Research article

The Schur complement of SDD$ _1 $ matrices and its applications

  • Published: 17 October 2025
  • MSC : 15A45, 15A48

  • The Schur complements of H-matrices have a wide range of practical applications. This paper explores the diagonally dominant degrees of the Schur complements of SDD$ _1 $ matrices and its applications. it concludes that the Schur complements can be also SDD$ _1 $ matrices under certain conditions. Moreover, the upper and lower bounds for the determinants of SDD$ _1 $ matrices are presented, and large-scale linear equations with the coefficient matrix being an SDD$ _1 $ matrix are solved by Schur-based methods. The numerical results are reported.

    Citation: Shiyun Wang, Yun Li, Wanfu Tian. The Schur complement of SDD$ _1 $ matrices and its applications[J]. AIMS Mathematics, 2025, 10(10): 23676-23696. doi: 10.3934/math.20251052

    Related Papers:

  • The Schur complements of H-matrices have a wide range of practical applications. This paper explores the diagonally dominant degrees of the Schur complements of SDD$ _1 $ matrices and its applications. it concludes that the Schur complements can be also SDD$ _1 $ matrices under certain conditions. Moreover, the upper and lower bounds for the determinants of SDD$ _1 $ matrices are presented, and large-scale linear equations with the coefficient matrix being an SDD$ _1 $ matrix are solved by Schur-based methods. The numerical results are reported.



    加载中


    [1] J. Liu, Y. Huang, Some properties on Schur complements of H-matrices and diagonally dominant matrices, Linear Algebra Appl. 389 (2004), 365–380. https://doi.org/10.1016/j.laa.2004.04.012
    [2] C. Li, Z. Huang, J. Zhao, On Schur complements of Dashnic-Zusmanovich type matrices, Linear Mutilinear A., 70 (2022), 4071–4096. https://doi.org/10.1080/03081087.2020.1863317 doi: 10.1080/03081087.2020.1863317
    [3] J. Z. Liu, Z. J. Huang, The Schur complements of $\gamma$-diagonally and product $\gamma$-diagonally dominant matrix and their disc separation, Linear Algebra Appl., 432 (2010), 1090–1104. https://doi.org/10.1016/j.laa.2009.10.021 doi: 10.1016/j.laa.2009.10.021
    [4] J. Z. Liu, J. Zhang, Y. Liu, The Schur complement of strictly doubly diagonally dominant matrices and its application, Linear Algebra Appl., 437 (2012), 168–183. https://doi.org/10.1016/j.laa.2012.02.001 doi: 10.1016/j.laa.2012.02.001
    [5] J. Liu, J. Zhang, L. Zhou, G. Tu, The Nekrasov diagonally dominant degree on the Schur complement of Nekrasov matrices and its applications, Appl. Math. Comput., 320 (2018), 251–263. https://doi.org/10.1016/j.amc.2017.09.032 doi: 10.1016/j.amc.2017.09.032
    [6] Z. Lyu, L. Zhou, J. Ma, The $\gamma$-diagonally dominant degree of Schur complements and its applications, Comput. Appl. Math., 43 (2024), 342. https://doi.org/10.1007/s40314-024-02868-3 doi: 10.1007/s40314-024-02868-3
    [7] D. Carlson, T. Markham, Schur complements of diagonally dominant matrices, Czech. Math. J., 29 (1979), 246–251.
    [8] B. Li, M. Tsatsomeros, Doubly diagongally dominant matrices, Linear Algebra Appl., 261 (1997), 221–235. https://doi.org/10.1016/S0024-3795(96)00406-5 doi: 10.1016/S0024-3795(96)00406-5
    [9] K. D. Ikramov, Invariance of Brauer diagonal dominance in gaussian elimination, Moscow Unvi. Comput. Math. Cybernet., 1982.
    [10] F. Zhang, The Schur complement and its applications, New York: Springer-Verlag, 2005.
    [11] L. Cvetković, M. Nedović, Special H-matrices and their Schur and diagonal-Schur complements, Appl. Math. Comput., 208 (2009), 225–230. https://doi.org/10.1016/j.amc.2008.11.040 doi: 10.1016/j.amc.2008.11.040
    [12] L. Cvetković, V. Kostić, M. Kovacevic, T. Szulc, Further results on H-matrices and their Schur complements, Appl. Math. Comput. 198 (2008), 506–510. https://doi.org/10.1016/j.amc.2007.09.001
    [13] W. Zeng, J. Liu, H. Mo, Schur complement-based infinity norm bound for the inverse of Dashnic-Zusmanovich type matrices, Mathematics, 11 (2023), 2254. https://doi.org/10.3390/math11102254 doi: 10.3390/math11102254
    [14] X. Song, L. Gao, On Schur complements of Cvetković-Kostić-Varga type matrices, B. Malays. Math. Sci. So., 46 (2023), 49. https://doi.org/10.1007/s40840-022-01440-8 doi: 10.1007/s40840-022-01440-8
    [15] J. Liu, F. Zhang, Disc separation of the Schur complements of diagonally dominant matrices and determinantal bounds, SIAM J. Matrix Anal. A., 27 (2005), 665–674. https://doi.org/10.1137/040620369 doi: 10.1137/040620369
    [16] J. Gu, S. Zhou, J. Zhao, J. Zhang, The doubly diagonally dominant degree of the Schur complement of strictly doubly diagonally dominant matrices and its applications, B. Iran. Math. Soc., 47 (2021), 265–285. https://doi.org/10.1007/s41980-020-00382-w doi: 10.1007/s41980-020-00382-w
    [17] J. Liu, W. Zeng, The dominant degree for Schur complements of S-strictly diagonally dominant matrix and its applications, J. Comput. Appl. Math., 451 (2024), 116066. https://doi.org/10.1016/j.cam.2024.116066 doi: 10.1016/j.cam.2024.116066
    [18] T. Z. Huang, Some simpler determinant conditions for nonsingular H-matrix, Math. Numeri. Sinica, 3 (1993), 318–328.
    [19] J. M. Peña, Diagonal dominance, Schur complements and some classes of H-matrices and P-matrices, Adv. Comput. Math., 35 (2011), 357–373. https://doi.org/10.1007/s10444-010-9160-5 doi: 10.1007/s10444-010-9160-5
    [20] X. Chen, Y. Li, L. Liu, Y. Wang, Infinity norm upper bounds for the inverse of SDD$_1$ matrices, AIMS Math., 7 (2022), 8847–8860. https://doi.org/10.3934/math.2022493 doi: 10.3934/math.2022493
    [21] L. Y. Kolotilina, On SDD$_1$ matrices, J. Math. Sci., 272 (2023), 541–557. https://doi.org/10.1007/s10958-023-06448-4
    [22] Y. Hu, J. Liu, W. Zeng, The Schur complements for SDD$_1$ matrices and their application to linear complementarity problems, arXiv Preprint, 2025. https://doi.org/10.48550/arXiv.2504.14308
    [23] T. Z. Huang, X. P. Liu, Estimations for certain determinants, Comput. Math. Appl., 50 (2005), 1677–1684. https://doi.org/10.1016/j.camwa.2005.06.011 doi: 10.1016/j.camwa.2005.06.011
    [24] R. A. Horn, C. R. Johnson, Topics in matrix analysis, New York: Cambridge University Press, 1991.
    [25] S. Wang, Q. Li, X. Sun, Z. H. Lyu, Diagonal-Schur complements of Nekrasov matrices, Electron J. Linear Al., 39 (2023), 539–555. https://doi.org/10.13001/ela.2023.7941 doi: 10.13001/ela.2023.7941
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(292) PDF downloads(13) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog