Research article

Perturbation analysis of eigenvalues for second Dirichlet-Neumann tridiagonal Toeplitz matrices

  • Published: 17 October 2025
  • MSC : 15B05, 15A12, 15A18

  • This study focused on tridiagonal Toeplitz matrices based on second Dirichlet-Neumann boundary conditions and conducted in-depth research on their eigenvalue sensitivity. After evaluating condition numbers from both individual and global perspectives using parameters, our framework further achieved spectral sensitivity assessment in the context of second Dirichlet-Neumann tridiagonal Toeplitz matrices. The analysis process examined the $ \varepsilon $-pseudospectra. Finally, we explored an inverse eigenvalue problem embedded in a constrained optimization framework, where the trapezoidal second Dirichlet-Neumann tridiagonal Toeplitz matrix generated by this problem becomes the ultimate optimal computational solution.

    Citation: Zhaolin Jiang, Hongxiao Chu, Qiaoyun Miao, Ziwu Jiang. Perturbation analysis of eigenvalues for second Dirichlet-Neumann tridiagonal Toeplitz matrices[J]. AIMS Mathematics, 2025, 10(10): 23697-23714. doi: 10.3934/math.20251053

    Related Papers:

  • This study focused on tridiagonal Toeplitz matrices based on second Dirichlet-Neumann boundary conditions and conducted in-depth research on their eigenvalue sensitivity. After evaluating condition numbers from both individual and global perspectives using parameters, our framework further achieved spectral sensitivity assessment in the context of second Dirichlet-Neumann tridiagonal Toeplitz matrices. The analysis process examined the $ \varepsilon $-pseudospectra. Finally, we explored an inverse eigenvalue problem embedded in a constrained optimization framework, where the trapezoidal second Dirichlet-Neumann tridiagonal Toeplitz matrix generated by this problem becomes the ultimate optimal computational solution.



