Research article

Parametric Marcinkiewicz integral on grand variable Herz-Morrey spaces

  • Published: 17 October 2025
  • MSC : 42B20, 42B35

  • We establish the boundedness of the parametric Marcinkiewicz integral $ \mu^\rho_\Omega $ and its higher-order commutators $ [\Lambda^m, \mu^\rho_\Omega] $ with $ \rm{BMO} $ symbols on grand variable Herz-Morrey spaces $ M\dot{K}_{\lambda, \beta(\cdot)}^{\alpha(\cdot), \gamma), \theta}({\Bbb{ R}}^n) $. These results also apply to grand variable Herz spaces, including the case where $ \alpha(\cdot) $ is constant.

    Citation: Liwei Wang, Xiaoyan Li. Parametric Marcinkiewicz integral on grand variable Herz-Morrey spaces[J]. AIMS Mathematics, 2025, 10(10): 23652-23675. doi: 10.3934/math.20251051

    Related Papers:

  • We establish the boundedness of the parametric Marcinkiewicz integral $ \mu^\rho_\Omega $ and its higher-order commutators $ [\Lambda^m, \mu^\rho_\Omega] $ with $ \rm{BMO} $ symbols on grand variable Herz-Morrey spaces $ M\dot{K}_{\lambda, \beta(\cdot)}^{\alpha(\cdot), \gamma), \theta}({\Bbb{ R}}^n) $. These results also apply to grand variable Herz spaces, including the case where $ \alpha(\cdot) $ is constant.



