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1. Introduction

The golden mean is recognized as a remarkable mathematical constant due to its intrinsic aesthetic
and structural properties, appearing in fields as diverse as geometry, art, architecture, and nature. In
1999, De Spinadel introduced a comprehensive generalization of the golden mean, known as the
metallic means family [1, 2]. This family encompasses an infinite set of positive quadratic irrational
numbers, each defined as the positive root of the quadratic equation x2 − px − q = 0, where p, q ∈ N+.

The positive solution of this equation is given by σp,q =
p+
√

p2+4q
2 , and is called the (p, q)-metallic

number and σp,q, σ∗p,q = (p − σp,q) eigenvalues. Each such number is analogously associated with a
metal, leading to denominations, such as the golden mean, silver mean, bronze mean, copper mean,
and nickel mean, among others.

Crasmareanu and Hretcanu [3], also conducted an exhaustive study on metallic structures on
Riemannian manifolds. A metallic structure on a differentiable manifold M is characterized by a
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(1, 1)-tensor field Ψ satisfying the algebraic condition:

Ψ2 = pΨ + qI,

where I denotes the identity transformation and p, q ∈ N+. When such a tensor field Ψ is compatible
with a Riemannian metric g, in the sense that g(ΨX,Y) = g(X,ΨY), the pair (Ψ, g) defines a metallic
Riemannian structure, and the manifold M is said to be a metallic Riemannian manifold.

In recent years, metallic structures have attracted significant attention due to their rich geometric
properties and their ability to model various curvature conditions. In [4], Gezer and Karaman analyzed
integrability conditions and curvature characteristics of metallic Riemannian structures. Blaga and
Nannicini also introduced metallic semi-Riemannian structures and investigated certain classes of these
structures along with their associated curvature tensors [5, 6].

Almost paracontact structures were first studied by Kaneyuki [7], and after the work of Zamkovoy
in [8], many authors have made contributions to the subject. In the literature, there are many studies on
almost paracontact manifolds from different perspectives in various dimensions. In [9–11], relations
of almost paracontact strucutures with different geometric structures are studied. Also, for recent
studies, one can see [12–14]. In [15], Zamkovoy and Nakova classified almost paracontact metric
structures into the 212 classes by considering the covariant derivative of the fundamental 2−form Φ
of the structure with respect to the Levi-Civita connection. This classification has inspired numerous
studies for specific classes, such as para-Kenmotsu structures that examined in [16, 17].

Metallic structures, similar to almost product and almost complex structures, naturally occur in
complementary pairs. Specifically, if Ψ is a metallic structure, then pI − Ψ also constitutes a metallic
structure. In this context, the metallic structure pI − Ψ also possesses the properties of having σ and
σ∗ = p − σ as eigenvalues, acting as an isomorphism transformation on the tangent space of the
underlying manifold, and being invertible. In [18], Ghereci also constructed a metallic Riemannian
structure on a Riemannian manifold by using the elements of almost contact metric structure, namely
a reeb vector field ξ and its dual 1-form η, and studied the conditions of parallelism and integrability
between these structures. Some studies have been conducted on para-Sasakian manifolds and para-
Sasaki-like para-Norden manifold based on the relation between metallic structure and paracontact
structure on a Riemannian manifolds [19, 20].

The aim of this paper is to investigate the relations between metallic semi-Riemannian structures
and almost paracontact structures on (2n+1) dimensional semi-Riemannian manifolds. Since
semi-Riemannian manifolds are of fundamental importance in mathematical physics and relativity,
the construction in this work may inspire further research on the role of metallic semi-Riemannian
structures in such areas.The remainder of this paper is organized as follows: In Section 2, some
primary notions for almost paracontact metric manifolds is given. Section 3 is devoted to the
definition of metallic semi-Riemannian manifolds, along with an examination the curvature properties
of locally metallic semi-Riemannian manifolds [5, 6]. In Section 4, we constructed a metallic
semi-Riemannian structure from an almost paracontact metric structure on a semi-Riemannian
manifold and stated the relations between their respective Levi-Civita connections via the Koszul
formula. Subsequently, we gave the curvature properties and integrability conditions that arise in
metallic structure depending on certain special classes of the almost paracontact metric structure, such
as when the Reeb vector field ξ is parallel, or in the cases of para-Sasakian and para-Kenmotsu
structures. In the final section, we will provide certain examples.
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2. Preliminaries

A (2n+1) dimensional smooth manifold M has an almost paracontact structure (φ, ξ, η) if it admits
a tensor field φ of type (1, 1), a vector field ξ, and a 1-form η satisfying the followings:

φ2 = I − η ⊗ ξ, η(ξ) = 1, φ(ξ) = 0, η ◦ φ = 0, rankφ = 2n. (2.1)

If a manifold M with (φ, ξ, η)-structure admits a semi-Riemannian metric g, such that

g(φX, φY) = −g(X,Y) + η(X)η(Y). (2.2)

Then, M is called an almost paracontact metric manifold. Any compatible metric g with a given
almost paracontact structure is necessarily of signature (n + 1, n). From the definition, it follows that η
is the g-dual of ξ: η(X) = g(X, ξ), ξ is a vector field: g(ξ, ξ) = 1, and φ is a g-skew-symmetric operator:
g(φX,Y) = −g(X, φY).

An almost paracontact metric manifold is called integrable if its Nijenhuis tensor field of φ, Nφ
vanishes, where Nφ(X,Y) = φ2[X,Y] + [φX, φY] − φ[φX,Y] − φ[X, φY], for X,Y ∈ X(M).

The study presented in [12] investigates specific classes of almost paracontact metric manifolds
characterized by the condition that the Reeb vector field ξ is parallel (∇ξ = 0) with respect to the
Levi-Civita connection.

It is important to note that in [21], Zamkovoy studied a para-Sasakian manifold and determined
its curvature conditions, as well as the ξ-sectional and φ-paraholomorphic sectional curvatures. Later,
in [22], he studied the curvature properties of para-Kenmotsu manifolds and established the conditions
η-Einstein manifolds.

An almost paracontact metric structure (φ, ξ, η, g) is called para-Kenmotsu if the Levi-Civita
connection ∇ of g satisfies

(∇Xφ)Y = η(Y)φX + g(X, φY)ξ, (2.3)

for any X,Y ∈ X(M). This aspect has also been discussed in [22].
On a para-Kenmotsu manifold (M, φ, ξ, η, g), the following relations hold [22]:

∇Xξ = −X + η(X)ξ, (∇Xη)Y = −g(X,Y) + η(X)η(Y), (2.4)

(Lξg)(X,Y) = −2g(X,Y) − η(X)η(Y), (2.5)

η(∇Xξ) = 0, ∇ξξ = 0, ∇ξη = 0, Lξφ = 0, Lξη = 0, Lξ(η ⊗ η) = 0. (2.6)

Where L, the Lie differentiation of g and ∇, is the Levi-Civita connection associated to g.
Also, the following equalities hold for para-Kenmotsu manifolds [22]:

R(X,Y)ξ = η(X)Y − η(Y)X, R(X, ξ)Y = g(X,Y)ξ − η(Y)X, K(X, ξ) = −1, (2.7)

R(X,Y)φZ = φ(R(X,Y)Z) + g(Y,Z)φX − g(X,Z)φY + g(X, φZ)Y − g(Y, φZ)X, (2.8)
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R(φX, φY)Z = −R(X,Y)Z − g(Y,Z)X + g(X,Z)Y + g(Y, φZ)φ − g(X, φZ)φY, (2.9)

R(φX, φY)φZ = −φ(R(X,Y)Z) + η(Z){η(X)φY − η(Y)φX}, (2.10)

R(φX,Y)Z + R(X, φY)Z = g(X,Z)φY − g(Y,Z)φX − g(X, φZ)Y + g(Y, φZ)X, (2.11)

where R is the Riemannian curvature tensor field, K is the sectional curvature.
A paracontact metric manifold (M, φ, ξ, η, g) is said to be a para-Sasakian manifold, if Nφ(X,Y) =

