In this paper, we investigated some geometric properties of non-smooth random curves within a stochastic flow. We considered a polygonal line $ \Gamma(\vec{u}_{1}, \cdots, \vec{u}_{n}) $, which connected the points $\vec{u}_{1}, \cdots, \vec{u}_{n}\in{\mathbb{R}^{d}}$ and was inscribed in a Brownian trajectory. Subsequently, we estimated the probability that a polygonal line was almost inscribed in a Brownian trajectory. Next, we turned to the study of the self-intersection local time of Brownian motion and demonstrated the asymptotic result of its conditional expectation as the size of the polygonal line increased. Finally, taking such a Brownian trajectory as the initial curve, we let it evolve according to the solution of the equation with interaction. Then, we proved that its visitation density exhibited an intermittency phenomenon.
Citation: Qingsong Wang, A. A. Dorogovtsev, K. V. Hlyniana, Naoufel Salhi. The geometry of Gaussian random curves[J]. AIMS Mathematics, 2025, 10(10): 23613-23638. doi: 10.3934/math.20251049
In this paper, we investigated some geometric properties of non-smooth random curves within a stochastic flow. We considered a polygonal line $ \Gamma(\vec{u}_{1}, \cdots, \vec{u}_{n}) $, which connected the points $\vec{u}_{1}, \cdots, \vec{u}_{n}\in{\mathbb{R}^{d}}$ and was inscribed in a Brownian trajectory. Subsequently, we estimated the probability that a polygonal line was almost inscribed in a Brownian trajectory. Next, we turned to the study of the self-intersection local time of Brownian motion and demonstrated the asymptotic result of its conditional expectation as the size of the polygonal line increased. Finally, taking such a Brownian trajectory as the initial curve, we let it evolve according to the solution of the equation with interaction. Then, we proved that its visitation density exhibited an intermittency phenomenon.
| [1] | H. Kunita, Stochastic flows and stochastic differential equations, Cambridge: Cambridge University Press, 1997. |
| [2] | R. W. R. Darling, Isotropic stochastic flows: A survey, In: Diffusion processes and related problems in analysis, volume II, Boston: Birkh $\ddot{a}$ user, 1992. https://doi.org/10.1007/978-1-4612-0389-6_3 |
| [3] | A. S. Monin, A. M. Yaglom, Statistical fluid mechanics: Mechanics of turbulence, Dover Publications, 2007. |
| [4] | P. H. Baxendale, T. E. Harris, Isotropic stochastic flows, Ann. Probab., 14 (1986), 1155–1179. https://doi.org/10.1214/aop/1176992360 |
| [5] |
D. Dolgopyat, V. Kaloshin, L. Koralov, Sample path properties of the stochastic flows, Ann. Probab., 32 (2004), 1–27. https://doi.org/10.1214/aop/1078415827 doi: 10.1214/aop/1078415827
|
| [6] |
S. Vadlamani, R. J. Adler, Global geometry under isotropic Brownian flows, Electron. Commun. Probab., 11 (2006), 182–192. https://doi.org/10.1214/ECP.v11-1212 doi: 10.1214/ECP.v11-1212
|
| [7] |
C. L. Zirbel, E. Cinlar, Dispersion of particle systems in Brownian flows, Adv. Appl. Probab., 28 (1996), 53–74. https://doi.org/10.2307/1427913 doi: 10.2307/1427913
|
| [8] |
A. A. Dorogovtsev, Measure-valued Markov processes and stochastic flows, Ukr. Math. J., 54 (2002), 218–232. https://doi.org/10.1023/A:1020182428332 doi: 10.1023/A:1020182428332
|
| [9] |
A. A. Dorogovtsev, Measure-valued Markov processes and stochastic flows on abstract spaces, Stoch. Stoch. Rep., 76 (2004), 395–407. https://doi.org/10.1080/10451120422331292216 doi: 10.1080/10451120422331292216
|
| [10] | A. A. Dorogovtsev, Measure-valued processes and stochastic flows, De Gruyter, 2023. |
| [11] |
A. A. Dorogovtsev, O. L. Izyumtseva, N. Salhi, Clark representation for local times of self-intersection of Gaussian integrators, Ukr. Math. J., 70 (2019), 1829–1860. https://doi.org/10.1007/s11253-019-01613-y doi: 10.1007/s11253-019-01613-y
|
| [12] | F. Hollander, Random polymers, Berlin, Heidelberg: Springer, 2009. https://doi.org/10.1007/978-3-642-00333-2 |
| [13] |
J. Rosen, A local time approach to the self-intersections of Brownian paths in space, Commun. Math. Phys., 88 (1983), 327–338. https://doi.org/10.1007/BF01213212 doi: 10.1007/BF01213212
|
| [14] | P. Lévy, Sur certains processus stochastiques homogénes, Compositio Math., 7 (1940), 283–339. |
| [15] | J. F. Le Gall, J. Rosen, N. R. Shieh, Multiple points of Lévy process, Ann. Probab., 17 (1989), 503–515. |
| [16] |
D. Khoshnevisan, Intersections of Brownian motions, Expo. Math., 21 (2003), 97–114. https://doi.org/10.1016/S0723-0869(03)80013-0 doi: 10.1016/S0723-0869(03)80013-0
|
| [17] | E. Bolthausen, A. Vaart, E. Perkins, Lectures on probability theory and statistics, Berlin, Heidelberg: Springer, 2002. https://doi.org/10.1007/b93152 |
| [18] | Y. B. Zeldovich, S. A. Molchanov, A. A. Ruzmajkin, D. D. Sokolov, Intermittency, diffusion and generation in a nonstationary random medium, Cambridge: Cambridge Scientific Publishers, 2015. |
| [19] |
X. Chen, A. Deya, C. Ouyang, S. Tindel, Moment estimates for some renormalized parabolic Anderson models, Ann. Probab., 49 (2021), 2599–2636. https://doi.org/10.1214/21-AOP1517 doi: 10.1214/21-AOP1517
|
| [20] | P. Morters, Y. Peres, Brownian motion, Cambridge: Cambridge University Pres, 2010. https://doi.org/10.1017/CBO9780511750489 |
| [21] |
A. A. Dorogovtsev, Stochastic integration and a class of Gaussian random processes, Ukr. Math. J., 50 (1998), 550–561. https://doi.org/10.1007/BF02487387 doi: 10.1007/BF02487387
|
| [22] | A. A. Dorogovtsev, A. Gnedin, O. Izyumtseva, Self-intersection local times of random fields in stochastic flows, arXiv preprint, 2019, arXiv: 1910.09492. https://doi.org/10.48550/arXiv.1910.09492 |
| [23] | R. M. Dudley, Real analysis and probability, Cambridge: Cambridge University Press, 2010. https://doi.org/10.1017/CBO9780511755347 |
| [24] | D. Applebaum, Probability on compact Lie groups, Cham: Springer, 2014. https://doi.org/10.1007/978-3-319-07842-7 |
| [25] | A. N. Shiryaev, Probability-2, New York: Springer, 2019. https://doi.org/10.1007/978-0-387-72208-5 |