [𝛽𝑖
𝐿 , 𝛽𝑖

𝑈], [𝜀𝑖
𝐿 , 𝜀𝑖

𝑈]) , 𝑖 =
1,2, … ,𝒽, and 𝜗 = (𝜗1, 𝜗2, … , 𝜗𝒽)

𝑇 be an associated weight vector of these IV-𝑞-RPFNs 𝔗𝑖 with 

0 ≤ 𝜗i ≤ 1  such that ∑ 𝜗i = 1𝒽
𝑖=1 .  Additionally, (𝜌(1), 𝜌(2), 𝜌(3), … , 𝜌(𝒽))  is a permutation of 

{1,2, . . . , 𝒽}  such that 𝔗𝜌(𝑖−1) ≥ 𝔗𝜌(𝑖), ∀ 𝑖. The IV-𝑞-RPFYOWGO is a mapping: 𝔄𝒽 → 𝔄 and is 

formulated by the following rule: 

𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐺ϑ(𝔗1, 𝔗2, … , 𝔗𝒽) 

=

(

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛼𝜌(𝑖)

𝐿)𝑞)
𝜏
)𝒽

𝑖=1 )
1

𝜏)
𝑞

,

√1 − 𝑚𝒾𝑛 (1, ∑ (𝜗𝑖(1 − (𝛼𝜌(𝑖)
𝑈)𝑞)

𝜏
)𝒽

𝑖=1

1

𝜏)
𝑞

]
 
 
 
 
 

,

[√𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛽𝜌(𝑖)
𝐿)
𝑞𝜏
)𝒽

𝑖=1 )

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛽𝜌(𝑖)
𝑈)

𝑞𝜏
)𝒽

𝑖=1 )

1

𝜏
)

𝑞

]

[√𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝜀𝜌(𝑖)
𝐿)
𝑞𝜏
)𝒽

𝑖=1 )

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝜀𝜌(𝑖)
𝑈)

𝑞𝜏
)𝒽

𝑖=1 )

1

𝜏
)

𝑞

]

)

 
 
 
 
 
 
 
 
 
 
 

.  
  (4.14) 
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Physical interpretation of the IV-𝑞-RPFYOWGO 

The IV-𝑞-RPFYOWGO offers significant physical interpretations in DM scenarios. The IV-𝑞-

RPFYOWGO encapsulates a synergistic interaction among attributes via multiplicative aggregation, 

whereby a less potent attribute can substantially influence the total result. Moreover, IV- 𝑞 -

RPFYOWGO underscores sensitivity to the weakest link, rendering both operators suitable for 

modelling real-world MADM contexts. 

The following result shows that the aggregated value of any finite number of IV-𝑞-RPFNs under 

the IV-𝑞-RPFYOWGO, is itself an IV-𝑞-RPFN. 

Theorem 4.5. Consider 𝒽  to be number of IV-𝑞 -RPFNs, 𝔗𝑖 = ([𝛼𝑖
𝐿, 𝛼𝑖

𝑈], [𝛽𝑖
𝐿 , 𝛽𝑖

𝑈], [𝜀𝑖
𝐿 , 𝜀𝑖

𝑈]) , 
𝑖 = 1,2, … ,𝒽, and let 𝜗 = (𝜗1, 𝜗2, … , 𝜗𝒽)

𝑇 be an associated weight vector of these IV-𝑞-RPFNs 𝔗𝑖 

with 0 ≤ 𝜗i ≤ 1  such that ∑ 𝜗i = 1𝒽
𝑖=1   and 𝜏 > 0 . Additionally, (𝜌(1), 𝜌(2), 𝜌(3), … , 𝜌(𝒽))  is a 

permutation of {1,2, . . . , 𝒽}  such that 𝔗𝜌(𝑖−1) ≥ 𝔗𝜌(𝑖), ∀ 𝑖. Then, the aggregated value of these IV-

𝑞-RPFNs in the framework of the IV-𝑞-RPFYOWGO is an IV-𝑞-RPFN and is formulated as follows: 

𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐺ϑ(𝔗1, 𝔗2, … , 𝔗𝒽)=⊗i=1
𝒽 𝔗𝜌(i)

ϑi 

=

(

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛼𝜌(𝑖)

𝐿)𝑞)
𝜏
)𝒽

𝑖=1 )
1

𝜏)
𝑞

,

√1 − 𝑚𝒾𝑛 (1,∑ (𝜗𝑖(1 − (𝛼𝜌(𝑖)
𝑈)𝑞)

𝜏
)𝒽

𝑖=1

1

𝜏)
𝑞

]
 
 
 
 
 

,

[√𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛽𝜌(𝑖)
𝐿)
𝑞𝜏
)𝒽

𝑖=1 )

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛽𝜌(𝑖)
𝑈)

𝑞𝜏
)𝒽

𝑖=1 )

1

𝜏
)

𝑞

]

[√𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝜀𝜌(𝑖)
𝐿)
𝑞𝜏
)𝒽

𝑖=1 )

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝜀𝜌(𝑖)
𝑈)

𝑞𝜏
)𝒽

𝑖=1 )

1

𝜏
)

𝑞

]

)

 
 
 
 
 
 
 
 
 
 
 

. 

Proof. The validity of this assertion is established by mathematical induction on 𝒽. Consider the base 

case when  𝒽 = 2.  Here, we have 𝔗1 = ([𝛼1
𝐿, 𝛼1

𝑈], [𝛽1
𝐿 , 𝛽1

𝑈], [𝜀1
𝐿 , 𝜀1

𝑈])  and  𝔗2 =

([𝛼2
𝐿 , 𝛼2

𝑈], [𝛽2
𝐿 , 𝛽2

𝑈], [𝜀2
𝐿 , 𝜀2

𝑈]). Utilizing the formulated Yager operational laws for IV-𝑞-RPFNs 

as delineated in Definition 4.1, we obtain the following expressions: 

𝔗𝜌(1)
𝜗1=

(

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, (𝜗1(1 − (𝛼𝜌(1)

𝐿)𝑞)
𝜏
)
1

𝜏)
𝑞

,

√1 − 𝑚𝒾𝑛 (1, (𝜗1(1 − (𝛼𝜌(1)
𝑈)𝑞)

𝜏
)
1

𝜏)
𝑞

]
 
 
 
 
 

,

[√𝑚𝒾𝑛 (1, (𝜗1(𝛽𝜌(1)
𝐿)
𝑞𝜏
)

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (𝜗1(𝛽𝜌(1)
𝑈)

𝑞𝜏
)

1

𝜏
)

𝑞

]

[√𝑚𝒾𝑛 (1, (𝜗1(𝜀𝜌(1)
𝐿)
𝑞𝜏
)

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (𝜗1(𝜀𝜌(1)
𝑈)

𝑞𝜏
)

1

𝜏
)

𝑞

]

)

 
 
 
 
 
 
 
 
 
 
 

, 

and 
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𝔗𝜌(2)
𝜗2=

(

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, (𝜗2(1 − (𝛼𝜌(2)

𝐿)𝑞)
𝜏
)
1

𝜏)
𝑞

,

√1 −𝑚𝒾𝑛 (1, (𝜗2(1 − (𝛼𝜌(2)
𝑈)𝑞)

𝜏
)
1

𝜏)
𝑞

]
 
 
 
 
 

,

[√𝑚𝒾𝑛 (1, (𝜗2(𝛽𝜌(2)
𝐿)
𝑞𝜏
)

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (𝜗2(𝛽𝜌(2)
𝑈)

𝑞𝜏
)

1

𝜏
)

𝑞

]

[√𝑚𝒾𝑛 (1, (𝜗2(𝜀𝜌(2)
𝐿)
𝑞𝜏
)

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (𝜗2(𝜀𝜌(2)
𝑈)

𝑞𝜏
)

1

𝜏
)

𝑞

]

)

 
 
 
 
 
 
 
 
 
 
 

. 

The aggregated value of 𝔗𝜌(1) and 𝔗𝜌(2) in the setting of Definition 4.3 is calculated as follows: 

𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐺ϑ(𝔗1, 𝔗2)=𝔗𝜌(1)
ϑ1 ⊗𝔗𝜌(2)

ϑ2 

=

(

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, (𝜗1(1 − (𝛼𝜌(1)

𝐿)
𝑞
)
𝜏
)

1

𝜏
)

𝑞

,

√1 −𝑚𝒾𝑛 (1, (𝜗1(1 − (𝛼𝜌(1)
𝑈)

𝑞
)
𝜏
)

1

𝜏
)

𝑞

]
 
 
 
 
 

,

[√𝑚𝒾𝑛 (1, (𝜗1(𝛽𝜌(1)
𝐿)
𝑞𝜏
)

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (𝜗1(𝛽𝜌(1)
𝑈)

𝑞𝜏
)

1

𝜏
)

𝑞

]

[√𝑚𝒾𝑛 (1, (𝜗1(𝜀𝜌(1)
𝐿)
𝑞𝜏
)

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (𝜗1(𝜀𝜌(1)
𝑈)

𝑞𝜏
)

1

𝜏
)

𝑞

]

)

 
 
 
 
 
 
 
 
 
 
 

 

⊗

(

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, (𝜗2(1 − (𝛼𝜌(2)

𝐿)𝑞)
𝜏
)
1
𝜏)

𝑞

,

√1 −𝑚𝒾𝑛 (1, (𝜗2(1 − (𝛼𝜌(2)
𝑈)𝑞)

𝜏
)
1
𝜏)

𝑞

]
 
 
 
 
 

,

[√𝑚𝒾𝑛 (1, (𝜗2(𝛽𝜌(2)
𝐿)
𝑞𝜏
)

1
𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (𝜗2(𝛽𝜌(2)
𝑈)

𝑞𝜏
)

1
𝜏
)

𝑞

]

[√𝑚𝒾𝑛 (1, (𝜗2(𝜀𝜌(2)
𝐿)
𝑞𝜏
)

1
𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (𝜗2(𝜀𝜌(2)
𝑈)

𝑞𝜏
)

1
𝜏
)

𝑞

]

)

 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, (𝜗1(1 − (𝛼𝜌(1)

𝐿)𝑞)
𝜏
+ 𝜗2(1 − (𝛼𝜌(2)

𝐿)𝑞)
𝜏
)

1

𝜏
)

𝑞

,

√1 −𝑚𝒾𝑛 (1, (𝜗1(1 − (𝛼𝜌(1)
𝑈)𝑞)

𝜏
+ 𝜗2(1 − (𝛼𝜌(2)

𝑈)𝑞)
𝜏
)

1

𝜏
)

𝑞

]
 
 
 
 
 

,

[√𝑚𝒾𝑛 (1, (𝜗1(𝛽𝜌(1)
𝐿)
𝑞𝜏
+ 𝜗2(𝛽𝜌(2)

𝐿)𝑞𝜏)

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (𝜗1(𝛽𝜌(1)
𝑈)

𝑞𝜏
+ 𝜗2(𝛽𝜌(2)

𝑈)𝑞𝜏)

1

𝜏
)

𝑞

] ,

[√𝑚𝒾𝑛 (1, (𝜗1(𝜀𝜌(1)
𝐿)
𝑞𝜏
+ 𝜗2(𝜀𝜌(2)

𝐿)𝑞𝜏)

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (𝜗1(𝜀𝜌(1)
𝑈)

𝑞𝜏
+ 𝜗2(𝜀𝜌(2)

𝑈)𝑞𝜏)

1

𝜏
)

𝑞

]

)

 
 
 
 
 
 
 
 
 
 
 

. 

It follows that 
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𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐺𝜔(𝔗1, 𝔗2)=

(

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛼𝜌(𝑖)

𝐿)𝑞)
𝜏
)2

𝑖=1 )
1

𝜏)
𝑞

,

√1 − 𝑚𝒾𝑛 (1, ∑ (𝜗𝑖(1 − (𝛼𝜌(𝑖)
𝑈)𝑞)

𝜏
)2

𝑖=1

1

𝜏)
𝑞

]
 
 
 
 
 

,

[√𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛽𝜌(𝑖)
𝐿)
𝑞𝜏
)2

𝑖=1 )

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛽𝜌(𝑖)
𝑈)

𝑞𝜏
)2

𝑖=1 )

1

𝜏
)

𝑞

]

[√𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝜀𝜌(𝑖)
𝐿)
𝑞𝜏
)2

𝑖=1 )

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝜀𝜌(𝑖)
𝑈)

𝑞𝜏
)2

𝑖=1 )

1

𝜏
)

𝑞

]

)

 
 
 
 
 
 
 
 
 
 
 

. 

Hence, the statement is valid for 𝒽 = 2. 

Suppose that the result holds for 𝒽 = 𝑠. 

𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐺ϑ(𝔗1, 𝔗2, … , 𝔗𝑠)=⊗i=1
𝑠 𝔗𝜌(i)

ϑi 

=

(

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√1 − 𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛼𝜌(𝑖)

𝐿)𝑞)
𝜏
)𝑠

𝑖=1 )
1

𝜏)
𝑞

,

√1 − 𝑚𝒾𝑛 (1, ∑ (𝜗𝑖(1 − (𝛼𝜌(𝑖)
𝑈)𝑞)

𝜏
)𝑠

𝑖=1

1

𝜏)
𝑞

]
 
 
 
 
 

,

[√𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛽𝜌(𝑖)
𝐿)
𝑞𝜏
)𝑠

𝑖=1 )

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛽𝜌(𝑖)
𝑈)

𝑞𝜏
)𝑠

𝑖=1 )

1

𝜏
)

𝑞

]

[√𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝜀𝜌(𝑖)
𝐿)
𝑞𝜏
)𝑠

𝑖=1 )

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝜀𝜌(𝑖)
𝑈)

𝑞𝜏
)𝑠

𝑖=1 )

1

𝜏
)

𝑞

]

)

 
 
 
 
 
 
 
 
 
 
 

. 

Now, for 𝒽 = 𝑠 + 1, we have 

𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐺ϑ(𝔗1, 𝔗2, … , 𝔗𝑠, 𝔗𝑠+1) 

=⊗i=1
𝑠 𝔗𝜌(i)

ϑi ⊗𝔗𝜌(s+1)
ϑs+1 

=

(

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛼𝜌(𝑖)

𝐿)
𝑞
)
𝜏
)𝑠

𝑖=1 )

1

𝜏
)

𝑞

,

√1 − 𝑚𝒾𝑛 (1, ∑ (𝜗𝑖(1 − (𝛼𝜌(𝑖)
𝑈)𝑞)

𝜏
)𝑠

𝑖=1

1

𝜏)
𝑞

]
 
 
 
 
 

,

[√𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛽𝜌(𝑖)
𝐿)
𝑞𝜏
)𝑠

𝑖=1 )

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛽𝜌(𝑖)
𝑈)

𝑞𝜏
)𝑠

𝑖=1 )

1

𝜏
)

𝑞

]

[√𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝜀𝜌(𝑖)
𝐿)
𝑞𝜏
)𝑠

𝑖=1 )

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝜀𝜌(𝑖)
𝑈)

𝑞𝜏
)𝑠

𝑖=1 )

1

𝜏
)

𝑞

]

)
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⊗

(

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, (𝜗𝑠+1(1 − (𝛼𝜌(𝑠+1)

𝐿)𝑞)
𝜏
)
1

𝜏)
𝑞

,

√1 − 𝑚𝒾𝑛 (1, (𝜗𝑠+1(1 − (𝛼𝜌(𝑠+1)
𝑈)𝑞)

𝜏
)
1

𝜏)
𝑞

]
 
 
 
 
 

,

[√𝑚𝒾𝑛 (1, (𝜗𝑠+1(𝛽𝜌(𝑠+1)
𝐿)
𝑞𝜏
)

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (𝜗𝑠+1(𝛽𝜌(𝑠+1)
𝑈)

𝑞𝜏
)

1

𝜏
)

𝑞

]

[√𝑚𝒾𝑛 (1, (𝜗𝑠+1(𝜀𝜌(𝑠+1)
𝐿)
𝑞𝜏
)

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (𝜗𝑠+1(𝜀𝜌(𝑠+1)
𝑈)

𝑞𝜏
)

1

𝜏
)

𝑞

]

)

 
 
 
 
 
 
 
 
 
 
 

. 

It follows that 

𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐺ϑ(𝔗1, 𝔗2, … , 𝔗𝑠+1) 

=

(

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(1 − (𝛼𝜌(𝑖)

𝐿)𝑞)
𝜏
)𝑠+1

𝑖=1 )
1

𝜏)
𝑞

,

√1 − 𝑚𝒾𝑛 (1,∑ (𝜗𝑖(1 − (𝛼𝜌(𝑖)
𝑈)𝑞)

𝜏
)𝑠+1

𝑖=1

1

𝜏)
𝑞

]
 
 
 
 
 

,

[√𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛽𝜌(𝑖)
𝐿)
𝑞𝜏
)𝑠+1

𝑖=1 )

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝛽𝜌(𝑖)
𝑈)

𝑞𝜏
)𝑠+1

𝑖=1 )

1

𝜏
)

𝑞

]

[√𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝜀𝜌(𝑖)
𝐿)
𝑞𝜏
)𝑠+1

𝑖=1 )

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (∑ (𝜗𝑖(𝜀𝜌(𝑖)
𝑈)

𝑞𝜏
)𝑠+1

𝑖=1 )

1

𝜏
)

𝑞

]

)

 
 
 
 
 
 
 
 
 
 
 

. 

This shows that the result is therefore valid for 𝒽 = 𝑠 + 1 . Thus, the aforementioned technique 

demonstrates the fact that the result is valid for all positive integral values of 𝒽. 

The following example illustrates the fact stated in Theorem 4.5. 

Example 4.2. In Example 4.1, we aggregated IV-q -RPFNs using an IV-q -RPFYOWAO. In the 

following discussion, we aggregate the same IV-q-RPFNs within the scope of an IV-q-RPFYOWGO 

for q = 4 and τ = 2. 

𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐺ϑ(𝔗1, 𝔗2, 𝔗3, 𝔗4)=⊗i=1
4 𝔗𝜌(i)

ϑi  

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 

√1 −𝑚𝒾𝑛(1, (∑(𝜗𝑖(1 − (𝛼𝜌(𝑖)
𝐿)4)

2
)

4

𝑖=1

)

1
2

)

4

,

√1 − 𝑚𝒾𝑛(1,∑(𝜗𝑖(1 − (𝛼𝜌(𝑖)
𝑈)4)

2
)

4

𝑖=1

1
2

)

4

]
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 

√𝑚𝒾𝑛(1, (∑(𝜗𝑖(𝛽𝜌(𝑖)
𝐿)
(4)(2)

)

4

𝑖=1

)

1
2

)

4

, √𝑚𝒾𝑛(1, (∑(𝜗𝑖(𝛽𝜌(𝑖)
𝑈)

(4)(2)
)

4

𝑖=1

)

1
2

)

4

]
 
 
 
 

[
 
 
 
 

√𝑚𝒾𝑛(1, (∑(𝜗𝑖(𝜀𝜌(𝑖)
𝐿)
(4)(2)

)

4

𝑖=1

)

1
2

)

4

, √𝑚𝒾𝑛(1, (∑(𝜗𝑖(𝜀𝜌(𝑖)
𝑈)

(4)(2)
)

4

𝑖=1

)

1
2

)

4

]
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 
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By substituting the values of the IV-𝑞-RPFNs and the associated WV ϑi in the relation above, we 

obtain 

𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐺𝜗(𝔗1, 𝔗2, 𝔗3, 𝔗4) = ([0.493,0.763], [0.248,0.415], [0.246,0.467]). 

The following result establishes that when the IV-𝑞-RPFYOWGO is applied to any finite number of 

identical IV-𝑞-RPFNs, it yields the same value. This property is known as the idempotency property 

of an IV-𝑞-RPFYOWGO. 

Theorem 4.6. (Idempotency) Consider 𝒽  to be number of IV-q-RPFNs, 𝔗𝑖 =

([𝛼𝑖
𝐿, 𝛼𝑖

𝑈], [𝛽𝑖
𝐿 , 𝛽𝑖

𝑈], [𝜀𝑖
𝐿 , 𝜀𝑖

𝑈]), 𝑖 = 1,2,… , 𝒽, and let 𝜗 = (𝜗1, 𝜗2, … , 𝜗𝒽)
𝑇 be an associated WV 

of these IV-𝑞-RPFNs 𝔗𝑖  with 0 ≤ 𝜗i ≤ 1  such that ∑ 𝜗i = 1𝒽
𝑖=1   and 𝜏 > 0.  Additionally, 

(𝜌(1), 𝜌(2), 𝜌(3), … , 𝜌(𝒽))  is a permutation of {1,2, . . . , 𝒽}   such that 𝔗𝜌(𝑖−1) ≥ 𝔗𝜌(𝑖), ∀ 𝑖 .If 

𝔗𝜌(𝑖) = 𝔗𝜌(∘), ∀ 𝑖, where 𝔗 = ([𝛼𝜌(∘)
𝐿 , 𝛼𝜌(∘)

𝑈], [𝛽𝜌(∘)
𝐿 , 𝛽𝜌(∘)

𝑈], [𝜀𝜌(∘)
𝐿 , 𝜀𝜌(∘)

𝑈]), then, 

𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐺𝜗(𝔗1, 𝔗2, . . . , 𝔗𝒽) = 𝔗𝜌(∘). 

Proof. The proof of Theorem 4.2 and this theorem is analogous. 

The following result describes the aggregated value of any finite number of IV-𝑞-RPFNs under 

the IV-𝑞-RPFYOWGO, which lies between the minimum and maximum bounds of the given IV-𝑞-

RPFN. This is known as the boundedness property of the IV-𝑞-RPFYOWGO. 

Theorem 4.7. (Boundedness) Consider 𝒽  to be a number of IV-q-RPFNs, 𝔗𝑖 =

([𝛼𝑖
𝐿, 𝛼𝑖

𝑈], [𝛽𝑖
𝐿 , 𝛽𝑖

𝑈], [𝜀𝑖
𝐿 , 𝜀𝑖

𝑈]), 𝑖 = 1,2,… , 𝒽, and 𝜗 = (𝜗1, 𝜗2, … , 𝜗𝒽)
𝑇 to be an associated WV of 

these IV-𝑞-RPFNs 𝔗𝑖  with 0 ≤ 𝜗i ≤ 1  such that ∑ 𝜗i = 1𝒽
𝑖=1   and 𝜏 > 0.  Additionally, 

(𝜌(1), 𝜌(2), 𝜌(3), … , 𝜌(𝒽)) is a permutation of {1,2, . . . , 𝒽} such that 𝔗𝜌(𝑖−1) ≥ 𝔗𝜌(𝑖), ∀ 𝑖. If 𝔗
− =

([𝑚𝒾𝑛𝑖(𝛼𝜌(𝑖)
𝐿),𝑚𝒾𝑛𝑖 (𝛼𝜌(𝑖)

𝑈)], [𝑚𝑎𝑥𝑖  (𝛽𝜌(𝑖)
𝐿),𝑚𝑎𝑥𝑖  (𝛽𝜌(𝑖)

𝑈)], [𝑚𝑎𝑥𝑖 (𝜀𝜌(𝑖)
𝐿),𝑚𝑎𝑥𝑖 (𝜀𝜌(𝑖)

𝑈)])  and 

𝔗+ = ([𝑚𝑎𝑥𝑖 (𝛼𝜌(𝑖)
𝐿),𝑚𝑎𝑥𝑖  (𝛼𝜌(𝑖)

𝑈)], [𝑚𝒾𝑛𝑖 (𝛽𝜌(𝑖)
𝐿),𝑚𝒾𝑛𝑖 (𝛽𝜌(𝑖)

𝑈)], [𝑚𝒾𝑛𝑖 (𝜀𝜌(𝑖)
𝐿),𝑚𝒾𝑛𝑖 (𝜀𝜌(𝑖)

𝑈)]) .  

Then, 

𝔗− ≤ 𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐺𝜗(𝔗1, 𝔗2, … , 𝔗𝒽) ≤ 𝔗+. 

Proof. The proof of Theorem 4.3 and this theorem are analogous. Therefore, we omit the repetition 

here. 

The following result establishes that if a particular set containing a finite number of IV-𝑞-RPFNs 

exhibits improvement under the IV-𝑞 -RPFYOWGO with respect to another collection of a finite 

number of IV-𝑞-RPFNs, then the overall outcome will not diminish. This is known as the monotonicity 

property of the IV-𝑞-RPFYOWGO. 

Theorem 4.8. (Monotonicity) Let 𝔗𝑖 = ([𝛼𝑖
𝐿, 𝛼𝑖

𝑈], [𝛽𝑖
𝐿 , 𝛽𝑖

𝑈], [𝜀𝑖
𝐿 , 𝜀𝑖

𝑈])  and 𝔗𝑖′ =
([𝛼𝑖′

𝐿, 𝛼𝑖′
𝑈], [𝛽𝑖′

𝐿 , 𝛽𝑖′
𝑈], [𝜀𝑖′

𝐿 , 𝜀𝑖′
𝑈]) , 𝑖 = 1,2,… ,𝒽 , be any two collections of IV-𝑞 -RPFNs, and let 

𝜗 = (𝜗1, 𝜗2, … , 𝜗𝒽)
𝑇 be an associated WV of these IV-𝑞-RPFNs 𝔗𝑖 and 𝔗𝑖′ with 0 ≤ 𝜗i ≤ 1 such that 

∑ 𝜗i = 1𝒽
𝑖=1   and 𝜏 > 0 . Additionally, (𝜌(1), 𝜌(2), 𝜌(3), … , 𝜌(𝒽))  is a permutation of {1,2, . . . , 𝒽}  
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such that 𝔗𝜌(𝑖−1) ≥ 𝔗𝜌(𝑖), ∀ 𝑖 . If 𝛼𝜌(𝑖)
𝐿 ≤ 𝛼𝜌(𝑖)′

𝐿 ,  𝛼𝜌(𝑖)
𝑈 ≤ 𝛼𝜌(𝑖)′

𝑈, 𝛽𝜌(𝑖)
𝐿 ≥ 𝛽𝜌(𝑖)′

𝐿,  𝛽𝜌(𝑖)
𝑈 ≥

𝛽𝜌(𝑖)′
𝑈,  𝜀𝜌(𝑖)

𝐿 ≥ 𝜀𝜌(𝑖)′
𝐿, 𝑎𝑛𝑑  𝜀𝜌(𝑖)

𝑈 ≥ 𝜀𝜌(𝑖)′
𝑈, ∀ 𝑖. Then, 

𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐺𝜗(𝔗1, 𝔗2, … , 𝔗𝒽) ≤ 𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐺𝜗(𝔗1
′, 𝔗2

′, … , 𝔗𝒽
′). 

Proof. Since the proof is analogous to that of Theorem 4.4, we omit the details. 

5. Application of proposed strategies operators in MADM 

In this section, we present a DM approach employing the recently proposed IV-𝑞-RPFYOWAOs 

for MADM situations, where the weights of the attributes are real numbers and the values of the 

attributes are IV-𝑞-RPFNs. Suppose that 𝑀 = {𝑀1, 𝑀2, … ,𝑀𝑟} is a collection of alternatives, and let 

𝑁 = {𝑁1, 𝑁2, … , 𝑁𝑠} be the set of attributes. In addition, 𝜗=(𝜗1, 𝜗2, … , 𝜗𝑠)
𝑇 denotes the corresponding 

WV of attributes, where 0 ≤ 𝜗𝑙 ≤ 1  for all l=1,2,…,s such that ∑ 𝜗𝑙
𝑠
𝑙=1 = 1. Additionally, 

(𝜌(1), 𝜌(2), 𝜌(3), … , 𝜌(𝑠)) is a permutation of {1,2, . . . , 𝑠} such that 𝔗𝜌(𝑙−1) ≥ 𝔗𝜌(𝑙) , ∀ 𝑙. Assume 

that the decision-maker assesses the available alternatives on the basis of many attributes and 

articulates his/her preferred values using IV- 𝑞 -RPFNs, which are expressed as 𝔗𝑘𝑙 =

([𝛼𝑘𝑙
𝐿 , 𝛼𝑘𝑙

𝑈 ], [𝛽𝑘𝑙
𝐿 , 𝛽𝑘𝑙

𝑈 ], [𝜀𝑘𝑙
𝐿 , 𝜀𝑘𝑙

𝑈 ]), where 𝑘 = 1,2,3,… , 𝑟;  𝑙 = 1,2,3, … , 𝑠. The information supplied by 

the decision-maker is encapsulated in an IV-𝑞-RPF decision matrix 𝔇=[𝔗𝑘𝑙]𝑟⨯𝑠. 

The suggested methodology, using the IV- 𝑞 -RPFYOWAOs for resolving MADM issues, 

primarily comprises the following steps. 

Step 1. Create an IV-𝑞-RPF decision matrix 𝔇=[𝔗𝑘𝑙]𝑟⨯𝑠 using the data obtained from the decision-

maker as follows: 

𝔇=

[
 
 
 
 
 
 
 
(

[𝛼11
𝐿 , 𝛼11

𝑈 ],

[𝛽11
𝐿 , 𝛽11

𝑈 ],

[𝜀11
𝐿 , 𝜀11

𝑈 ]

)             (

[𝛼12
𝐿 , 𝛼12

𝑈 ],

[𝛽12
𝐿 , 𝛽12

𝑈 ],

[𝜀12
𝐿 , 𝜀12

𝑈 ]

)   …  (

[𝛼1𝑠
𝐿 , 𝛼1𝑠

𝑈 ],

[𝛽1𝑠
𝐿 , 𝛽1𝑠

𝑈 ],

[𝜀1𝑠
𝐿 , 𝜀1𝑠

𝑈 ]

)

    ⋮                                          ⋮                                      ⋮   

(

[𝛼𝑟1
𝐿 , 𝛼𝑟1

𝑈 ],

[𝛽𝑟1
𝐿 , 𝛽𝑟1

𝑈 ],

[𝜀𝑟1
𝐿 , 𝜀𝑟1

𝑈 ]

)              (

[𝛼𝑟2
𝐿 , 𝛼𝑟2

𝑈 ],

[𝛽𝑟2
𝐿 , 𝛽𝑟2

𝑈 ],

[𝜀𝑟2
𝐿 , 𝜀𝑟2

𝑈 ]

)   … (

[𝛼𝑟𝑠
𝐿 , 𝛼𝑟𝑠

𝑈 ],

[𝛽𝑟𝑠
𝐿 , 𝛽𝑟𝑠

𝑈 ],

[𝜀𝑟𝑠
𝐿 , 𝜀𝑟𝑠

𝑈 ]

)

]
 
 
 
 
 
 
 

. 

Step 2. To obtain the IV-𝑞 -RPF permuted decision matrix 𝔇𝜌(𝑘𝑙) = [𝔗𝜌(𝑘𝑙)]𝑟⨯𝑠
, we follow the 

subsequent two stages. 

(1) Calculate the score values of all attributes 𝑁𝑙, corresponding to each alternative 𝑀𝑘 of the IV-

𝑞-RPF decision matrix 𝔇, using Definition 3.1. 

(2) Arrange the calculated values from the previous stage in descending order to obtain the IV-𝑞-

RPF permuted decision matrix 𝔇𝜌(𝑘𝑙). 

Step 3. (a) Calculate the aggregated values 𝔗𝑘 = ([𝛼𝑘
𝐿 , 𝛼𝑘

𝑈], [𝛽𝑘
𝐿 , 𝛽𝑘

𝑈], [𝜀𝑘
𝐿 , 𝜀𝑘

𝑈]) of each alternatives 

𝑀𝑘, corresponding to all attributes 𝑁𝑙 using the IV-𝑞-RPFYOWA operator in the following way: 
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𝔗𝑘 = 𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐴(𝔗𝑘1,𝔗𝑘2, … ,𝔗𝑘𝑠) 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 

√𝑚𝒾𝑛(1, (∑(𝜗𝑙(𝛼𝜌(𝑘𝑙)
𝐿)
𝑞𝜏

𝑠

𝑙=1

)

1
𝜏

)

𝑞

, √𝑚𝒾𝑛(1, (∑(𝜗𝑙(𝛼𝜌(𝑘𝑙)
𝑈)

𝑞𝜏
𝑠

𝑙=1

)

1
𝜏

)

𝑞

]
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 

√1 −𝑚𝒾𝑛(1, (∑(𝜗𝑙(1 − (𝛽𝜌(𝑘𝑙)
𝐿)𝑞)

𝜏
)

𝑠

𝑙=1

)

1
𝜏

)

𝑞

,

√1 − 𝑚𝒾𝑛(1, (∑(𝜗𝑙(1 − (𝛽𝜌(𝑘𝑙)
𝑈)𝑞)

𝜏
)

𝑠

𝑙=1

)

1
𝜏

)

𝑞

]
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 

√1 − 𝑚𝒾𝑛(1, (∑(𝜗𝑙(1 − (𝜀𝜌(𝑘𝑙)
𝐿)𝑞)

𝜏
)

𝑠

𝑙=1

)

1
𝜏

)

𝑞

,

√1 −𝑚𝒾𝑛(1, (∑(𝜗𝑙(1 − (𝜀𝜌(𝑘𝑙)
𝑈)𝑞)

𝜏
)

𝑠

𝑙=1

)

1
𝜏

)

𝑞

]
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝑘 = 1,2,… , 𝑟. 

(b) Calculate the aggregated values 𝔗𝑘 = ([𝛼𝑘
𝐿 , 𝛼𝑘

𝑈], [𝛽𝑘
𝐿 , 𝛽𝑘

𝑈], [𝜀𝑘
𝐿 , 𝜀𝑘

𝑈])  of each alternatives 𝑀𝑘 , 

corresponding to all attributes 𝑁𝑙 using the IV-𝑞-RPFYOWG operator in the following way: 

𝔗𝑘 = 𝐼𝑉 − 𝑞 − 𝑅𝑃𝐹𝑌𝑂𝑊𝐺(𝔗𝑘1,𝔗𝑘2, … ,𝔗𝑘𝑠) 

=

(

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
√1 −𝑚𝒾𝑛 (1, (∑ (𝜗𝑙(1 − (𝛼𝜌(𝑘𝑙)

𝐿)𝑞)
𝜏
)𝑠

𝑙=1 )
1

𝜏)
𝑞

,

√1 − 𝑚𝒾𝑛 (1, ∑ (𝜗𝑙(1 − (𝛼𝜌(𝑘𝑙)
𝑈)𝑞)

𝜏
)𝑠

𝑙=1

1

𝜏)
𝑞

]
 
 
 
 
 

,

[√𝑚𝒾𝑛 (1, (∑ (𝜗𝑙(𝛽𝜌(𝑘𝑙)
𝐿)
𝑞𝜏
)𝑠

𝑙=1 )

1

𝜏
)

𝑞

, √𝑚𝒾𝑛 (1, (∑ (𝜗𝑙(𝛽𝜌(𝑘𝑙)
𝑈)

𝑞𝜏
)𝑠

𝑙=1 )

1

𝜏
)

𝑞

]

[√𝑚𝒾𝑛 (1, (∑ (𝜗𝑙(𝜀𝜌(𝑘𝑙)
𝐿)
𝑞𝜏
)𝑠

𝑙=1 )
1

𝜏)
𝑞

, √𝑚𝒾𝑛 (1, (∑ (𝜗𝑙(𝜀𝜌(𝑘𝑙)
𝑈)

𝑞𝜏
)𝑠

𝑙=1 )
1

𝜏)
𝑞

]

)

 
 
 
 
 
 
 
 
 
 
 

,  𝑘 = 1,2, … , 𝑟. 

Step 4. Determine the score values of 𝔗𝑘, 𝑘 = 1,2, … , 𝑟 using Definition 3.1. 

Step 5. Rank all the alternatives utilizing the information obtained from the preceding step and select 

the most optimal choice. 

A pictorial representation of the algorithm above is depicted in Figure 2. 
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Figure 2. Schematic workflow of the algorithm based on the IV-𝑞-RPFYOWA/IV-𝑞-

RPFYOWG operators. 

5.1. Case study: selection of an optimal spacecraft shielding materials against cosmic radiation 

Human missions beyond Earth’s atmosphere face significant challenges from cosmic radiation, 

which poses serious risks to astronauts and equipment. High-energy cosmic rays and solar particle 

events can damage spacecraft and human tissue, leading to increased cancer risks, nervous system 

harm, and acute radiation sickness. Unlike Earth, where atmospheric protection exists, space missions 

rely solely on engineered materials for shielding. The selection of appropriate materials is crucial for 

the safety and success of lunar and Martian constructions. Space radiation differs from terrestrial 

radiation, consisting of rapid-moving protons, heavy ions, and subatomic particles that can have 

destructive cellular effects. Spacecraft electronics are at risk from high-energy particles that cause 

memory bit flips, degrade systems, and lead to mission failures. This challenge intensifies for extended 

Moon and Mars missions, where astronauts may exceed radiation limits during travel. Protecting 

astronauts from space radiation is crucial for their survival. Current spacecraft predominantly utilize 

aluminum alloys to provide structural integrity and some level of radiation shielding, but these 

materials are insufficient to counter the most dangerous cosmic rays—heavy ions—posing significant 

risks to space missions. 

Aluminum’s high density makes it unsuitable for deep-space missions, making them costly and 

complex. Scientists are exploring other materials that can be lightweight and yet flexible with greater 

radiation protection. The ideal shielding materials should have four main characteristics: High 

radiation attenuation, lightweight, strong mechanical properties, and thermal tolerance. The 

combination of polymers, hydrogen technology, and nanotechnology is being explored, and various 

mission-specific shielding proposals require independent assessments. 

Polyethylene has a high hydrogen content that makes it an ideal candidate to use as radiation 

STEP 1 • Formulate the decision matrix

STEP 2 • Obtain the IV-𝑞-RPF permuted decision matrix

STEP 3
• Calculate the aggregated values using IV-𝑞-

RPFYOWA/IV-𝑞-RPFYOWG

STEP 4 • Obtain the score values

STEP 5 • Select the most favorable choice
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shielding in space because it is able to scatter and absorb cosmic rays. Laboratory experiments show 

that polyethylene shields are more protective than aluminium, especially when weight is taken into 

account, as observed on the International Space Station. Pure polyethylene is not suitable as a 

primary spacecraft material. Scientists are working on creating composite materials that are 

structurally sound yet protective against radiation, with boron nitride nanotubes being a leading 

candidate due to their high strength and ability to block radiation. The most effective shielding 

systems are those that use well-spaced multilayered materials to optimize the stopping power. These 

developments are essential for establishing human settlements on other celestial bodies during future 

missions. The feasibility of shielding solutions will be determined by their practicality, which 

includes the cost and compatibility with current technologies, and these factors will determine how 

they are used in space. Radiation protection is a critical consideration in safe human exploration, and 

the materials selected today will determine the future of human space exploration over the next few 

generations. 

5.2.  Illustrated example 

This study offers a structured framework to test spacecraft shielding materials to protect 

against cosmic radiation through application of the IV-𝑞-RPFS model. The space research agency 

is concerned by space exploration missions extending beyond short durations because of the 

damaging effects of cosmic radiation on the astronauts and equipment. To secure the mission’s 

goals and the astronaut’s safety, an aerospace materials engineer examines shielding materials by 

considering important properties, intending to design a structurally robust spacecraft to protect 

against cosmic radiations. 

The engineer selects four shielding materials (alternatives) {𝑀1, 𝑀2, 𝑀3, 𝑀4}. 

𝑀1: Polyethylene, 

𝑀2: Aluminium alloy, 

𝑀3: Boron nitride nanotubes, 

𝑀4: A Multi-layered composite. 

Furthermore, the engineer specifies four key attributes {𝑁1, 𝑁2, 𝑁3, 𝑁4} that affect the efficiency 

and appropriateness of these alternatives: 

𝑁1: Radiation shielding effectiveness, 

𝑁2: Structural stability, 

𝑁3: Weight efficiency, and 

𝑁4: Thermal resilience. 

The engineer assigns ϑ = (0.3,0.2,0.2,0.3)𝑇 as an associated WV to these attributes such that 

∑ ϑ𝑙 = 14
𝑙=1 . 

This MADM problem is solved within the framework of IV-𝑞-RPFYOWAOs as follows. 

Step 1. Table 3 specifies the IV-𝑞-RPF decision matrix representing the researcher’s estimation for 

each alternative 𝑀𝑘 , 𝑘 = 1,2,3,4 relative to each attribute 𝑁𝑙 in the form of an IV-𝑞-RPFN. 
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Table 3. IV-𝑞 -RPF decision matrix representing the evaluation of alternatives across 

multiple attributes under IV-𝑞-RPF information. 

 𝑵𝟏 𝑵𝟐 𝑵𝟑 𝑵𝟒 

𝑴𝟏 

(

[0.6,0.8],
[0.3,0.5],
[0.3,0.6]

) (

[0.6,0.7],
[0.4,0.6],
[0.2,0.5]

) (

[0.5,0.9],
[0.2,0.6],
[0.4,0.7]

) (

[0.4,0.8],
[0.3,0.6],
[0.3,0.5]

) 

𝑴𝟐 

(

[0.5,0.9],
[0.1,0.5],
[0.4,0.6]

)  (

[0.5,0.8],
[0.2,0.5],
[0.3,0.6]

)  (

[0.4,0.6],
[0.3,0.5],
[0.2,0.4]

)  (

[0.5,0.8],
[0.3,0.4],
[0.3,0.5]

)  

𝑴𝟑 

(

[0.4,0.7],
[0.3,0.5],
[0.2,0.4]

)  (

[0.4,0.7],
[0.3,0.6],
[0.1,0.3]

)  (

[0.6,0.9],
[0.2,0.6],
[0.4,0.6]

)  (

[0.5,0.7],
[0.2,0.4],
[0.3,0.4]

)  

𝑴𝟒 

(

[0.5,0.6],
[0.2,0.5],
[0.2,0.5],

) (

[0.6,0.9],
[0.4,0.5],
[0.4,0.6]

)  (

[0.5,0.8],
[0.2,0.3],
[0.3,0.6]

)  (

[0.6,0.9],
[0.2,0.6],
[0.4,0.5]

)  

Step 2. In order to obtain the IV-𝑞-RPF permuted decision matrix, we proceed to the subsequent two stages. 

(1) Calculate the score values of all attributes 𝑁𝑙, relative to each alternative 𝑀𝑘 of the IV-𝑞-RPF 

decision matrix above using Definition 3.1 for a particular value of 𝑞 = 3. 

For 𝑀1, ℌ( 𝔗11) = 0.116, ℌ( 𝔗12) = 0.073, ℌ( 𝔗13) = 0.112, ℌ(𝔗14) = 0.091. 

For 𝑀2, ℌ( 𝔗21) = 0.224, ℌ( 𝔗22) = 0.131, ℌ( 𝔗23) = 0.028, ℌ(𝔗24) = 0.197. 

For 𝑀3, ℌ( 𝔗31) = 0.092, ℌ( 𝔗32) = 0.068, ℌ( 𝔗33) = 0.221, ℌ(𝔗34) = 0.152. 

For 𝑀4, ℌ( 𝔗41) = 0.038, ℌ( 𝔗42) = 0.238, ℌ( 𝔗43) = 0.179, ℌ(𝔗44) = 0.266. 

(2) Arrange the calculated values in descending order to obtain the IV-𝑞-RPF permuted decision 

matrix. 

The outcomes of this mathematical procedure are listed in Table 4. 

Table 4. IV-𝑞-RPF permuted decision matrix after arranging the attributes in descending order. 

 𝑵𝟏 𝑵𝟐 𝑵𝟑 𝑵𝟒 

𝑴𝟏 

(

[0.6,0.8],
[0.3,0.5],
[0.3,0.6]

)  (

[0.5,0.9],
[0.2,0.6],
[0.4,0.7]

)  (

[0.4,0.8],
[0.3,0.6],
[0.3,0.5]

)  (

[0.6,0.7],
[0.4,0.6],
[0.2,0.5]

)  

𝑴𝟐 

(

[0.5,0.9],
[0.1,0.5],
[0.4,0.6]

)   (

[0.5,0.8],
[0.3,0.4],
[0.3,0.5]

)  (

[0.5,0.8],
[0.2,0.5],
[0.3,0.6]

)   (

[0.4,0.6],
[0.3,0.5],
[0.2,0.4]

)  

𝑴𝟑 

(

[0.6,0.9],
[0.2,0.6],
[0.4,0.6]

)  (

[0.5,0.7],
[0.2,0.4],
[0.3,0.4]

)  (

[0.4,0.7],
[0.3,0.5],
[0.2,0.4]

)   (

[0.4,0.7],
[0.3,0.6],
[0.1,0.3]

)  

𝑴𝟒 

(

[0.6,0.9],
[0.2,0.6],
[0.4,0.5]

)  (

[0.6,0.9],
[0.4,0.5],
[0.4,0.6]

)   (

[0.5,0.8],
[0.2,0.3],
[0.3,0.6]

)  (

[0.6,0.7],
[0.2,0.5],
[0.2,0.5]

) 
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Part A: Solution of the MADM problem using an IV-𝑞-RPFYOWA operator 

Step 3. Obtain the aggregated values 𝔗𝑘, 𝑘 = 1,2,3,4 of each alternative 𝑀𝑘 by applying an IV-𝑞-

RPFYOWA to the IV-𝑞-RPFNs listed in Table 4 for particular value of 𝑞 = 3 and an operational 

parameter 𝜏 = 2. The outcomes of this process are tabulated in Table 5. 

Table 5. Aggregated values of alternatives under the IV-𝑞-RPFYOWA operator. 

Alternatives 𝖃𝒌 

𝑴𝟏 ([0.563,0.804], [0.325,0.573], [0.307,0.577]) 

𝑴𝟐 ([0.463,0.807], [0.372,0.484], [0.319,0.532]) 

𝑴𝟑 ([0.517,0.788], [0.260,0.549], [0.297,0.532]) 

𝑴𝟒 ([0.586,0.840], [0.268,0.451], [0.343,0.544]) 

Step 4. Evaluate the score values of all IV-𝑞-RPF numbers obtained in Table 5 using Definition 3.1 as 

follows: 

ℌ(𝔗1) =0.129, ℌ(𝔗2) =0.164, ℌ(𝔗3)=0.163, and ℌ(𝔗4)=0.223. 

Step 5. Since ℌ(𝔗4) > ℌ(𝔗2) >  ℌ(𝔗3) >  ℌ(𝔗1), the ranking order of the alternatives is 𝑀4 >

𝑀2 > 𝑀3 > 𝑀1. 

Consequently, the multi-layered composite is the most optimal shielding material against cosmic 

radiation according to the IV-𝑞-RPFYOWA model. 

A graphical representation of the selection of the most suitable alternative using the IV-𝑞 -

RPFYOWA is depicted in Figure 3. 

 

Figure 3. Ranking of alternatives using the IV-𝑞-RPFYOWA operator. 

Part B: Solution of the MADM problem using the IV-𝑞-RPFYOWG operator 

Step 3. Obtain the aggregated values 𝔗𝑘, 𝑘 = 1,2,3,4 of each alternative 𝑀𝑘 by applying the IV-𝑞-

RPFYOWG to IV-𝑞-RPFNs listed in Table 4 for a particular value of 𝑞 = 3 and an operational 

parameter 𝜏 = 2. The outcomes of this process are tabulated in Table 6. 
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Table 6. Aggregated values of alternatives under the IV-𝑞-RPFYOWG operator. 

Alternatives 𝖃𝒌 

𝑴𝟏 ([0.549,0.787], [0.342,0.577], [0.326,0.578]) 

𝑴𝟐 ([0.474,0.767], [0.269,0.487], [0.334,0.506]) 

𝑴𝟑 ([0.493,0.756], [0.271,0.562], [0.339,0.547]) 

𝑴𝟒 ([0.582,0.813], [0.225,0.508], [0.306,0.576]) 

Step 4. Evaluate the score values of all IV-𝑞-RPF numbers obtained in Table 5 using Definition 3.1 as 

follows: 

ℌ(𝔗1) =0.086, ℌ(𝔗2) =0.108, ℌ(𝔗3)=0.094, and ℌ(𝔗4)=0.171. 

Step 5. Since ℌ(𝔗4) > ℌ(𝔗2) >  ℌ(𝔗3) >  ℌ(𝔗1), the ranking order of alternatives is 𝑀4 > 𝑀2 >

𝑀3 > 𝑀1. 

Consequently, the multi-layered composite is the most optimal shielding material against cosmic 

radiation according to the IV-𝑞-RPFYOWG model. 

A graphical representation of the selection of the most suitable alternative using the IV-𝑞 -

RPFYOWG is depicted in Figure 4. 

 

Figure 4. Ranking of alternatives using the IV-𝑞-RPFYOWG operator. 

5.3. Comparative analysis 

This comparison study intends to demonstrate the effectiveness and robustness of our suggested 

techniques by evaluating several existing methods, including T-spherical fuzzy ordered weighted 

averaging (IV-TSFOWA) [41], T-spherical fuzzy ordered weighted geometric (IV-TSFOWG) [41], 

spherical fuzzy Dombi ordered weighted averaging (IV-SFDOWA) [42], spherical fuzzy Dombi 

ordered weighted geometric (IV-SFDOWG) [42], rung picture fuzzy Yager ordered weighted 

averaging (𝑞 -RPFYOWA) [48] and rung picture fuzzy Yager ordered weighted geometric (𝑞 -

RPFYOWG) [48]. Table 7 summarizes the aggregated values of the alternatives derived by various 

techniques, while Table 8 shows their corresponding rankings. 
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Table 7. Aggregated values of alternatives obtained with different existing operators. 

 IV-TSFOWA [41] IV-TSFOWG [41] IV-SFDOWA [42] IV-SFDOWG [42] 

𝑴𝟏 

 (

[0.556,0.807],
[0.300,0.568],
[0.280,0.564] 

) (

[0.534,0.788],
[0.300,0.280],
[0.303,0.586] 

) (

[0.564,0.837],
[0.265,0.557],
[0.248,0.543]

) (

[0.497,0.766],
[0.336,0.578],
[0.318,0.605]

) 

𝑴𝟐 

 (

[0.475,0.809],
[0.198,0.478],
[0.289,0.512] 

) (

[0.468,0.759],
[0.198,0.478],
[0.317,0.538] 

) (

[0.478,0.850],
[0.133,0.468],
[0.251,0.476]

) (

[0.455,0.699],
[0.260,0.485],
[0.332,0.551]

) 

𝑴𝟑 

 (

[0.502,0.793],
[0.245,0.534],
[0.216,0.414] 

) (

[0.472,0.753],
[0.245,0.534],
[0.303,0.468] 

) (

[0.518,0.843],
[0.227,0.498],
[0.133,0.364]

) (

[0.444,0.729],
[0.265,0.564],
[0.321,0.501]

) 

𝑴𝟒 

 (

[0.584,0.845],
[0.229,0.477],
[0.306,0.538] 

) (

[0.579,0.815],
[0.229,0.477],
[0.341,0.546] 

) (

[0.587,0.872],
[0.210,0.405],
[0.255,0.528]

)   (

[0.569,0.779],
[0.291,0.529],
[0.355,0.552]

) 

Table 8. Score values and ranking of alternatives using different existing techniques. 

Operators 𝕳(𝕿𝟏) 𝕳(𝕿𝟐) 𝕳(𝕿𝟑) 𝕳(𝕿𝟒) Ranking 

IV-TSFOWA [41] 0.143 0.181 0.188 0.248 𝑀4 > 𝑀3 > 𝑀2 > 𝑀1 

IV-TSFOWG [41] 0.181 0.118 0.117 0.206 𝑀4 > 𝑀1 > 𝑀2 > 𝑀3 

IV-SFDOWA [41]
 

0.199 0.247 0.276 0.313 𝑀4 > 𝑀3 > 𝑀2 > 𝑀1 

IV-SFDOWG [41] 0.044 0.050 0.059 0.136 𝑀4 > 𝑀3 > 𝑀2 > 𝑀1 

IV-𝑞-RPFYOWA 0.129 0.164 0.163 0.223 𝑀4 > 𝑀2 > 𝑀3 > 𝑀1 

IV-𝑞-RPFYOWG 0.086 0.108 0.094 0.171 𝑀4 > 𝑀2 > 𝑀3 > 𝑀1 

• The methodologies presented in this article offer more advanced and flexible aggregation 

methods compared with the techniques presented in [41], particularly in contexts characterized 

by high uncertainty and hesitation. By leveraging the 𝑞-rung picture structure, IV- 𝑞 -

RPFYOWAOs allow a more nuanced expression of membership, non-membership, and 

abstention degrees, thereby enabling finer discrimination among alternatives. Unlike IV-

TSFOWAOs, which are constrained by the spherical fuzzy model, IV-𝑞 -RPFYOWAOs 

effectively encapsulate acceptance, rejection, and indeterminacy within an interval-valued 

framework, enhancing both robustness and the decision’s precision. By enabling finer 

discrimination among competing alternatives and enhancing aggregation robustness, IV-𝑞-

RPFYOWAOs significantly improve the accuracy and reliability of MADM processes. 

Therefore, they are particularly well-suited for tackling intricate real-world DM problems 

involving multiple conflicting criteria and imprecise information. 

• The methodologies proposed in this article offer a more adaptable and resilient approach to 

OWA in MADM compared with the strategies outlined in [42], specifically in complex and 

uncertain environments. The techniques in [42] rely on fixed exponential-like functions, which 
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may constrain adaptability when handling high levels of uncertainty and hesitation. In contrast, 

the recently developed IV-𝑞 -RPFYOWAOs introduce a configurable parameter structure 

within the 𝑞-rung picture fuzzy framework, enabling dynamic adjustment of MD, NeD, and 

NMD. This structural flexibility empowers decision-makers to better accommodate varying 

levels of hesitation, ambiguity, and risk preferences, aspects that are often oversimplified in 

traditional IV-SF Dombi-based models. Furthermore, by integrating interval-valued 

information with the 𝑞-rung picture fuzzy environment, IV-𝑞-RPFYOWAOs enhance the 

accuracy, robustness, and contextual relevance of the aggregation process, leading to more 

reliable and decision-sensitive outcomes in MADM tasks marked by deep uncertainty. 

• Numerous drawbacks affect the approaches introduced in [48]. The 𝑞-RPFS framework has 

excellent uncertain information management but its single-digit membership degrees create 

potential information loss during DM, whereas the proposed strategies improve existing the 

models by incorporating intervals for membership, neutral, and non-membership degrees. This 

upgraded method extends uncertainty clusters enabling decision-makers to consider a wider 

range of possible values while delivering more accurate representations of real-world 

ambiguity. The newly proposed modelling methods establish sophisticated and dependable 

foundations for complex DM applications which generate more efficient and precise results. 

The proposed IV-𝑞-RPFYOWAOs offer a more flexible and robust alternative to the existing 

methods by incorporating Yager’s ordered weighted averaging and tunable 𝑞-parameterization within 

an interval-valued 𝑞-rung picture framework. Unlike earlier models that rely on fixed exponential 

functions or single-valued memberships, these approaches better handle ambiguity and hesitation in 

complex decision-making scenarios. As a result, they provide more accurate, adaptable, and 

contextually relevant outcomes in MADM under profound uncertainty. 

A graphical view of the information presented in Tables 7 and 8 is depicted in Figure 5. 

 

Figure 5. Graphical illustration of the ranking of alternatives using the recently proposed 

and existing methodologies. 

5.4.  Empirical analysis 

Table 9 outlines an empirical evaluation of the proposed strategies in comparison with the existing 

models like fuzzy technique for order of preference by similarity to ideal solution (TOPSIS), fuzzy 

multi-objective optimaztion on the basis of ratio analysis (MOORA) and fuzzy analytic hierarchy 

process (AHP). 
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Table 9. Empirical analysis of the proposed operators in comparison with the existing models. 

Criteria IV-𝑞-RPFYWAOs 

(proposed) 

Fuzzy 

TOPSIS 

Fuzzy MORA (e.g., 

VIKOR/PROMETHEE) 

Fuzzy AHP 

Representation of 

uncertainty 

Highest. Uses 

interval-valued 𝑞-

rung picture fuzzy 

sets, capturing 

membership, non 

membership, and 

hesitation as 

intervals with 

tunable parameter 𝑞 

for flexibility 

Moderate. 

Uses fuzzy 

numbers; no 

direct 

modelling of 

hesitation 

Moderate. Handles fuzzy 

numbers, but treatment of 

hesitation is limited 

Low to moderate. 

Relies on crisp or 

fuzzy pairwise 

comparisons; 

hesitation is 

often lost in 

defuzzification 

Discriminatory 

power 

High. The 𝑞 

parameter adjusts 

the emphasis to 

separate close 

alternatives; avoids 

excessive ties 

Moderate. 

Close 

alternatives 

often have 

similar 

closeness 

scores 

Moderate to high. VIKOR 

produces compromize 

rankings; PROMETHEE 

may leave incomparable 

Low to moderate. 

Small differences 

in pairwise 

scores may be 

hidden 

Parameter 

sensitivity 

Controlled 𝑞 tuning 

allows targeted 

adaptability without 

great instability 

High. The 

distance 

metric choice 

affects the 

results 

Medium. The compromise 

coefficient influences the 

rankings 

High. 

Consistency ratio 

and scale affect 

weights 

Interpretability High. Experts can 

understand the effect 

of 𝑞 and Yager 

weights; intervals 

explain hesitation 

High. 

Geometric 

closeness is 

intuitive 

Medium. Outranking logic 

is less intuitive for non-

technical users 

Medium. 

hierarchy is clear 

but fuzziness in 

the judgments is 

harder to explain 

Weight flexibility Very high. Works 

with equal, expert, 

entropy, or hybrid 

weights 

High. Any 

weights are 

applicable 

High. Supports different 

weighting schemes 

Medium. 

Weights must 

come from 

pairwise 

judgments 

Robustness to 

noisy/conflicting 

data 

Excellent Good Good Low 
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5.5. Sensitivity analysis for parameter 𝑞 

Tables 10 and 11 encapsulate the score values and ranking of alternatives utilizing IV-𝑞 -

RPFYOWAO and IV-𝑞-RPFYOWGO, respectively, for different values of the parameter 𝑞. 

For the IV-𝑞-RPFYOWAO, the ranking at 𝑞 = 1 is 𝑀4 > 𝑀3  > 𝑀2 > 𝑀1 ; however, from 

𝑞 ≥ 2  onwards, it stabilizes to 𝑀4 > 𝑀2  > 𝑀3 > 𝑀1 . The operator's sensitivity indicates a 

preference change between 𝑀2 and 𝑀3, while consistently favouring 𝑀4 as the most preferred 

and 𝑀1 as the least favored. By contrast, the IV-𝑞-RPFYOWGO has increased variability: When 

𝑞 = 1, the ranking is 𝑀4 > 𝑀3  > 𝑀2 > 𝑀1. At 𝑞 = 2,3, it transitions to 𝑀4 > 𝑀2  > 𝑀3 > 𝑀1. 

For 𝑞 ≥ 4, it stabilizes at 𝑀4 > 𝑀2  > 𝑀1 > 𝑀3. Overall, 𝑀4 consistently, emerges as the best 

choice among both operators, while the intermediate rankings fluctuate , depending on the value 

of 𝑞, underscoring the impact of parametric modifications on aggregation sensitivity and the 

decision’s results. 

Table 10. Score values and ranking of alternatives using the IV-𝑞-RPFYOWAO for 

different values of 𝑞. 

𝒒 𝕳(𝕿𝟏) 𝕳(𝕿𝟐) 𝕳(𝕿𝟑) 𝕳(𝕿𝟒) Ranking of the alternatives 

1 -0.192 -0.125 -0.093 -0.080 𝑀4 > 𝑀3  > 𝑀2 > 𝑀1 

2 0.055 0.102 0.116 0.163 𝑀4 > 𝑀3  > 𝑀2 > 𝑀1 

3 0.129 0.164 0.163 0.223 𝑀4 > 𝑀2  > 𝑀3 > 𝑀1 

4 0.146 0.174 0.166 0.227 𝑀4 > 𝑀2  > 𝑀3 > 𝑀1 

5 0.141 0.167 0.155 0.213 𝑀4 > 𝑀2  > 𝑀3 > 𝑀1 

6 0.130 0.153 0.142 0.194 𝑀4 > 𝑀2  > 𝑀3 > 𝑀1 

7 0.117 0.139 0.129 0.175 𝑀4 > 𝑀2  > 𝑀3 > 𝑀1 

8 0.104 0.125 0.117 0.157 𝑀4 > 𝑀2  > 𝑀3 > 𝑀1 

9 0.093 0.112 0.105 0.140 𝑀4 > 𝑀2  > 𝑀3 > 𝑀1 

10 0.083 0.099 0.095 0.126 𝑀4 > 𝑀2  > 𝑀3 > 𝑀1 
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Table 11. Score values and ranking of alternatives using the IV-𝑞-RPFYOWGO for 

different values of 𝑞. 

𝒒 𝕳(𝕿𝟏)  𝕳(𝕿𝟐)  𝕳(𝕿𝟑)  𝕳(𝕿𝟒)    Ranking of the alternatives 

1 -0.226 -0.173 -0.154 -0.125 𝑀4 > 𝑀3  > 𝑀2 > 𝑀1 

2 0.012 0.046 0.045 0.109 𝑀4 > 𝑀2  > 𝑀3 > 𝑀1 

3 0.086 0.108 0.094 0.171 𝑀4 > 𝑀2  > 𝑀3 > 𝑀1 

4 0.104 0.121 0.101 0.179 𝑀4 > 𝑀2  > 𝑀1 > 𝑀3 

5 0.102 0.117 0.095 0.168 𝑀4 > 𝑀2  > 𝑀1 > 𝑀3 

6 0.093 0.108 0.086 0.152 𝑀4 > 𝑀2  > 𝑀1 > 𝑀3 

7 0.083 0.097 0.077 0.135 𝑀4 > 𝑀2  > 𝑀1 > 𝑀3 

8 0.073 0.086 0.068 0.119 𝑀4 > 𝑀2  > 𝑀1 > 𝑀3 

9 0.063 0.076 0.059 0.106 𝑀4 > 𝑀2  > 𝑀1 > 𝑀3 

10 0.055 0.067 0.053 0.094 𝑀4 > 𝑀2  > 𝑀1 > 𝑀3 

5.6. Sensitivity analysis for parameter 𝜏 

Tables 12 and 13 present the score values and rankings of alternatives based on varying values of 

the operational parameter 𝜏, utilizing the IV-𝑞-RPFYOWAO and IV-𝑞-RPFYOWGO, respectively. 

For the IV-𝑞-RPFYOWAO (Table 12), the ranking at 𝜏 = 1,2  is 𝑀4 > 𝑀2  > 𝑀3 > 𝑀1; however, 

from 𝜏 ≥ 3 onwards, the ranking alters and stabilizes as 𝑀4 > 𝑀3  > 𝑀2 > 𝑀1. This suggests that 

elevated values of 𝜏 enhance the superiority of 𝑀3 relative to 𝑀2, although 𝑀4 constantly remains 

the most favoured and 𝑀1 the least favored. On the other hand, the IV-𝑞-RPFYOWGO (Table 13) 

exhibits greater variability: At 𝜏 = 1, the ranking is 𝑀4 > 𝑀3  > 𝑀2 > 𝑀1; at 𝜏 = 2,3, it transitions 

to 𝑀4 > 𝑀2  > 𝑀3 > 𝑀1; and from 𝜏 ≥ 4, it stabilizes as 𝑀4 > 𝑀2  > 𝑀1 > 𝑀3. Consequently, in 

view of the discussion above, 𝑀4  emerges as the most robust alternative across both operators 

regardless of the value of 𝜏 , whereas the shifts among 𝑀2  and 𝑀2  highlight the sensitivity of 

middle-ranked alternatives to variations in the operational parameter. 
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Table 12. Score values and ranking of alternatives using the IV-𝑞 -RPFYOWAO for 

different values of the operational parameter 𝜏. 

𝝉 𝕳(𝕿𝟏) 𝕳(𝕿𝟐) 𝕳(𝕿𝟑) 𝕳(𝕿𝟒)   Ranking of the alternatives 

1 0.112 0.141 0.135 0.207 𝑀4 > 𝑀2  > 𝑀3 > 𝑀1 

2 0.129 0.164 0.163 0.223 𝑀4 > 𝑀2  > 𝑀3 > 𝑀1 

3 0.145 0.182 0.189 0.237 𝑀4 > 𝑀3  > 𝑀2 > 𝑀1 

4 0.158 0.196 0.213 0.248 𝑀4 > 𝑀3  > 𝑀2 > 𝑀1 

5 0.169 0.207 0.232 0.258 𝑀4 > 𝑀3  > 𝑀2 > 𝑀1 

6 0.181 0.217 0.248 0.266 𝑀4 > 𝑀3  > 𝑀2 > 𝑀1 

7 0.190 0.225 0.261 0.273 𝑀4 > 𝑀3  > 𝑀2 > 𝑀1 

8 0.198 0.232 0.272 0.278 𝑀4 > 𝑀3  > 𝑀2 > 𝑀1 

9 0.206 0.238 0.281 0.283 𝑀4 > 𝑀3  > 𝑀2 > 𝑀1 

10 0.213 0.243 0.286 0.288 𝑀4 > 𝑀3  > 𝑀2 > 𝑀1 

Table 13. Score values and ranking of alternatives using the IV-𝑞 -RPFYOWGO for 

different values of the operational parameter 𝜏. 

𝝉 𝕳(𝕿𝟏) 𝕳(𝕿𝟐) 𝕳(𝕿𝟑) 𝕳(𝕿𝟒)  Ranking of the alternatives 

1 0.112 0.141 0.135 0.207 𝑀4 > 𝑀3  > 𝑀2 > 𝑀1 

2 0.086 0.108 0.094 0.171 𝑀4 > 𝑀2  > 𝑀3 > 𝑀1 

3 0.062 0.082 0.065 0.142 𝑀4 > 𝑀2  > 𝑀3 > 𝑀1 

4 0.042 0.062 0.045 0.119 𝑀4 > 𝑀2  > 𝑀1 > 𝑀3 

5 0.025 0.045 0.030 0.101 𝑀4 > 𝑀2  > 𝑀1 > 𝑀3 

6 0.011 0.032 0.019 0.087 𝑀4 > 𝑀2  > 𝑀1 > 𝑀3 

7 -0.001 0.022 0.011 0.075 𝑀4 > 𝑀2  > 𝑀1 > 𝑀3 

8 -0.011 0.013 0.005 0.066 𝑀4 > 𝑀2  > 𝑀1 > 𝑀3 

9 -0.019 0.006 -0.001 0.058 𝑀4 > 𝑀2  > 𝑀1 > 𝑀3 

10 -0.027 0.001 -0.005 0.051 𝑀4 > 𝑀2  > 𝑀1 > 𝑀3 
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Computational complexity of the proposed methods 

The computational complexity of the proposed IV-𝑞-RPFYOWAOs is delineated by three principal 

steps: Computing the score and accuracy functions for each alternative, necessitating 𝑂(𝑚𝑛) 

operations for 𝑚  alternatives and 𝑛  attributes; weighting and ordering the interval-valued 𝑞-rung 

picture fuzzy numbers, which entails a sorting step of 𝑂(𝑛 𝑙𝑜𝑔 𝑛); and executing the final aggregation 

in  𝑂(𝑛).  Consequently, the total complexity is 𝑂 ( 𝑚 𝑛 +  𝑛 𝑙𝑜𝑔 𝑛 ) , meaning that the operators 

exhibit computational efficiency and scalability for DM challenges involving larger datasets. 

Real-world feasibility and constraints of the suggested techniques 

The real-world feasibility of IV-𝑞-RPFYOWAOs in MADM problems is attributed to their superior 

capacity to model uncertainty, hesitation, and incomplete information compared with traditional fuzzy 

methods, rendering them appropriate for domains such as financial risk management, engineering design, 

medical diagnosis, and cybersecurity assessments. Their interval-valued and 𝑞-rung frameworks afford 

adaptability in encapsulating varied expert perspectives, whilst Yager’s OWA presents a balanced 

aggregation methodology. Nevertheless, practical constraints of the suggested operators encompass 

heightened computational complexity for extensive problems; the difficulty of selecting suitable 𝑞-

parameters and weight vectors, which can profoundly influence the results; and the necessity for 

decision-makers to possess adequate knowledge to deliver consistent and meaningful input data. 

More practical implications of the suggested techniques 

This study’s results have numerous implications for daily life. In real-world scenarios including 

financial risk assessments, engineering material selection, medical diagnosis, and evaluations of 

cybersecurity systems, decision-makers often encounter uncertainty, hesitancy, and inadequate 

knowledge. By using IV-𝑞-RPFYOWAOs, they may better manage these issues. The adaptability of 

the 𝑞-rung and interval-valued structures enables experts to articulate viewpoints with enhanced 

precision, while Yager’s OWAOs consolidates varied preferences, resulting in more resilient and 

comprehensible outcomes. These attributes augment the dependability of intricate DM procedures and 

provide organizations with a systematic, flexible framework that is applicable to real-world challenges 

necessitating both accuracy and versatility. 

The proposed methodologies assist managers, mission planners, and materials engineers in assessing 

shielding materials by incorporating essential factors such as radiation protection, structural integrity, 

weight efficiency, and cost under unknown conditions. These approaches integrate expert assessments into 

a clear ranking system, ensuring that the selected materials adequately protect against cosmic radiation 

while adhering to the mission’s requirements, thus improving safety and cost-effectiveness in space 

exploration. Furthermore, the IV-𝑞-RPFYOWAOs equip managers with systematic tools for resolving 

trade-offs among competing criteria, thus diminishing dependence on subjective evaluations. By explicitly 

addressing the uncertainty inherent in expert opinions, they enhance the robustness and reliability of 

material selection decisions, increase confidence in the selected shielding technologies, and facilitate long-

term strategic planning for sustainable and reliable space operations. 

6. Conclusions 

In this study, we have introduced two new Yager’s OWAOs, namely the IV-𝑞-RPFYOWAO and 

IV-𝑞 -RPFYOWGO, and have analyzed their structural features. We have also designed a novel 
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ranking mechanism for IV-𝑞-RPFNs and have presented a step-by-step mathematical approach to 

handle MADM situations with the newly developed techniques. Furthermore, we have implemented 

these methodologies to resolve the MADM challenge of selecting an optimal spacecraft shielding 

material against cosmic radiation. Finally, we have thoroughly compared our technical approaches 

against existing knowledge to verify their effectiveness. 

6.1. Limitations of the current study 

Despite the contributions of proposed strategies, it is important to acknowledge their limitations. 

(1) The computational complexity of the proposed operators escalates with elevated values of 𝑞 

and longer interval datasets, potentially impacting their efficiency in extensive applications. 

(2) The procedure necessitates precise identification of the weight vectors; any erroneous 

allocation may affect the dependability of outcomes. 

6.2.  Future research recommendations 

We will extend the study of YAOs within the scope of complex interval-valued 𝑞-rung picture 

fuzzy sets, along with linguistic and probabilistic variants, to capture deeper uncertainty in our 

future studies. In addition, the suggested models will be further adapted for diverse decision-

making scenarios, particularly in healthcare diagnostics, cybersecurity protection, Internet of 

Things enabled networks, disaster management, and sustainable environmental systems. 
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