We establish the boundedness of the parametric Marcinkiewicz integral $ \mu^\rho_\Omega $ and its higher-order commutators $ [\Lambda^m, \mu^\rho_\Omega] $ with $ \rm{BMO} $ symbols on grand variable Herz-Morrey spaces $ M\dot{K}_{\lambda, \beta(\cdot)}^{\alpha(\cdot), \gamma), \theta}({\Bbb{ R}}^n) $. These results also apply to grand variable Herz spaces, including the case where $ \alpha(\cdot) $ is constant.
Citation: Liwei Wang, Xiaoyan Li. Parametric Marcinkiewicz integral on grand variable Herz-Morrey spaces[J]. AIMS Mathematics, 2025, 10(10): 23652-23675. doi: 10.3934/math.20251051
We establish the boundedness of the parametric Marcinkiewicz integral $ \mu^\rho_\Omega $ and its higher-order commutators $ [\Lambda^m, \mu^\rho_\Omega] $ with $ \rm{BMO} $ symbols on grand variable Herz-Morrey spaces $ M\dot{K}_{\lambda, \beta(\cdot)}^{\alpha(\cdot), \gamma), \theta}({\Bbb{ R}}^n) $. These results also apply to grand variable Herz spaces, including the case where $ \alpha(\cdot) $ is constant.
| [1] |
A. Almeida, D. Drihem, Maximal, potential and singular type operators on Herz spaces with variable exponents, J. Math. Anal. Appl., 394 (2012), 781–795. https://doi.org/10.1016/j.jmaa.2012.04.043 doi: 10.1016/j.jmaa.2012.04.043
|
| [2] |
A. Al-Salman, Marcinkiewicz function along flat surfaces with Hardy space kernels, J. Integral Equ. Appl., 17 (2005), 357–373. https://doi.org/10.1216/jiea/1181075348 doi: 10.1216/jiea/1181075348
|
| [3] |
Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383–1406. https://doi.org/10.1137/050624522 doi: 10.1137/050624522
|
| [4] | D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces: foundations and harmonic analysis, Basel: Birkhäuser, 2013. https://doi.org/10.1007/978-3-0348-0548-3 |
| [5] | L. Diening, P. Harjulehto, P. Hästö, M. R$\dot {\rm{u}}$žička, Lebesgue and Sobolev spaces with variable exponents, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-18363-8 |
| [6] |
Y. Ding, S. Lu, K. Yabuta, A problem on rough parametric Marcinkiewicz functions, J. Aust. Math. Soc., 72 (2002), 13–22. https://doi.org/10.1017/S1446788700003542 doi: 10.1017/S1446788700003542
|
| [7] |
P. Harjulehto, P. Hästö, Ú. V. Lê, M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal., 72 (2010), 4551–4574. https://doi.org/10.1016/j.na.2010.02.033 doi: 10.1016/j.na.2010.02.033
|
| [8] |
K.-P. Ho, Grand Morrey spaces and Grand Hardy-Morrey spaces on Euclidean space, J. Geom. Anal., 33 (2023), 180. https://doi.org/10.1007/s12220-023-01229-6 doi: 10.1007/s12220-023-01229-6
|
| [9] |
K.-P. Ho, Operators on Herz-Morrey spaces with variable exponents, Math. Inequal. Appl., 26 (2023), 861–886. https://doi.org/10.7153/mia-2023-26-53 doi: 10.7153/mia-2023-26-53
|
| [10] |
K.-P. Ho, One-sided operators on ball Banach function spaces, J. Geom. Anal., 35 (2025), 276. https://doi.org/10.1007/s12220-025-02112-2 doi: 10.1007/s12220-025-02112-2
|
| [11] |
L. Hörmander, Estimates for translation invariant operators in $L^p$ spaces, Acta Math., 104 (1960), 93–140. https://doi.org/10.1007/BF02547187 doi: 10.1007/BF02547187
|
| [12] | M. Izuki, Herz and amalgam spaces with variable exponent, the Haar wavelets and greediness of the wavelet system, East Journal on Approx., 15 (2009), 87–109. |
| [13] |
M. Izuki, Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 59 (2010), 461–472. https://doi.org/10.1007/s12215-010-0034-y doi: 10.1007/s12215-010-0034-y
|
| [14] | M. Izuki, T. Noi, Boundedness of some integral operators and commutators on generalized Herz spaces with variable exponents, OCAMI preprint series, 2011, 11–16. |
| [15] | V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces. Volume 1: variable exponent Lebesgue and Amalgam spaces, Cham: Birkhäuser, 2016. https://doi.org/10.1007/978-3-319-21015-5 |
| [16] | V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces. Volume 2: variable exponent Hölder, Morrey–Campanato and Grand spaces, Cham: Birkhäuser, 2016. https://doi.org/10.1007/978-3-319-21018-6 |
| [17] |
O. Kováčik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J., 41 (1991), 592–618. https://doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493
|
| [18] |
S. Lu, Marcinkiewicz integral with rough kernels, Front. Math. China, 3 (2008), 1–14. https://doi.org/10.1007/s11464-008-0005-1 doi: 10.1007/s11464-008-0005-1
|
| [19] | S. Lu, D. Yang, G. Hu, Herz type spaces and their applications, Beijing: Science Press, 2008. |
| [20] |
H. Nafis, H. Rafeiro, M. A. Zaighum, Boundedness of Marcinkiewicz integral on grand variable Herz spaces, J. Math. Inequal., 15 (2021), 739–753. https://doi.org/10.7153/jmi-2021-15-52 doi: 10.7153/jmi-2021-15-52
|
| [21] |
A. Nekvinda, Hardy-littlewood maximal operator in $L^{p(x)}(\mathbb{R}^n)$, Math. Inequal. Appl., 7 (2004), 255–265. https://doi.org/10.7153/mia-07-28 doi: 10.7153/mia-07-28
|
| [22] |
O. A. Omer, K. Saibi, M. Z. Abidin, M. Osman, Parametric Marcinkiewicz integral and higher-order commutators on variable exponent Morrey Herz spaces, J. Funct. Space., 2022 (2022), 7209977. https://doi.org/10.1155/2022/7209977 doi: 10.1155/2022/7209977
|
| [23] | W. Orlicz, Uber konjugierte exponentenfolgen, Studia Math., 3 (1931), 200–211. |
| [24] |
M. A. Ragusa, Homogeneous Herz spaces and regularity results, Nonlinear Anal., 71 (2009), e1909–e1914. https://doi.org/10.1016/j.na.2009.02.075 doi: 10.1016/j.na.2009.02.075
|
| [25] | M. R$\dot {\rm{u}}$žička, Electrorheological fluids: modeling and mathematical theory, Berlin: Springer, 2000. https://doi.org/10.1007/BFb0104029 |
| [26] |
S. Samko, Variable exponent Herz spaces, Mediterr. J. Math., 10 (2013), 2007–2025. https://doi.org/10.1007/s00009-013-0285-x doi: 10.1007/s00009-013-0285-x
|
| [27] | E. M. Stein, Singular integrals and differentiability properties of functions, Princeton, N.J.: Princeton Univ. Press, 1970. |
| [28] |
M. Sultan, B. Sultan, A. Hussain, Grand Herz-Morrey spaces with variable exponent, Math. Notes, 114 (2023), 957–977. https://doi.org/10.1134/S0001434623110305 doi: 10.1134/S0001434623110305
|
| [29] | B. Sultan, M. Sultan, F. Gürbüz, BMO estimate for the higher order commutators of Marcinkiewicz integral operator on grand variable Herz-Morrey spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 72 (2023), 1000–1018. |
| [30] |
B. Sultan, M. Sultan, Boundedness of higher order commutators of Hardy operators on grand Herz-Morrey spaces, Bull. Sci. Math., 190 (2024), 103373. https://doi.org/10.1016/j.bulsci.2023.103373 doi: 10.1016/j.bulsci.2023.103373
|
| [31] |
H. Wang, D. Yan, Higher-order commutators of parametric Marcinkiewicz integrals on Herz spaces with variable exponent, J. Funct. Space., 2018 (2018), 7319093. https://doi.org/10.1155/2018/7319093 doi: 10.1155/2018/7319093
|
| [32] |
L. Wang, Parametrized Littlewood-Paley operators on grand variable Herz spaces, Ann. Funct. Anal., 13 (2022), 72. https://doi.org/10.1007/s43034-022-00218-0 doi: 10.1007/s43034-022-00218-0
|
| [33] |
X. Yan, D. Yang, W. Yuan, C. Zhuo, Variable weak Hardy spaces and their applications, J. Funct. Anal., 271 (2016), 2822–2887. https://doi.org/10.1016/j.jfa.2016.07.006 doi: 10.1016/j.jfa.2016.07.006
|