    加载中


    [1] X. Y. Jiang, G. J. Zhang, Y. P. Zheng, Z. L. Jiang, Explicit potential function and fast algorithm for computing potentials in $\alpha$ $\times$ $\beta$ conic surface resistor network, Expert Syst. Appl., 238 (2024), 122157. https://doi.org/10.1016/j.eswa.2023.122157 doi: 10.1016/j.eswa.2023.122157
    [2] Z. L. Jiang, Y. F. Zhou, X. Y. Jiang, Y. P. Zheng, Analytical potential formulae and fast algorithm for a horn torus resistor network, Phys. Rev. E, 107 (2023), 044123. https://doi.org/10.1103/PhysRevE.107.044123 doi: 10.1103/PhysRevE.107.044123
    [3] C. M. Yue, Y. F. Xu, Z. D. Song, H. M. Weng, Y. M. Lu, C. Fang, et al., Symmetry-enforced chiral hinge states and surface quantum anomalous Hall effect in the magnetic axion insulator ${B}{i_{2 - x}}{S}m_x{S}e_3$, Nat. Phys., 15 (2019), 577–581. https://doi.org/10.1038/s41567-019-0457-0 doi: 10.1038/s41567-019-0457-0
    [4] B. I. Schneider, H. Gharibnejad, Numerical methods every atomic and molecular theorist should know, Nat. Rev. Phys., 2 (2020), 89–102. https://doi.org/10.1038/s42254-019-0126-3 doi: 10.1038/s42254-019-0126-3
    [5] F. Diele, L. Lopez, The use of the factorization of five-diagonal matrices by tridiagonal Toeplitz matrices, Appl. Math. Lett., 11 (1998), 61–69. https://doi.org/10.1016/S0893-9659(98)00034-2 doi: 10.1016/S0893-9659(98)00034-2
    [6] A. R. Willms, Analytic results for the eigenvalues of certain tridiagonal matrices, SIAM J. Matrix Anal. A., 30 (2008), 639–656. https://doi.org/10.1137/070695411 doi: 10.1137/070695411
    [7] W. C. Yueh, S. S. Cheng, Explicit eigenvalues and inverses of tridiagonal Toeplitz matrices with four perturbed corners, ANZIAM J., 49 (2008), 361–387. https://doi.org/10.1017/S1446181108000102 doi: 10.1017/S1446181108000102
    [8] A. Luati, T. Proietti, On the spectral properties of matrices associated with trend filters, Econ. Theor., 26 (2010), 1247–1261. https://doi.org/10.1017/S0266466609990715 doi: 10.1017/S0266466609990715
    [9] P. C. Hansen, Rank-deficient and discrete ill-posed problems: Numerical aspects of linear inversion, SIAM, 1998.
    [10] L. Reichel, Q. Ye, Simple square smoothing regularization operators, Electron. T. Numer. Ana., 33 (2009), 63–83.
    [11] Z. L. Jiang, H. X. Chu, Q. Y. Miao, Z. W. Jiang, Structured distance to normality of Dirichlet-Neumann tridiagonal Toeplitz matrices, Axioms, 14 (2025), 609. https://doi.org/10.3390/axioms14080609 doi: 10.3390/axioms14080609
    [12] Z. L. Jiang, H. X. Chu, Q. Y. Miao, Z. W. Jiang, Sensitivity analysis of eigenvalues for PDNT Toeplitz matrices, Axioms, 14 (2025), 739. https://doi.org/10.3390/axioms14100739 doi: 10.3390/axioms14100739
    [13] W. H. Luo, X. M. Gu, L. Yang, J. Meng, A Lagrange-quadratic spline optimal collocation method for the time tempered fractional diffusion equation, Math. Comput. Simulat., 182 (2021), 1–24. https://doi.org/10.1016/j.matcom.2020.10.016 doi: 10.1016/j.matcom.2020.10.016
    [14] W. H. Luo, T. Z. Huang, G. C. Wu, X. M. Gu, Quadratic spline collocation method for the time fractional subdiffusion equation, Appl. Math. Comput., 276 (2016), 252–265. https://doi.org/10.1016/j.amc.2015.12.020 doi: 10.1016/j.amc.2015.12.020
    [15] J. Jia, S. Li, On the inverse and determinant of general bordered tridiagonal matrices, Comput. Math. Appl., 69 (2015), 503–509. https://doi.org/10.1016/j.camwa.2015.01.012 doi: 10.1016/j.camwa.2015.01.012
    [16] T. Sogabe, New algorithms for solving periodic tridiagonal and periodic pentadiagonal linear systems, Appl. Math. Comput., 202 (2008), 850–856. https://doi.org/10.1016/j.amc.2008.03.030 doi: 10.1016/j.amc.2008.03.030
    [17] Z. Liu, S. Li, Y. Yin, Y. Zhang, Fast solvers for tridiagonal Toeplitz linear systems, Comput. Appl. Math., 39 (2020), 1–10. https://doi.org/10.1007/s40314-020-01369-3 doi: 10.1007/s40314-020-01369-3
    [18] C. M. D. Fonseca, On the eigenvalues of some tridiagonal matrices, J. Comput. Appl. Math., 200 (2007), 283–286. https://doi.org/10.1016/j.cam.2005.08.047 doi: 10.1016/j.cam.2005.08.047
    [19] L. Du, T. Sogabe, S. L. Zhang, A fast algorithm for solving tridiagonal quasi-Toeplitz linear systems, Appl. Math. Lett., 75 (2018), 74–81. https://doi.org/10.1016/j.aml.2017.06.016 doi: 10.1016/j.aml.2017.06.016
    [20] J. Wang, Y. P. Zheng, Z. L. Jiang, Norm equalities and inequalities for tridiagonal perturbed Toeplitz operator matrices, J. Appl. Anal. Comput., 13 (2023), 671–683. https://doi.org/10.11948/20210489 doi: 10.11948/20210489
    [21] Y. Fu, X. Y. Jiang, Z. L. Jiang, S. Jhang, Properties of a class of perturbed Toeplitz periodic tridiagonal matrices, Comput. Appl. Math., 39 (2020), 1–19. https://doi.org/10.1007/s40314-020-01171-1 doi: 10.1007/s40314-020-01171-1
    [22] Y. Wei, Y. P. Zheng, Z. L. Jiang, S. Shon, The inverses and eigenpairs of tridiagonal Toeplitz matrices with perturbed rows, J. Appl. Math. Comput., 68 (2022), 623–636. https://doi.org/10.1007/s12190-021-01532-x doi: 10.1007/s12190-021-01532-x
    [23] S. Noschese, L. Pasquini, L. Reichel, Tridiagonal Toeplitz matrices: Properties and novel applications, Numer. Linear Algebr., 20 (2013), 302–326. https://doi.org/10.1002/nla.1811 doi: 10.1002/nla.1811
    [24] N. Bebiano, S. Furtado, Structured distance to normality of tridiagonal matrices, Linear Algebra Appl., 552 (2018), 239–255. https://doi.org/10.1016/j.laa.2018.04.023 doi: 10.1016/j.laa.2018.04.023
    [25] J. Demmel, Nearest defective matrices and the geometry of ill-conditioning, New York: Oxford University Press, 1990.
    [26] A. Böttcher, S. M. Grudsky, Spectral properties of banded Toeplitz matrices, SIAM, 2005.
    [27] L. Reichel, L. N. Trefethen, Eigenvalues and pseudo-eigenvalues of Toeplitz matrices, Linear Algebra Appl., 162 (1992), 153–185. https://doi.org/10.1016/0024-3795(92)90374-J doi: 10.1016/0024-3795(92)90374-J
    [28] L. N. Trefethen, M. Embree, Spectra and pseudospectra: The behavior of nonnormal matrices and operators, Princeton: Princeton University Press, 2005.
    [29] B. N. Datta, W. W. Lin, J. N. Wang, Robust partial pole assignment for vibrating systems with aerodynamic effects, IEEE T. Automat. Contr., 51 (2006), 1979–1984. https://doi.org/10.1109/TAC.2006.886543 doi: 10.1109/TAC.2006.886543
    [30] B. N. Datta, V. Sokolov, A solution of the affine quadratic inverse eigenvalue problem, Linear Algebra Appl., 434 (2011), 1745–1760. https://doi.org/10.1016/j.laa.2010.09.047 doi: 10.1016/j.laa.2010.09.047
    [31] S. R. Garcia, S. Yih, Supercharacters and the discrete Fourier, cosine, and sine transforms, Commun. Algebra, 46 (2018), 3745–3765. https://doi.org/10.1080/00927872.2018.1424866 doi: 10.1080/00927872.2018.1424866
    [32] J. H. Wilkinson, The algebraic eigenvalue problem, Oxford: Clarendon Press, 1965.
    [33] J. H. Wilkinson, Sensitivity of eigenvalues Ⅱ, Utilitas Mathematica, 30 (1986), 243–286.
    [34] G. W. Stewart, Matrix perturbation theory, New York: Academic Press, 1990.
    [35] M. Karow, D. Kressner, F. Tisseur, Structured eigenvalue condition numbers, SIAM J. Matrix Anal. A., 28 (2006), 1052–1068. https://doi.org/10.1137/050628519 doi: 10.1137/050628519
    [36] S. Noschese, L. Pasquini, Eigenvalue condition numbers: zero-structured versus traditional, J. Comput. Appl. Math., 185 (2006), 174–189. https://doi.org/10.1016/j.cam.2005.01.032 doi: 10.1016/j.cam.2005.01.032
    [37] S. Noschese, L. Pasquini, Eigenvalue patterned condition numbers: Toeplitz and Hankel cases, J. Comput. Appl. Math., 206 (2007), 615–624. https://doi.org/10.1016/j.cam.2006.08.031 doi: 10.1016/j.cam.2006.08.031
    [38] S. Noschese, L. Reichel, Eigenvector sensitivity under general and structured perturbations of tridiagonal Toeplitz-type matrices, Appl. Math. Lett., 26 (2019), e2232. https://doi.org/10.1002/nla.2232 doi: 10.1002/nla.2232
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(434) PDF downloads(22) Cited by(0)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog