Research article

On the study of the hyperbolic $ p(.) $-biharmonic equation with no flux boundary condition

  • Published: 21 October 2025
  • MSC : 35A01, 35B40, 35L35

  • In the present paper, we studied a hyperbolic $ p(x) $-biharmonic problem with known no-flux values on the smooth part of the boundary in variable exponent Sobolev spaces. The global existence of a weak solution, using the Galerkin method, was proved. The blow-up of the solution with negative initial functional energy in finite time was discussed using the concavity method. The interaction between the variable exponent in the main equation and the boundary condition is crucial in determining the presence/absence of solutions.

    Citation: Roumaissa Khalfallaoui, Abderrazak Chaoui, Khaled Zennir, Safa M. Mirgani. On the study of the hyperbolic $ p(.) $-biharmonic equation with no flux boundary condition[J]. AIMS Mathematics, 2025, 10(10): 23943-23957. doi: 10.3934/math.20251064

    Related Papers:

  • In the present paper, we studied a hyperbolic $ p(x) $-biharmonic problem with known no-flux values on the smooth part of the boundary in variable exponent Sobolev spaces. The global existence of a weak solution, using the Galerkin method, was proved. The blow-up of the solution with negative initial functional energy in finite time was discussed using the concavity method. The interaction between the variable exponent in the main equation and the boundary condition is crucial in determining the presence/absence of solutions.



    加载中


    [1] A. N. Tikhonov, On the stability of inverse problems, Dokl. Akad. Nauk SSSR, 39 (1943), 195–198.
    [2] M. M. Lavrenti'ev, A. M. Fedotov, The formulation of some ill-posed problems of mathematical physics with random initial data, U.S.S.R. Comput. Maths. Math. Phys., 22 (1982), 139–150. https://doi.org/10.1016/0041-5553(82)90171-9
    [3] S. Yarmukhamedov, On the Cauchy problem for the Laplace equation, Math. Notes Acad. Sci. USSR, 18 (1975), 615–618. https://doi.org/10.1007/BF01461141 doi: 10.1007/BF01461141
    [4] A. N. Tikhonov, A. A. Samarskii, Equations of mathematical physics, Courier Corporation, 2013.
    [5] M. Boureanu, V. Rădulescu, D. Repovš, On a $p(.)-$biharmonic problem with no-flux boundary condition, Comput. Math. Appl., 72 (2016), 2505–2515. https://doi.org/10.1016/j.camwa.2016.09.017 doi: 10.1016/j.camwa.2016.09.017
    [6] K. Zennir, A. Beniani, B. Bochra, L. Alkhalifa, Destruction of solutions for class of wave $p(x)$-bi-Laplace equation with nonlinear dissipation, AIMS Mathematics, 8 (2022), 285–294. http://dx.doi.org/10.3934/math.2023013 doi: 10.3934/math.2023013
    [7] N. T. Brahim, A. Chaoui, Y. Henka, On the study of parabolic degenerate $p$-biharmonic problem with memory, J. Appl. Math. Comput., 70 (2024), 3175–3192. https://doi.org/10.1007/s12190-024-02079-3 doi: 10.1007/s12190-024-02079-3
    [8] R. M. P. Almeida, J. C. M. Duque, J. Ferreira, W. S. Panni, Numerical analysis for an evolution equation with the p-biharmonic operator, Appl. Numer. Math., 216 (2025), 164–186. https://doi.org/10.1016/j.apnum.2025.05.006 doi: 10.1016/j.apnum.2025.05.006
    [9] D. Guidad, K. Bouhali, Upper bound of the blowing-up time of kth-order solution for nonlinear wave equation with averaged damping in $\mathbb{R}^n$, Math. Struct. Comput. Model., 1 (2025), 4–11. https://orcid.org/0000-0002-3561-6353
    [10] A. Zerki, B. Boulfoul, K. Bouhali, On the third-order nonlinear $\varpi$-Laplacian impulsive boundary value problem on the half-line, J. Time Scales Anal., 1 (2025), 24–47. https://doi.org/10.64721/wtsp3303 doi: 10.64721/wtsp3303
    [11] T. Gyulov, G. Moroşanu, On a class of boundary value problems involving the $p$-biharmonic operator, J. Math. Anal. Appl., 367 (2010), 43–57. https://doi.org/10.1016/j.jmaa.2009.12.022 doi: 10.1016/j.jmaa.2009.12.022
    [12] C. Qu, W. Zhou, Blow-up and extinction for a thin-film equation with initial-boundary value conditions, J. Math. Anal. Appl., 436 (2016), 796–809. https://doi.org/10.1016/j.jmaa.2015.11.075 doi: 10.1016/j.jmaa.2015.11.075
    [13] Y. Cao, C. Liu, Global existence andnon-extinction of solutions to a fourth-order parabolic equation, Appl. Math. Lett., 61 (2016), 20–25. https://doi.org/10.1016/j.aml.2016.05.002 doi: 10.1016/j.aml.2016.05.002
    [14] A. Theljani, Z. Belhachmi, M. Moakher, High-order anisotropic diffusion operators in spaces of variable exponents and application to image inpainting and restoration problems, Nonlinear Anal. Real World Appl., 47 (2019), 251–271. https://doi.org/10.1016/j.nonrwa.2018.10.013 doi: 10.1016/j.nonrwa.2018.10.013
    [15] A. Chaoui, M. Djaghout, Galerkin mixed finite element method for parabolic $p$-biharmonic equation with memory term, SeMA J., 81 (2024), 495–509. https://doi.org/10.1007/s40324-023-00337-1 doi: 10.1007/s40324-023-00337-1
    [16] T. Cömert, E. Piskin, Global existence and exponential decay of solutions for higher-order parabolic equation with logarithmic nonlinearity, Miskolc Math. Notes, 23 (2022), 595–605. http://dx.doi.org/10.18514/MMN.2022.3894 doi: 10.18514/MMN.2022.3894
    [17] P. Erhan, B. Gülistan, Blow-up phenomena for a $p(x)$-biharmonic heat equation with variable exponent, Math. Morav., 27 (2023), 25–32.
    [18] S. Antontsev, J. Ferreira, E. Piskin, H. ksekkaya, M. Shahrouzi, Blow up and asymptotic behavior of solutions for a $p(x)$-Laplacian equation with delay term and variable exponents, Electron. J. Differ. Equ., 2021 (2021), 1–20.
    [19] M. Djaghout, A. Chaoui, K. Zennir, On discretization of the evolution $p$-Bi-Laplace equation, Numer. Anal. Appl., 15 (2022), 303–315. https://doi.org/10.1134/S1995423922040036 doi: 10.1134/S1995423922040036
    [20] R. Khalfallaoui, A. Chaoui, M. Djaghout, On the solution of evolution $p$-Laplace equation with memory term and unknown boundary Dirichlet condition, J. Elliptic Parabol. Equ., 10 (2024), 1063–1077. https://doi.org/10.1007/s41808-024-00290-8 doi: 10.1007/s41808-024-00290-8
    [21] L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Springer, 2011.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(260) PDF downloads(14) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog