The Schur complements of H-matrices have a wide range of practical applications. This paper explores the diagonally dominant degrees of the Schur complements of SDD$ _1 $ matrices and its applications. it concludes that the Schur complements can be also SDD$ _1 $ matrices under certain conditions. Moreover, the upper and lower bounds for the determinants of SDD$ _1 $ matrices are presented, and large-scale linear equations with the coefficient matrix being an SDD$ _1 $ matrix are solved by Schur-based methods. The numerical results are reported.
Citation: Shiyun Wang, Yun Li, Wanfu Tian. The Schur complement of SDD$ _1 $ matrices and its applications[J]. AIMS Mathematics, 2025, 10(10): 23676-23696. doi: 10.3934/math.20251052
The Schur complements of H-matrices have a wide range of practical applications. This paper explores the diagonally dominant degrees of the Schur complements of SDD$ _1 $ matrices and its applications. it concludes that the Schur complements can be also SDD$ _1 $ matrices under certain conditions. Moreover, the upper and lower bounds for the determinants of SDD$ _1 $ matrices are presented, and large-scale linear equations with the coefficient matrix being an SDD$ _1 $ matrix are solved by Schur-based methods. The numerical results are reported.
| [1] | J. Liu, Y. Huang, Some properties on Schur complements of H-matrices and diagonally dominant matrices, Linear Algebra Appl. 389 (2004), 365–380. https://doi.org/10.1016/j.laa.2004.04.012 |
| [2] |
C. Li, Z. Huang, J. Zhao, On Schur complements of Dashnic-Zusmanovich type matrices, Linear Mutilinear A., 70 (2022), 4071–4096. https://doi.org/10.1080/03081087.2020.1863317 doi: 10.1080/03081087.2020.1863317
|
| [3] |
J. Z. Liu, Z. J. Huang, The Schur complements of $\gamma$-diagonally and product $\gamma$-diagonally dominant matrix and their disc separation, Linear Algebra Appl., 432 (2010), 1090–1104. https://doi.org/10.1016/j.laa.2009.10.021 doi: 10.1016/j.laa.2009.10.021
|
| [4] |
J. Z. Liu, J. Zhang, Y. Liu, The Schur complement of strictly doubly diagonally dominant matrices and its application, Linear Algebra Appl., 437 (2012), 168–183. https://doi.org/10.1016/j.laa.2012.02.001 doi: 10.1016/j.laa.2012.02.001
|
| [5] |
J. Liu, J. Zhang, L. Zhou, G. Tu, The Nekrasov diagonally dominant degree on the Schur complement of Nekrasov matrices and its applications, Appl. Math. Comput., 320 (2018), 251–263. https://doi.org/10.1016/j.amc.2017.09.032 doi: 10.1016/j.amc.2017.09.032
|
| [6] |
Z. Lyu, L. Zhou, J. Ma, The $\gamma$-diagonally dominant degree of Schur complements and its applications, Comput. Appl. Math., 43 (2024), 342. https://doi.org/10.1007/s40314-024-02868-3 doi: 10.1007/s40314-024-02868-3
|
| [7] | D. Carlson, T. Markham, Schur complements of diagonally dominant matrices, Czech. Math. J., 29 (1979), 246–251. |
| [8] |
B. Li, M. Tsatsomeros, Doubly diagongally dominant matrices, Linear Algebra Appl., 261 (1997), 221–235. https://doi.org/10.1016/S0024-3795(96)00406-5 doi: 10.1016/S0024-3795(96)00406-5
|
| [9] | K. D. Ikramov, Invariance of Brauer diagonal dominance in gaussian elimination, Moscow Unvi. Comput. Math. Cybernet., 1982. |
| [10] | F. Zhang, The Schur complement and its applications, New York: Springer-Verlag, 2005. |
| [11] |
L. Cvetković, M. Nedović, Special H-matrices and their Schur and diagonal-Schur complements, Appl. Math. Comput., 208 (2009), 225–230. https://doi.org/10.1016/j.amc.2008.11.040 doi: 10.1016/j.amc.2008.11.040
|
| [12] | L. Cvetković, V. Kostić, M. Kovacevic, T. Szulc, Further results on H-matrices and their Schur complements, Appl. Math. Comput. 198 (2008), 506–510. https://doi.org/10.1016/j.amc.2007.09.001 |
| [13] |
W. Zeng, J. Liu, H. Mo, Schur complement-based infinity norm bound for the inverse of Dashnic-Zusmanovich type matrices, Mathematics, 11 (2023), 2254. https://doi.org/10.3390/math11102254 doi: 10.3390/math11102254
|
| [14] |
X. Song, L. Gao, On Schur complements of Cvetković-Kostić-Varga type matrices, B. Malays. Math. Sci. So., 46 (2023), 49. https://doi.org/10.1007/s40840-022-01440-8 doi: 10.1007/s40840-022-01440-8
|
| [15] |
J. Liu, F. Zhang, Disc separation of the Schur complements of diagonally dominant matrices and determinantal bounds, SIAM J. Matrix Anal. A., 27 (2005), 665–674. https://doi.org/10.1137/040620369 doi: 10.1137/040620369
|
| [16] |
J. Gu, S. Zhou, J. Zhao, J. Zhang, The doubly diagonally dominant degree of the Schur complement of strictly doubly diagonally dominant matrices and its applications, B. Iran. Math. Soc., 47 (2021), 265–285. https://doi.org/10.1007/s41980-020-00382-w doi: 10.1007/s41980-020-00382-w
|
| [17] |
J. Liu, W. Zeng, The dominant degree for Schur complements of S-strictly diagonally dominant matrix and its applications, J. Comput. Appl. Math., 451 (2024), 116066. https://doi.org/10.1016/j.cam.2024.116066 doi: 10.1016/j.cam.2024.116066
|
| [18] | T. Z. Huang, Some simpler determinant conditions for nonsingular H-matrix, Math. Numeri. Sinica, 3 (1993), 318–328. |
| [19] |
J. M. Peña, Diagonal dominance, Schur complements and some classes of H-matrices and P-matrices, Adv. Comput. Math., 35 (2011), 357–373. https://doi.org/10.1007/s10444-010-9160-5 doi: 10.1007/s10444-010-9160-5
|
| [20] |
X. Chen, Y. Li, L. Liu, Y. Wang, Infinity norm upper bounds for the inverse of SDD$_1$ matrices, AIMS Math., 7 (2022), 8847–8860. https://doi.org/10.3934/math.2022493 doi: 10.3934/math.2022493
|
| [21] | L. Y. Kolotilina, On SDD$_1$ matrices, J. Math. Sci., 272 (2023), 541–557. https://doi.org/10.1007/s10958-023-06448-4 |
| [22] | Y. Hu, J. Liu, W. Zeng, The Schur complements for SDD$_1$ matrices and their application to linear complementarity problems, arXiv Preprint, 2025. https://doi.org/10.48550/arXiv.2504.14308 |
| [23] |
T. Z. Huang, X. P. Liu, Estimations for certain determinants, Comput. Math. Appl., 50 (2005), 1677–1684. https://doi.org/10.1016/j.camwa.2005.06.011 doi: 10.1016/j.camwa.2005.06.011
|
| [24] | R. A. Horn, C. R. Johnson, Topics in matrix analysis, New York: Cambridge University Press, 1991. |
| [25] |
S. Wang, Q. Li, X. Sun, Z. H. Lyu, Diagonal-Schur complements of Nekrasov matrices, Electron J. Linear Al., 39 (2023), 539–555. https://doi.org/10.13001/ela.2023.7941 doi: 10.13001/ela.2023.7941
|