2dη(X,Y)ξ [15].
Let (M, φ, ξ, η, g) para-Sasakian manifold. The following relations are provided for (M, φ, ξ, η, g)

[21]:

(∇Xφ)Y = −g(X,Y)ξ + η(Y)X, ∇Xξ = −φX, (∇Xη)Y = dη(X,Y) = g(X, φY), (2.12)

R(X,Y)ξ = (η(X)Y − η(Y)X) , R(ξ, X)Y = −g(X,Y)ξ + η(Y)X, (2.13)

η(R(X,Y)Z) = g(X, X)η(Y) − g(Y,Z)η(X), η(R(X,Y)ξ) = 0, (2.14)

R(X,Y)φZ = φ(R(X,Y)Z) + g(Y,Z)φX − g(X,Z)φY + g(X, φZ)Y − g(Y, φZ)X, (2.15)

R(φX, φY)Z = −R(X,Y)Z − g(Y,Z)X + g(X,Z)Y + g(Y, φZ)φ − g(X, φZ)φY. (2.16)

3. Metallic semi-Riemannian manifolds

In [5], Blaga and Nannicini generalized the notion of a metallic Riemannian manifold to that of
a metallic semi-Riemannian manifold and presented a mild classificaton of the Ψ-metallic structure
with respect to the Levi-Civita covariant derivative, and constructed a metallic natural connection in a
manner analogous to the approach in the work of Ganchev and Mihova [23].

Definition 3.1. Let (M, g̃) be a semi-Riemannian manifold and let Ψ be a g̃-symmetric (̃g(ΨX,Y) =
g̃(X,ΨY)) (1,1) tensor field on M such that

Ψ2 = pΨ + qI, (3.1)

for some p, q real numbers. Then, (M,Ψ, g̃) is called a metallic semi-Riemannian manifold, where I is
the identity transformation [5].

Definition 3.2. Let Ψ be a metallic structure on M and Levi-Civita connection ∇̃ corresponding to the
metric g̃. The defining relations of the classes of this structure are given as follows:
(i) If ∇̃Ψ = 0, then (M,Ψ, g̃) is called a locally metallic semi-Riemannian manifold.
(ii) If (∇̃XΨ)Y + (∇̃YΨ)X = 0, then (M,Ψ, g̃) is called a nearly locally metallic semi-Riemannian
manifold for all vector fields X,Y ∈ X(M).

(iii) The structure defined by Ψ := µI, where µ =
p ±
√

p2 + 4q
2

with
√

p2 + 4q ≥ 0, is called a trivial
metallic structure [5].
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It is known that there exist locally metallic semi-Riemannian structures on any semi-Riemannian
manifold.

A metallic structure Ψ is called integrable if its Nijenhuis tensor field ÑΨ vanishes, where
ÑΨ(X,Y) = Ψ2[X,Y] + [ΨX,ΨY] − Ψ[ΨX,Y] − Ψ[X,ΨY], for X,Y ∈ X(M).

It is known that if (M, g̃,Ψ) is a locally metallic semi-Riemannian manifold, thenΨ is integrable [5].
It has been shown that nearly locally metallic semi-Riemannian manifold (M, g̃,Ψ) such that Ψ2 =

pΨ+qI with
√

p2 + 4q ≥ 0 is locally metallic semi-Riemannian manifold if and only if Ψ is integrable
(see Proposition 2.1 [5])

Let (M,Ψ, g̃) be locally metallic semi-Riemannian manifold. Then, the following holds:

R̃(X,Y)ΨZ = Ψ(R̃(X,Y)Z),

R̃(ΨX,Y,Z,W) = R̃(X,ΨY,Z,W),

R̃(X,Y,ΨZ,W) = R̃(X,Y,Z,ΨW),

R̃(ΨX,ΨY,Z,W) = pR̃(X,ΨY,Z,W) + qR̃(X,Y,Z,W),

R̃(X,Y,ΨZ,ΨW) = pR̃(X,Y,Z,ΨW) + qR̃(X,Y,Z,W),

R̃(X,ΨY,ΨZ,W) = R̃(ΨX,Y,ΨZ,W) = R̃(ΨX,Y,Z,ΨW) = R̃(X,ΨY,Z,ΨW),

K̃Ψ(X) = 0, K̃Ψ(X,Y) = 0,

where R̃ is the Riemannian curvature tensor field, K̃ is the sectional curvature [6].

4. Induced metallic semi-Riemannian structures by almost paracontact metric structures

In this section, we detail how to obtain a metallic semi-Riemannian structure (Ψ, g̃) from an almost
paracontact metric structure (φ, ξ, η, g) on a manifold M and use the notation “∼” on the elements of
the obtained metallic semi-Riemannian structure to ensure consistency with the literature.

Let M be a manifold equipped with an almost paracontact structure (φ, ξ, η). In what follows, we
construct a metallic structure Ψ on M that is induced by (φ, ξ, η).

Theorem 1. Let (M, φ, ξ, η) be a (2n+1)-dimensional almost paracontact manifold and Ψ be a tensor
field of (1,1)-type on M, defined as,

Ψ : X(M) → X(M)
X 7→ ΨX := σX + (p − 2σ)η(X)ξ. (4.1)

Then, Ψ is a metallic structure on M (with Ψ2 = pΨ + qI, where σ =
p +
√

p2 + 4q
2

and p, q ∈ R).

The complement of Ψ is Ψ̃X = σ∗X + (p − 2σ∗)η(X)ξ, and ξ is the unique eigenvector of Ψ and Ψ̃
associated with σ∗ and σ, respectively.
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Proof. It can be seen that the tensor field Ψ given with (4.1) satisfies the Eq (3.1). Also Ψ(ξ) =
σξ + (p − 2σ)ξ = σ∗ξ, Ψ̃ξ = σξ. □

Now on, Ψ is called φ−related metallic structure or related structure in short.

Proposition 4.1. Let (M, φ, ξ, η, g) be an almost paracontact metric manifold and Ψ be the related
metallic structure. Define the metric g̃ as:

g̃(X,Y) = g(ΨX,ΨY) + qg(X,Y). (4.2)

Then, the metric g̃ is compatible with Ψ.

Proof. By the definition of Ψ, the Eq (4.2) becomes as follows:

g̃(X,Y) = (pσ + 2q)g(X,Y) + p(p − 2σ)η(X)η(Y). (4.3)

And so, by straight calculation, it can be seen that g̃(ΨX,Y) = g̃(X,ΨY). □

Example 2. We consider the 3-dimensional manifold M = {(x, y, z) ∈ R3|z , 0} and the vector fields

E =
∂

∂x
, φE =

∂

∂y
, ξ = (x + 2y)

∂

∂x
+ (2x + y)

∂

∂y
+
∂

∂z
, where x, y, z are the standard coordinates in R3.

Let the semi-Riemannian metric g and the (1,1)-tensor field φ given by

g =


1 0 −(x + 2y)
0 −1 (2x + y)

−(x + 2y) (2x + y) 1 − (2x + y)2 + (x + 2y)2

 , φ =

0 1 −(2x + y)
1 0 −(x + 2y)
0 0 0

 , η = dz.

with respect to basis
∂

∂x
,
∂

∂y
,
∂

∂z
. Then, (φ, ξ, η, g) is an almost paracontact metric structure on M.

Using Eq (4.1), we get:

Ψ =


σ 0 (p − 2σ)(x + 2y)
0 σ (p − 2σ)(2x + y)
0 0 p − σ

 .
On the other hand, by Eq (4.2), the metric g̃ is as follows:

g̃ =


σ 0 −(pσ + 2q)(x + 2y)
0 −(pσ + 2q) (pσ + 2q)(2x + y)

−(pσ + 2q)(x + 2y) (pσ + 2q)(2x + y) (pσ + 2q)(1 − (2x + y)2 + (x + 2y)2) + p(p − 2σ)

 .
And so, (Ψ, g̃) is the related metallic structure on M.

From Eq 4.1, the Nijenhuis tensor of the (Ψ, g̃) related metallic structure is given by

ÑΨ(X,Y) = (p − 2σ)2{η([X,Y])ξ − η([η(X)ξ,Y])ξ − η([X, η(Y)ξ])ξ + [η(X)ξ, η(Y)ξ]}. (4.4)

Let (M, φ, ξ, η, g) be an almost paracontact metric manifold and (Ψ, g̃) be the related metallic
structure and let ∇ and ∇̃ denote the Levi-Civita connections of g and g̃, respectively. By Koszul
formula, we get the following relation for general case:
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2g̃(∇̃XY,Z) = 2{Ag(∇XY,Z) + Bg(∇XY, ξ)η(Z)} + B{η(Z)[g(∇Xξ,Y) + g(∇Yξ, X)]
+ η(Y)[g(∇Xξ,Z) − g(∇Zξ, X)] + η(X)[g(∇Yξ,Z) − g(∇Zξ,Y)]}, (4.5)

where A = pσ + 2q, B = p(p − 2σ) and A , 0, B , 0.
Based on Eq (4.5), we proceed to study the properties of the metallic structure induced by the

almost paracontact structure, specifically when it belongs to special classes such as ξ is parallel, para-
Kenmotsu or para-Sasakian.

ξ parallel case:

Proposition 4.2. Let (M, φ, ξ, η, g) be an almost paracontact metric manifold, (Ψ, g̃) be the related
structure and ξ be parallel. Then, ∇̃XY = ∇XY.

Proof. Consider Eq (4.5) with ∇ξ = 0.
Then, we have

g̃(∇̃XY,Z) = Ag(∇XY,Z) + Bg(∇XY, ξ)η(Z).

By the definition of g̃ and non degeneracy of g, it can be seen that ∇ = ∇̃. □

Corollary 3. Let (M, φ, ξ, η, g) be an almost paracontact metric manifold and ξ be parallel. Then, the
related metallic structure (Ψ, g̃) is locally metallic structure.

Proof. Since ξ is parallel, we have ∇η = 0. Thus,

(∇̃XΨ)(Y) = ∇̃XΨY − Ψ(∇̃XY)
= ∇̃X(σY + (p − 2σ)η(Y)ξ) − (σ∇̃XY + (p − 2σ)η(∇̃XY)ξ)
= (p − 2σ)(∇Xη)(Y)ξ
= 0.

Hence, (Ψ, g̃) is locally metallic. □

Para-Kenmotsu case:

Let (M, φ, ξ, η, g) be para-Kenmotsu manifold and (Ψ, g̃) be the related metallic structure. By
applying (2.4) in (4.5), we obtain the following:

g̃(∇̃XY,Z) = Ag(∇XY,Z) + Bg(∇XY, ξ)η(Z) + Bg(φX, φY)η(Z). (4.6)

Also, for Z = ξ, we get:

η(∇̃XY) = η(∇XY) +
p
σ∗

g(φX, φY). (4.7)

Proposition 4.3. Let (M, φ, ξ, η, g) be para-Kenmotsu manifold and (Ψ, g̃) be the related metallic
structure. Then,

∇̃XY = ∇XY +
p
σ∗

g(φX, φY)ξ. (4.8)
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Proof. It can be seen directly, by applying Eq (4.7) into Eq (4.6) and non-degeneracy of g. □

On the other hand, since η(X) =
1

A + B
g̃(X, ξ), from the definition of g̃, we get the following:

∇̃Xη(Y) = η(∇XY) + (A + B)g(φX, φY). (4.9)

From Eqs (4.7)–(4.9), the covariant derivative of the metallic structure Ψ becomes

(∇̃XΨ)Y = [σ∗(p2 + 4q) −
B
σ∗

]g(φX, φY)ξ + (p − 2σ)η(Y)∇Xξ,

for the para-Kenmotsu case.

Corollary 4. If (M, φ, ξ, η, g) is a para-Kenmotsu manifold, then the related metallic structure (Ψ, g̃)
is integrable (i.e., ÑΨ = 0).

Proof. By Eqs (4.8) and (4.9), after a long calculation, it can be seen that ÑΨ = 0, and soΨ is integrable.
□

Proposition 4.4. Let (M, φ, ξ, η, g) be para-Kenmotsu manifold and (Ψ, g̃) be the related metallic
structure. Then, the following holds:

R̃(X,Y)ξ = R(X,Y)ξ, R̃(X, ξ)Y = R(X, ξ)Y +
p
σ∗

g(φX, φY)ξ, R̃(X,Y)Ψξ = σ∗R(X,Y)ξ, (4.10)

R̃(X,Y)Z = R(X,Y)Z +
p
σ∗
{g(φX, φZ)Y − g(φY, φZ)X}, (4.11)

R̃(X,Y)ΨZ = σR(X,Y)Z + (p − 2σ)(1 − σ∗(p − 2σ))η(R(X,Y)Z)ξ

+ (p − 2σ)η(Z)R(X,Y)ξ +
pσ
σ∗
{g(φX, φZ)Y − g(φY, φZ)X}, (4.12)

where R, R̃ denote the Riemannian curvature of g and g̃, respectively.

Proof. From Eq (4.8) we get,

R̃(X,Y)Z = ∇̃X(∇YZ +
p
σ∗

g(φY, φZ)ξ) − ∇̃(∇XZ +
p
σ∗

g(φX, φZ)ξ) − (∇[X,Y]Z +
p
σ∗

g(φ[X,Y], φZ)ξ)

and

∇̃X(g(φY, φZ)ξ) = g(∇XφY, φZ)ξ + g(φY,∇XφZ)ξ + g(φY, φZ)∇Xξ. (4.13)

By the Eqs (4.8) and (4.13), we obtain Eq (4.11).
For the proof of Eq (4.12), consider the Eqs (4.1), (4.8) and (4.9) that yield the following result:

R̃(X,Y)ΨZ = σ{∇̃X(∇YZ +
p
σ∗

g(φY, φZ)ξ) − ∇̃Y(∇XZ +
p
σ∗

g(φX, φZ)ξ)

− (∇[X,Y] +
p
σ∗

g(φ([X,Y]), φZ)ξ)}

+ (p − 2σ){∇̃X(η(∇YZ)ξ + σ∗(p − 2σ)g(φY, φZ)ξ + η(Z)∇Yξ)
− ∇̃Y(η(∇XZ)ξ + σ∗(p − 2σ)g(φX, φZ)ξ + η(Z)∇Xξ)
− (η(∇[X,Y]Z)ξ + σ∗(p − 2σ)g(φ([X,Y]), φZ)ξ + η(Z)∇[X,Y]ξ)}.

And so, Eq (4.12) is obtained by direct calculations.
By setting Z = ξ in Eqs (4.11) and (4.12), Eq (4.10) is readily holds. □
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Para-Sasakian case:

Suppose that (M, φ, ξ, η, g) is para-Sasakian manifold, and (Ψ, g̃) is the related metallic structure.
By applying Eq (2.12) into (4.5), we obtain the following:

g̃(∇̃XY,Z) = Ag(∇XY,Z) + Bg(∇XY, ξ)η(Z) + B[η(Y)g(X, φZ) + η(X)g(Y, φZ)]. (4.14)

In Eq (4.14), setting Z = ξ yields η(∇̃XY) = η(∇XY), and by direct calculation, we can state the
following proposition:

Proposition 4.5. Let (M, φ, ξ, η, g) be para-Sasakian manifold and (Ψ, g̃) be the related metallic
structure. Then,

∇̃XY = ∇XY −
B
A

[η(X)φY + η(Y)φX]. (4.15)

By considering Eq (4.15), the following holds:

∇̃X(η(Y)ξ) = η(∇XY)ξ + g(X, φY)ξ +
A + B

A
η(Y)∇Xξ. (4.16)

So, if an almost paracontact metric structure is para-Sasakian, the Levi-Civita connection derivative
of the related metallic structure (Ψ, g̃) is given as follows:

(∇̃XΨ)Y = (p − 2σ){g(X, φY)ξ +
A + B

A
η(Y)∇Xξ}. (4.17)

Corollary 5. If (M, φ, ξ, η, g) is a para-Sasakian manifold, then the related metallic structure (Ψ, g̃) is
not integrable (i.e. ÑΨ , 0).

Proof. By Eqs (4.1) and (4.15), after a long calculation, it can be seen that ÑΨ = 2(p − 2σ)2g(φX,Y)ξ,
and so Ψ is not integrable. □

Proposition 4.6. Let (M, φ, ξ, η, g) be a para-Sasakian manifold and (Ψ, g̃) be the related metallic
structure, then the curvature properties of Ψ are as follows

R̃(X,Y)ξ = (
σ∗

σ
)2R(X,Y)ξ, R̃(X,Y)Ψξ = σ∗(

σ∗

σ
)2R(X,Y)ξ,

R̃(X,Y)Z = R(X,Y)Z +
B
A
η(R(X,Y)Z)ξ + [

2AB + B2

A2 ]η(Z)R(X,Y)ξ

+
B
A

[2g(φX,Y)φZ − g(φY,Z)φX − g(φZ, X)φY],

R̃(X,Y)ΨZ = σR(X,Y)Z +
σ∗B

A
η(R(X,Y)Z)ξ + [

((σ∗)3 − σ3)
σ2 ]η(Z)R(X,Y)ξ

+
σB
A
{2g(φX,Y)φZ − g(X, φZ)φY + g(Y, φZ)φX}
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Proof. It can be seen directly in a similar manner to the calculations in the proof of Proposition (4.4) □

Example 6. Consider the 3-dimensional manifold M = {(x, y, z) ∈ R|z , 0}, and the linearly
independent vector fields:

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = z

∂

∂z
,

where (x, y, z) are the standart coordinates of R3. Let g be the semi-Riemannian metric defined by

g(e1, e2) = g(e1, e3) = g(e2, e3) = 0, g(e1, e1) = −1, g(e2, e2) = g(e3, e3) = 1,

and η be the 1-form defined by η(X) = g(X, e3), for any X ∈ X(M).
Define the (1, 1) tensor field φ by

φ(e1) = e2, φ(e2) = e1, φ(e3) = 0.

Then, we have η(e3) = g(e3, e3) = 1, φ2X = X − η(X)e3. Moreover, the metric g satisfies

g(φX,Y) + g(X, φY) = 0,

for any X,Y ∈ X(M) and thus, (φ, η, ξ = e3, g) is an almost paracontact metric structure on M3.
One can verify that [φ, φ](ei, e j)+ 2dη(ei, e j) = 0, for 1 ≤ i < j ≤ 3, which implies that the structure

is normal.
Let ∇ be the Levi-Civita connection with respect to g. Then, we compute the Lie brackets

[e1, e3] = −e1, [e1, e2] = 0, [e2, e3] = −e2, [e1, e1] = [e2, e2] = [e3, e3] = 0.

The Koszul formula for the Levi-Civita connection is

2g(∇XY,Z) = X[g(Y,Z)] + Y[g(Z, X)] − Z[g(X,Y)] − g(X, [Y,Z]) − g(Y, [X,Z]) + g(Z, [X,Y]).

Using this, we compute

(∇eie j) =


∇e1e1 ∇e1e2 ∇e1e3

∇e2e1 ∇e2e2 ∇e2e3

∇e3e1 ∇e3e2 ∇e3e3

 =

−e3 0 −e1

0 e3 −e2

0 0 0


Therefore, (M, φ, η, ξ, g) is a para-Kenmotsu manifold. From Eq (4.8), we have

∇̃eie j = ∇eie j +
p
σ∗

g(φei, φe j)e3

and therefore,

(∇̃eie j) =


∇̃e1e1 ∇̃e1e2 ∇̃e1e3

∇̃e2e1 ∇̃e2e2 ∇̃e2e3

∇̃e3e1 ∇̃e3e2 ∇̃e3e3

 =

σ

σ∗
e3 0 −e1

0 −
σ

σ∗
e3 −e2

0 0 0


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Accordingly, the Riemannian curvature tensor of the related metallic structure derived from the para-
Kenmotsu structure is given as follows.


R̃(e1, e2)e1 R̃(e1, e2)e2 R̃(e1, e2)e3

R̃(e2, e3)e1 R̃(e2, e3)e2 R̃(e2, e3)e3

R̃(e3, e1)e1 R̃(e3, e1)e2 R̃(e3, e1)e3

 =

σ

σ∗
e2

σ

σ∗
e1 0

0 −
σ

σ∗
e3 −e2

−
σ

σ∗
e3 0 e1


An example for the parasasakian case can also be considered as follows.

Example 7. Consider the manifold M = {(x, y, z) ∈ R3 with z , 0} . The linearly independent vector
fields are given by

u1 = ez ∂

∂y
, u2 = ez(

∂

∂x
+
∂

∂y
), u3 =

∂

∂z
,

where x, y and z are the standard coordinates. Let g be the semi-Riemannian metric defined by

g(u1, u1) = −g(u2, u2) = g(u3, u3) = 1, g(u1, u2) = g(u1, u3) = g(u2, u3) = 0.

Let η and ϕ be defined by: η(Z) = g(Z, u3), for all Z ∈ X(M)

ϕ(u1) = u2, ϕ(u2) = u1, ϕ(u3) = 0.

Using the linearity of ϕ and g, we find

η(u3) = 1, ϕ2Z = Z − η(Z)u3, g(ϕZ, ϕV) = −g(Z,V) + η(Z)η(V),

for any vector fields Z,V ∈ X(M).
Thus, for u3 = ξ, the structure (η, ξ, ϕ, g) defines a paracontact structure on M.
We compute the Lie brackets

[u1, u2] = 0, [u1, u3] = −u1, [u2, u3] = −u2.

Using Koszul’s formula, the Levi-Civita connection ∇ is determined as
∇u1u1 ∇u1u2 ∇u1u3

∇u2u1 ∇u2u2 ∇u2u3

∇u3u1 ∇u3u2 ∇u3u3

 =

u3 0 −u1

0 −u3 −u2

0 0 0


From Eq (4.15), we have

∇̃uiu j = ∇uiu j −
B
A
{η(ui)ϕ(u j) + η(u j)ϕ(ui)}

and hence,

(∇̃uiu j) =


∇̃u1u1 ∇̃u1u2 ∇̃u1u3

∇̃u2u1 ∇̃u2u2 ∇̃u2u3

∇̃u3u1 ∇̃u3u2 ∇̃u3u3

 =


u3 0 −(u1 +
B
A

u2)

0 −u3 −(u2 +
B
A

u1)

−
B
A

u2 −
B
A

u1 0


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Thus, the Riemann curvature tensor corresponding to the metallic structure obtained from the para-
Sasakian structure is expressed as follows:


R̃(u1, u2)u1 R̃(u1, u2)u2 R̃(u1, u2)u3

R̃(u2, u3)u1 R̃(u2, u3)u2 R̃(u2, u3)u3

R̃(u3, u1)u1 R̃(u3, u1)u2 R̃(u3, u1)u3

 =

u2 +

B
A

u1
A + B

A
(u1 + u2) −

2B
A

u3

−
B
A

u2 −
B
A

u1 0

−u3
B
A

u3
2B
A

u2 +
A2 + B2

A2 u1


.

5. Conclusions

In this work, we construct a metallic semi-Riemannian structure (Ψ, g̃) from the given almost
paracontact metric structure (φ, ξ, η, g) on a 2n + 1 dimensional smooth manifold M. Then, we focus
on para-Kenmotsu and para-Sasakian structures and show that the obtained φ-related structures are
integrable and non-integrable, respectively. Furthermore, we study the curvature properties of these
structures and give explicit examples.
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