    加载中


    [1] A. Almeida, D. Drihem, Maximal, potential and singular type operators on Herz spaces with variable exponents, J. Math. Anal. Appl., 394 (2012), 781–795. https://doi.org/10.1016/j.jmaa.2012.04.043 doi: 10.1016/j.jmaa.2012.04.043
    [2] A. Al-Salman, Marcinkiewicz function along flat surfaces with Hardy space kernels, J. Integral Equ. Appl., 17 (2005), 357–373. https://doi.org/10.1216/jiea/1181075348 doi: 10.1216/jiea/1181075348
    [3] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383–1406. https://doi.org/10.1137/050624522 doi: 10.1137/050624522
    [4] D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces: foundations and harmonic analysis, Basel: Birkhäuser, 2013. https://doi.org/10.1007/978-3-0348-0548-3
    [5] L. Diening, P. Harjulehto, P. Hästö, M. R$\dot {\rm{u}}$žička, Lebesgue and Sobolev spaces with variable exponents, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-18363-8
    [6] Y. Ding, S. Lu, K. Yabuta, A problem on rough parametric Marcinkiewicz functions, J. Aust. Math. Soc., 72 (2002), 13–22. https://doi.org/10.1017/S1446788700003542 doi: 10.1017/S1446788700003542
    [7] P. Harjulehto, P. Hästö, Ú. V. Lê, M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal., 72 (2010), 4551–4574. https://doi.org/10.1016/j.na.2010.02.033 doi: 10.1016/j.na.2010.02.033
    [8] K.-P. Ho, Grand Morrey spaces and Grand Hardy-Morrey spaces on Euclidean space, J. Geom. Anal., 33 (2023), 180. https://doi.org/10.1007/s12220-023-01229-6 doi: 10.1007/s12220-023-01229-6
    [9] K.-P. Ho, Operators on Herz-Morrey spaces with variable exponents, Math. Inequal. Appl., 26 (2023), 861–886. https://doi.org/10.7153/mia-2023-26-53 doi: 10.7153/mia-2023-26-53
    [10] K.-P. Ho, One-sided operators on ball Banach function spaces, J. Geom. Anal., 35 (2025), 276. https://doi.org/10.1007/s12220-025-02112-2 doi: 10.1007/s12220-025-02112-2
    [11] L. Hörmander, Estimates for translation invariant operators in $L^p$ spaces, Acta Math., 104 (1960), 93–140. https://doi.org/10.1007/BF02547187 doi: 10.1007/BF02547187
    [12] M. Izuki, Herz and amalgam spaces with variable exponent, the Haar wavelets and greediness of the wavelet system, East Journal on Approx., 15 (2009), 87–109.
    [13] M. Izuki, Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 59 (2010), 461–472. https://doi.org/10.1007/s12215-010-0034-y doi: 10.1007/s12215-010-0034-y
    [14] M. Izuki, T. Noi, Boundedness of some integral operators and commutators on generalized Herz spaces with variable exponents, OCAMI preprint series, 2011, 11–16.
    [15] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces. Volume 1: variable exponent Lebesgue and Amalgam spaces, Cham: Birkhäuser, 2016. https://doi.org/10.1007/978-3-319-21015-5
    [16] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces. Volume 2: variable exponent Hölder, Morrey–Campanato and Grand spaces, Cham: Birkhäuser, 2016. https://doi.org/10.1007/978-3-319-21018-6
    [17] O. Kováčik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J., 41 (1991), 592–618. https://doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493
    [18] S. Lu, Marcinkiewicz integral with rough kernels, Front. Math. China, 3 (2008), 1–14. https://doi.org/10.1007/s11464-008-0005-1 doi: 10.1007/s11464-008-0005-1
    [19] S. Lu, D. Yang, G. Hu, Herz type spaces and their applications, Beijing: Science Press, 2008.
    [20] H. Nafis, H. Rafeiro, M. A. Zaighum, Boundedness of Marcinkiewicz integral on grand variable Herz spaces, J. Math. Inequal., 15 (2021), 739–753. https://doi.org/10.7153/jmi-2021-15-52 doi: 10.7153/jmi-2021-15-52
    [21] A. Nekvinda, Hardy-littlewood maximal operator in $L^{p(x)}(\mathbb{R}^n)$, Math. Inequal. Appl., 7 (2004), 255–265. https://doi.org/10.7153/mia-07-28 doi: 10.7153/mia-07-28
    [22] O. A. Omer, K. Saibi, M. Z. Abidin, M. Osman, Parametric Marcinkiewicz integral and higher-order commutators on variable exponent Morrey Herz spaces, J. Funct. Space., 2022 (2022), 7209977. https://doi.org/10.1155/2022/7209977 doi: 10.1155/2022/7209977
    [23] W. Orlicz, Uber konjugierte exponentenfolgen, Studia Math., 3 (1931), 200–211.
    [24] M. A. Ragusa, Homogeneous Herz spaces and regularity results, Nonlinear Anal., 71 (2009), e1909–e1914. https://doi.org/10.1016/j.na.2009.02.075 doi: 10.1016/j.na.2009.02.075
    [25] M. R$\dot {\rm{u}}$žička, Electrorheological fluids: modeling and mathematical theory, Berlin: Springer, 2000. https://doi.org/10.1007/BFb0104029
    [26] S. Samko, Variable exponent Herz spaces, Mediterr. J. Math., 10 (2013), 2007–2025. https://doi.org/10.1007/s00009-013-0285-x doi: 10.1007/s00009-013-0285-x
    [27] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton, N.J.: Princeton Univ. Press, 1970.
    [28] M. Sultan, B. Sultan, A. Hussain, Grand Herz-Morrey spaces with variable exponent, Math. Notes, 114 (2023), 957–977. https://doi.org/10.1134/S0001434623110305 doi: 10.1134/S0001434623110305
    [29] B. Sultan, M. Sultan, F. Gürbüz, BMO estimate for the higher order commutators of Marcinkiewicz integral operator on grand variable Herz-Morrey spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 72 (2023), 1000–1018.
    [30] B. Sultan, M. Sultan, Boundedness of higher order commutators of Hardy operators on grand Herz-Morrey spaces, Bull. Sci. Math., 190 (2024), 103373. https://doi.org/10.1016/j.bulsci.2023.103373 doi: 10.1016/j.bulsci.2023.103373
    [31] H. Wang, D. Yan, Higher-order commutators of parametric Marcinkiewicz integrals on Herz spaces with variable exponent, J. Funct. Space., 2018 (2018), 7319093. https://doi.org/10.1155/2018/7319093 doi: 10.1155/2018/7319093
    [32] L. Wang, Parametrized Littlewood-Paley operators on grand variable Herz spaces, Ann. Funct. Anal., 13 (2022), 72. https://doi.org/10.1007/s43034-022-00218-0 doi: 10.1007/s43034-022-00218-0
    [33] X. Yan, D. Yang, W. Yuan, C. Zhuo, Variable weak Hardy spaces and their applications, J. Funct. Anal., 271 (2016), 2822–2887. https://doi.org/10.1016/j.jfa.2016.07.006 doi: 10.1016/j.jfa.2016.07.006
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(290) PDF downloads(16) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog