Research article Special Issues

Objective Bayesian analysis for the ratio of shape parameters in generalized half-normal distributions

  • Published: 16 October 2025
  • MSC : 62F10, 62N01, 62N02

  • The generalized half-normal distribution is notable for its flexibility in modeling diverse hazard rate shapes, including ones that are monotonically increasing or decreasing, and bathtub forms, determined by the value of the shape parameter. To facilitate Bayesian comparative analyses of these shape parameters, we have proposed noninformative priors for the ratio of shape parameters within generalized half-normal distributions. We derived probability matching priors and reference priors, identifying a second-order matching prior that satisfies all specified matching criteria. Our findings show that both the two-group and three-group reference priors meet the first-order matching criterion, whereas Jeffreys' prior does not. However, the one-at-a-time reference prior successfully satisfies the stricter second-order matching criterion. Additionally, we established conditions ensuring posterior propriety under general priors, particularly highlighting the derived noninformative priors. A simulation study demonstrated that the one-at-a-time reference prior achieves accurate alignment with target frequentist coverage probabilities. Finally, we provided two real-world examples to illustrate and reinforce our theoretical results.

    Citation: Sang Gil Kang, Woo Dong Lee, Yongku Kim. Objective Bayesian analysis for the ratio of shape parameters in generalized half-normal distributions[J]. AIMS Mathematics, 2025, 10(10): 23590-23612. doi: 10.3934/math.20251048

    Related Papers:

  • The generalized half-normal distribution is notable for its flexibility in modeling diverse hazard rate shapes, including ones that are monotonically increasing or decreasing, and bathtub forms, determined by the value of the shape parameter. To facilitate Bayesian comparative analyses of these shape parameters, we have proposed noninformative priors for the ratio of shape parameters within generalized half-normal distributions. We derived probability matching priors and reference priors, identifying a second-order matching prior that satisfies all specified matching criteria. Our findings show that both the two-group and three-group reference priors meet the first-order matching criterion, whereas Jeffreys' prior does not. However, the one-at-a-time reference prior successfully satisfies the stricter second-order matching criterion. Additionally, we established conditions ensuring posterior propriety under general priors, particularly highlighting the derived noninformative priors. A simulation study demonstrated that the one-at-a-time reference prior achieves accurate alignment with target frequentist coverage probabilities. Finally, we provided two real-world examples to illustrate and reinforce our theoretical results.



    加载中


    [1] J. A. Díaz-García, V. Leiva-Sánchez, A new family of life distributions based on elliptically contoured distributions, J. Stat. Plan. Infer., 128 (2005), 445–457. https://doi.org/10.1016/j.jspi.2003.11.007 doi: 10.1016/j.jspi.2003.11.007
    [2] K. Cooray, M. M. A. Ananda, A generalized half-normal distribution with applications to lifetime data, Commun. Stat.—Theory Methods, 37 (2008), 1323–1337. https://doi.org/10.1080/03610920701826088 doi: 10.1080/03610920701826088
    [3] R. R. Pescim, C. G. B. Demétrio, G. M. Cordeiro, E. M. M. Ortega, M. R. Urbano, The beta generalized half-normal distribution, Comput. Stat. Data Anal., 54 (2010), 945–957. https://doi.org/10.1016/j.csda.2009.10.007 doi: 10.1016/j.csda.2009.10.007
    [4] N. M. Olmos, H. Varela, H. Bolfarine, H. W. Gómez, An extension of the generalized half-normal distribution, Stat. Pap., 55 (2014), 967–981. https://doi.org/10.1007/s00362-013-0546-6 doi: 10.1007/s00362-013-0546-6
    [5] J. J. Duarte Sanchez, W. W. da Luz Freitas, G. M. Cordeiro, The extended generalized half-normal distribution, Braz. J. Probab. Stat., 30 (2016), 366–384. https://doi.org/10.1214/15-BJPS284 doi: 10.1214/15-BJPS284
    [6] E. Altun, H. M. Yousof, G. G. Hamedani, A new generalization of generalized half-normal distribution: properties and regression models, J. Stat. Distrib. Appl., 5 (2018), 1–16. https://doi.org/10.1186/s40488-018-0089-4 doi: 10.1186/s40488-018-0089-4
    [7] K. Ahmadi, M. Akbari, L. Wang, Estimation and prediction for a generalized half-normal distribution based on left-truncated and right-censored data, Filomat, 36 (2022), 4963–4981. https://doi.org/10.2298/FIL2214963A doi: 10.2298/FIL2214963A
    [8] R. Mukerjee, M. Ghosh, Second-order probability matching priors, Biometrika, 84 (1997), 970–975.
    [9] G. S. Datta, R. Mukerjee, Probability matching priors: higher order asymptotics, New York: Springer, 2004. https://doi.org/10.1007/978-1-4612-2036-7
    [10] Y. Wang, N. G. Polson, Pochhammer priors for sparse count models, arXiv Preprint, 2024. https://doi.org/10.48550/arXiv.2402.09583
    [11] B. L. Welch, H. W. Peers, On formulae for confidence points based on integrals of weighted likelihood, J. R. Statist. Soc.: Ser. B, 25 (1963), 318–329. https://doi.org/10.1111/j.2517-6161.1963.tb00512.x doi: 10.1111/j.2517-6161.1963.tb00512.x
    [12] C. M. Stein, On the coverage probability of confidence sets based on a prior distribution, Banach Center Publications, 16 (1985), 485–514.
    [13] R. Mukerjee, D. K. Dey, Frequentist validity of posterior quantiles in the presence of a nuisance parameter: higher order asymptotics, Biometrika, 80 (1993), 499–505. https://doi.org/10.2307/2337171 doi: 10.2307/2337171
    [14] G. S. Datta, M. Ghosh, Some remarks on noninformative priors, J. Am. Stat. Assoc., 90 (1995), 1357–1363. https://doi.org/10.2307/2291526 doi: 10.2307/2291526
    [15] J. M. Bernardo, Reference posterior distributions for Bayesian inference, J. R. Statist. Soc.: Ser. B, 41 (1979), 113–147.
    [16] J. O. Berger, J. M. Bernardo, Estimating a product of means: Bayesian analysis with reference priors, J. Am. Stat. Assoc., 84 (1989), 200–207. https://doi.org/10.1080/01621459.1989.10478756 doi: 10.1080/01621459.1989.10478756
    [17] J. O. Berger, J. M. Bernardo, On the development of reference priors, In: Bayesian statistics IV, Oxford: Oxford University Press, 1992, 35–60. https://doi.org/10.1093/oso/9780198522669.003.0003
    [18] J. K. Ghosh, R. Mukerjee, Noninformative priors, In: Bayesian statistics IV, Oxford: Oxford University Press, 1992,195–210.
    [19] J. O. Berger, J. M. Bernardo, D. Sun, Objective priors for discrete parameter spaces, J. Am. Stat. Assoc., 107 (2012), 636–648. https://doi.org/10.1080/01621459.2012.682538 doi: 10.1080/01621459.2012.682538
    [20] J. O. Berger, J. M. Bernardo, D. Sun, Overall objective priors, Bayesian Anal., 10 (2015), 189–221. https://doi.org/10.1214/14-BA915 doi: 10.1214/14-BA915
    [21] Q. Tian, C. Lewis-Beck, J. B. Niemi, W. Q. Meeker, Specifying prior distributions in reliability applications, Appl. Stoch. Model. Bus. Ind., 40 (2024), 5–62. https://doi.org/10.1002/asmb.2752 doi: 10.1002/asmb.2752
    [22] D. R. Cox, N. Reid, Parameters orthogonal and approximate conditional inference, J. R. Statist. Soc.: Ser. B, 49 (1987), 1–18. https://doi.org/10.1111/j.2517-6161.1987.tb01422.x doi: 10.1111/j.2517-6161.1987.tb01422.x
    [23] R. Tibshirani, Noninformative priors for one parameter of many, Biometrika, 76 (1989), 604–608. https://doi.org/10.1093/biomet/76.3.604 doi: 10.1093/biomet/76.3.604
    [24] R. Mukerjee, N. Reid, On a property of probability matching priors: matching the alternative coverage probabilities, Biometrika, 86 (1999), 333–340. https://doi.org/10.1093/biomet/86.2.333 doi: 10.1093/biomet/86.2.333
    [25] T. J. DiCiccio, S. E. Stern, Frequentist and Bayesian Bartlett correction of test statistics based on adjusted profile likelihood, J. R. Statist. Soc.: Ser. B, 56 (1994), 397–408. https://doi.org/10.1111/j.2517-6161.1994.tb01989.x doi: 10.1111/j.2517-6161.1994.tb01989.x
    [26] J. K. Ghosh, R. Mukerjee, Frequentist validity of highest posterior density regions in the presence of nuisance parameters, Stat. Decis., 13 (1995), 131–139.
    [27] M. Yin, M. Ghosh, A note on the probability difference between matching priors based on posterior quantiles and on inversion of conditional likelihood ratio statistics, Calcutta Stat. Assoc. Bull., 47 (1997), 59–65. https://doi.org/10.1177/0008068319970105 doi: 10.1177/0008068319970105
    [28] D. F. Andrews, A. M. Herzberg, Data: a collection of problems from many fields for the student and research worker, New York: Springer, 1985. https://doi.org/10.1007/978-1-4612-5098-2
    [29] R. E. Barlow, R. H. Toland, T. Freeman, A Bayesian analysis of stress-rupture life of kevlar 49/epoxy spherical pressure vessels, In: Proceedings of the Canadian Conference in Applied Statistics, New York: Marcel Dekker, 1984.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(331) PDF downloads(15) Cited by(0)

Article outline

Figures and Tables

Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog