Research article

The geometry of Gaussian random curves

  • Published: 16 October 2025
  • MSC : 60G15, 60J45, 60J65

  • In this paper, we investigated some geometric properties of non-smooth random curves within a stochastic flow. We considered a polygonal line $ \Gamma(\vec{u}_{1}, \cdots, \vec{u}_{n}) $, which connected the points $\vec{u}_{1}, \cdots, \vec{u}_{n}\in{\mathbb{R}^{d}}$ and was inscribed in a Brownian trajectory. Subsequently, we estimated the probability that a polygonal line was almost inscribed in a Brownian trajectory. Next, we turned to the study of the self-intersection local time of Brownian motion and demonstrated the asymptotic result of its conditional expectation as the size of the polygonal line increased. Finally, taking such a Brownian trajectory as the initial curve, we let it evolve according to the solution of the equation with interaction. Then, we proved that its visitation density exhibited an intermittency phenomenon.

    Citation: Qingsong Wang, A. A. Dorogovtsev, K. V. Hlyniana, Naoufel Salhi. The geometry of Gaussian random curves[J]. AIMS Mathematics, 2025, 10(10): 23613-23638. doi: 10.3934/math.20251049

    Related Papers:

  • In this paper, we investigated some geometric properties of non-smooth random curves within a stochastic flow. We considered a polygonal line $ \Gamma(\vec{u}_{1}, \cdots, \vec{u}_{n}) $, which connected the points $\vec{u}_{1}, \cdots, \vec{u}_{n}\in{\mathbb{R}^{d}}$ and was inscribed in a Brownian trajectory. Subsequently, we estimated the probability that a polygonal line was almost inscribed in a Brownian trajectory. Next, we turned to the study of the self-intersection local time of Brownian motion and demonstrated the asymptotic result of its conditional expectation as the size of the polygonal line increased. Finally, taking such a Brownian trajectory as the initial curve, we let it evolve according to the solution of the equation with interaction. Then, we proved that its visitation density exhibited an intermittency phenomenon.



    加载中


    [1] H. Kunita, Stochastic flows and stochastic differential equations, Cambridge: Cambridge University Press, 1997.
    [2] R. W. R. Darling, Isotropic stochastic flows: A survey, In: Diffusion processes and related problems in analysis, volume II, Boston: Birkh $\ddot{a}$ user, 1992. https://doi.org/10.1007/978-1-4612-0389-6_3
    [3] A. S. Monin, A. M. Yaglom, Statistical fluid mechanics: Mechanics of turbulence, Dover Publications, 2007.
    [4] P. H. Baxendale, T. E. Harris, Isotropic stochastic flows, Ann. Probab., 14 (1986), 1155–1179. https://doi.org/10.1214/aop/1176992360
    [5] D. Dolgopyat, V. Kaloshin, L. Koralov, Sample path properties of the stochastic flows, Ann. Probab., 32 (2004), 1–27. https://doi.org/10.1214/aop/1078415827 doi: 10.1214/aop/1078415827
    [6] S. Vadlamani, R. J. Adler, Global geometry under isotropic Brownian flows, Electron. Commun. Probab., 11 (2006), 182–192. https://doi.org/10.1214/ECP.v11-1212 doi: 10.1214/ECP.v11-1212
    [7] C. L. Zirbel, E. Cinlar, Dispersion of particle systems in Brownian flows, Adv. Appl. Probab., 28 (1996), 53–74. https://doi.org/10.2307/1427913 doi: 10.2307/1427913
    [8] A. A. Dorogovtsev, Measure-valued Markov processes and stochastic flows, Ukr. Math. J., 54 (2002), 218–232. https://doi.org/10.1023/A:1020182428332 doi: 10.1023/A:1020182428332
    [9] A. A. Dorogovtsev, Measure-valued Markov processes and stochastic flows on abstract spaces, Stoch. Stoch. Rep., 76 (2004), 395–407. https://doi.org/10.1080/10451120422331292216 doi: 10.1080/10451120422331292216
    [10] A. A. Dorogovtsev, Measure-valued processes and stochastic flows, De Gruyter, 2023.
    [11] A. A. Dorogovtsev, O. L. Izyumtseva, N. Salhi, Clark representation for local times of self-intersection of Gaussian integrators, Ukr. Math. J., 70 (2019), 1829–1860. https://doi.org/10.1007/s11253-019-01613-y doi: 10.1007/s11253-019-01613-y
    [12] F. Hollander, Random polymers, Berlin, Heidelberg: Springer, 2009. https://doi.org/10.1007/978-3-642-00333-2
    [13] J. Rosen, A local time approach to the self-intersections of Brownian paths in space, Commun. Math. Phys., 88 (1983), 327–338. https://doi.org/10.1007/BF01213212 doi: 10.1007/BF01213212
    [14] P. Lévy, Sur certains processus stochastiques homogénes, Compositio Math., 7 (1940), 283–339.
    [15] J. F. Le Gall, J. Rosen, N. R. Shieh, Multiple points of Lévy process, Ann. Probab., 17 (1989), 503–515.
    [16] D. Khoshnevisan, Intersections of Brownian motions, Expo. Math., 21 (2003), 97–114. https://doi.org/10.1016/S0723-0869(03)80013-0 doi: 10.1016/S0723-0869(03)80013-0
    [17] E. Bolthausen, A. Vaart, E. Perkins, Lectures on probability theory and statistics, Berlin, Heidelberg: Springer, 2002. https://doi.org/10.1007/b93152
    [18] Y. B. Zeldovich, S. A. Molchanov, A. A. Ruzmajkin, D. D. Sokolov, Intermittency, diffusion and generation in a nonstationary random medium, Cambridge: Cambridge Scientific Publishers, 2015.
    [19] X. Chen, A. Deya, C. Ouyang, S. Tindel, Moment estimates for some renormalized parabolic Anderson models, Ann. Probab., 49 (2021), 2599–2636. https://doi.org/10.1214/21-AOP1517 doi: 10.1214/21-AOP1517
    [20] P. Morters, Y. Peres, Brownian motion, Cambridge: Cambridge University Pres, 2010. https://doi.org/10.1017/CBO9780511750489
    [21] A. A. Dorogovtsev, Stochastic integration and a class of Gaussian random processes, Ukr. Math. J., 50 (1998), 550–561. https://doi.org/10.1007/BF02487387 doi: 10.1007/BF02487387
    [22] A. A. Dorogovtsev, A. Gnedin, O. Izyumtseva, Self-intersection local times of random fields in stochastic flows, arXiv preprint, 2019, arXiv: 1910.09492. https://doi.org/10.48550/arXiv.1910.09492
    [23] R. M. Dudley, Real analysis and probability, Cambridge: Cambridge University Press, 2010. https://doi.org/10.1017/CBO9780511755347
    [24] D. Applebaum, Probability on compact Lie groups, Cham: Springer, 2014. https://doi.org/10.1007/978-3-319-07842-7
    [25] A. N. Shiryaev, Probability-2, New York: Springer, 2019. https://doi.org/10.1007/978-0-387-72208-5
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(309) PDF downloads(16) Cited by(0)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog