In this paper, we introduce a new method to obtain a metallic semi-Riemannian structure $ (\Psi, \widetilde{g}) $ from the given almost paracontact metric structure $ (\varphi, \xi, \eta, g) $ on a smooth manifold $ M^{2n+1} $, and give the relations between these structures via Levi-Civita connections of $ g $ and $ \widetilde{g} $. After, we discuss these relations for para-Kenmotsu and para-Sasakian structures and state the properties of obtained metallic semi-Riemannian structure. Furthermore, we show that metallic structures obtained from para-Kenmotsu and para-Sasakian structures are integrable and non-integrable, respectively. Also, we study the curvature properties of the obtained metallic structure and give explicit examples for the results of the study.
Citation: Mehmet Solgun, Yasemin Karababa. Constructing a metallic semi-Riemannian manifold from an almost paracontact metric manifold[J]. AIMS Mathematics, 2025, 10(10): 23639-23651. doi: 10.3934/math.20251050
In this paper, we introduce a new method to obtain a metallic semi-Riemannian structure $ (\Psi, \widetilde{g}) $ from the given almost paracontact metric structure $ (\varphi, \xi, \eta, g) $ on a smooth manifold $ M^{2n+1} $, and give the relations between these structures via Levi-Civita connections of $ g $ and $ \widetilde{g} $. After, we discuss these relations for para-Kenmotsu and para-Sasakian structures and state the properties of obtained metallic semi-Riemannian structure. Furthermore, we show that metallic structures obtained from para-Kenmotsu and para-Sasakian structures are integrable and non-integrable, respectively. Also, we study the curvature properties of the obtained metallic structure and give explicit examples for the results of the study.
| [1] | V. W. de Spinadel, The family of metallic means, Vis. Math, 1 (1999), 1–16. |
| [2] |
V. W. de Spinadel, The metallic means family and multifractal spectra, Nonlinear Anal. Theory Method. Appl., 36 (1999), 721–745. https://doi.org/10.1016/S0362-546X(98)00123-0 doi: 10.1016/S0362-546X(98)00123-0
|
| [3] | C. E. Hretcanu, M. Crasmareanu, Metallic structures on Riemannian manifolds, Rev. Un. Mat. Argentina, 54 (2013), 15–27. |
| [4] |
A. Gezer, Ç. Karaman, On metallic Riemannian structures, Turk. J. Math., 39 (2015), 14. https://doi.org/10.3906/mat-1504-50 doi: 10.3906/mat-1504-50
|
| [5] | A. M. Blaga, A. Nannicini, On the geometry of metallic pseudo-Riemannian structures, Rivista di Matematica della Universita di Parma, 11 (2020), 69–87. |
| [6] |
A. M. Blaga, A. Nannicini, On curvature tensors of Norden and metallic pseudo-Riemannian manifolds, Complex manifolds, 6 (2019), 150–159. https://doi.org/10.1515/coma-2019-0008 doi: 10.1515/coma-2019-0008
|
| [7] |
S. Kaneyuki, F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99 (1985), 173–187. https://doi.org/10.1017/S0027763000021565 doi: 10.1017/S0027763000021565
|
| [8] |
S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36 (2009), 37–60. https://doi.org/10.1007/s10455-008-9147-3 doi: 10.1007/s10455-008-9147-3
|
| [9] |
N. Özdemir, Ş. Aktay, M. Solgun, Some results on almost paracontact paracomplex Riemannian manifolds, AIMS Mathematics, 10 (2025), 10764–10786. https://doi.org/10.3934/math.2025489 doi: 10.3934/math.2025489
|
| [10] | N. Özdemir, M. Solgun, Ş. Aktay, Almost para-contact metric structures on 5-dimensional nilpotent Lie algebras, Fund. J. Math. Appl., 3 (2020), 175–184. |
| [11] |
N. Özdemir, Ş. Aktay, M. Solgun, Almost paracontact structures obtained from $ G_ {2 (2)}^* $ structures, Turk. J. Math., 42 (2018), 3025–3033. https://doi.org/10.3906/mat-1706-10 doi: 10.3906/mat-1706-10
|
| [12] | M. Solgun, Some results on $\mathcal {D} $-homothetic deformation On almost paracontact metric manifolds, Fund. J. Math. Appl., 4 (2021), 264–270. |
| [13] | N. Özdemir, Ş. Aktay, M. Solgun, Some results on almost paracontact paracomplex Riemannian manifolds, AIMS Mathematics, 10 (2025), 10764–10786. |
| [14] |
N. Özdemir, M. Efe, Relationships between almost parahermitian and almost paracontact metric manifolds, Filomat, 39 (2025), 1247–1263. https://doi.org/10.2298/FIL2504247O doi: 10.2298/FIL2504247O
|
| [15] | S. Zamkovoy, G. Nakova, The decomposition of almost paracontact metric manifolds in eleven classes revisited, Journal of Geometry 109 (2018), 18. https://doi.org/10.1007/s00022-018-0423-5 |
| [16] | İ. K. Erken, On almost $\alpha$-para-Kenmotsu manifolds satisfying certain conditions, Commun. Fac. Sci. Univ., 68 (2019), 559–571. |
| [17] | M. Krishanu, U. C. De, On 3-dimensional $\alpha $-para-Kenmotsu manifolds, Konuralp J. Math. 5 (2016), 11–23. |
| [18] | G. Beldjilali, Almost contact metric and metallic Riemannian structures, Commun. Fac. Sci. Univ. Ankara Ser. A1 Math. Stat., 69 (2020), 1013–1024. |
| [19] |
R. Ç. Akpınar, E. K. Kansu, Metallic deformation on para-Sasaki-like para-Norden manifold, AIMS Mathematics, 9 (2024), 19125–19136. https://doi.org/10.3934/math.2024932 doi: 10.3934/math.2024932
|
| [20] |
S. Azami, Metallic structures on the tangent bundle of P-Sasakian manifolds, Khayyam J. Math., 7 (2021), 298–309. https://doi.org/10.22034/KJM.2021.242375.1950 doi: 10.22034/KJM.2021.242375.1950
|
| [21] | S. Zamkovoy, ParaSasakian manifolds with a constant paraholomorphic section curvature, 2008, arXiv: 0812.1676. |
| [22] | S. Zamkovoy, On para-Kenmotsu manifolds, 2017, arXiv: 1711.03008. https://doi.org/10.48550/arXiv.1711.03008 |
| [23] | G. Ganchev, V. Mihova, Canonical connection and the canonical conformal group on an almost complex manifold with B-metric, Ann. Univ. Sofia Fac. Math. Inform, 81 (1987), 195–206. |