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1. Introduction

Let Sn−1 be the unit sphere in Rn(n ≥ 2) with the normalized Lebesgue measure dσ = dσ(x′), where
x′ = x

|x| for any x , 0. Let Ω ∈ L1(Sn−1) be homogeneous of degree zero and satisfy∫
Sn−1
Ω(x′)dσ(x′) = 0, (1.1)

Then, the parametric Marcinkiewicz integral µρ
Ω

is defined as

µ
ρ

Ω
( f )(x) =

( ∫ ∞

0

∣∣∣∣∣ 1tρ
∫
|x−y|≤t

Ω(x − y)
|x − y|n−ρ

f (y)dy
∣∣∣∣∣2 dt

t

) 1
2

,

where 0 < ρ < n. If ρ = 1, then µρ
Ω

is just the Marcinkiewicz integral µΩ introduced by Stein in [27].
Hörmander [11] proved that if Ω ∈ Lipα(Sn−1) with 0 < α ≤ 1, then µ

ρ

Ω
is bounded on Lp(Rn) for

1 < p < ∞. Ding, Lu, and Yabuta [6] extended this result for p = 2 to Ω ∈ Llog+L(Sn−1), while
Al-Salman [2] showed Lp(Rn)-boundedness of µρ

Ω
for any 1 < p < ∞ with Ω ∈ H1(Sn−1).

The space BMO(Rn) consists of all locally integrable functions f such that

∥ f ∥∗ := sup
B

1
|B|

∫
B
| f (y) − fB|dy < ∞,
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where and below B = B(x, r) := {z ∈ Rn : |x − z| < r}, and fB := 1
|B|

∫
B

f (t)dt. Given a natural number
m and Λ ∈ BMO(Rn), the higher-order commutators [Λm, µ

ρ

Ω
] generated by µρ

Ω
and Λ are defined as

follows:

[Λm, µ
ρ

Ω
]( f )(x) =

( ∫ ∞

0

∣∣∣∣∣ 1tρ
∫
|x−y|≤t

Ω(x − y)
|x − y|n−ρ

[Λ(x) − Λ(y)]m f (y)dy
∣∣∣∣∣2 dt

t

) 1
2

.

These commutators are of interest in various situations, as discussed in [18,22,31] and their references.
In recent years, there has been significant progress in the development of the theory of variable

exponent function spaces. These spaces are of particular interest due to their applications in partial
differential equations [7], electrorheological fluids [25], and image restoration [3]. The concept of
variable Lebesgue spaces was first introduced by Orlicz [23], but it was Kováčik and Rákosnı́k [17]
who initiated the systematic study of these spaces and the corresponding variable Sobolev spaces.
Subsequently, a variety of other function spaces and classical operators in harmonic analysis have been
extensively investigated with variable exponents. See, for example, [10, 21, 33].

The Herz spaces Kα,p
q (Rn) and K̇α,p

q (Rn) are crucial in harmonic analysis and partial differential
equations. These spaces provide an effective substitute for the ordinary Hardy spaces in the study of
singular integrals. They are also important in the regularity theory for elliptic and parabolic equations
in divergence form, see [24]. Izuki [12, 13] introduced Herz spaces with variable exponent q and
Almeida and Direhem [1] investigated Herz spaces with variable exponents q(·) and α(·), and obtained
boundedness results for a broad range of sublinear operators on these spaces. The most generalized
Herz spaces Kα(·),p(·)

q(·) (Rn) and K̇α(·),p(·)
q(·) (Rn) were recently introduced in discrete and continuous settings

by Izuki and Noi [14] and Samko [26], respectively, with all three main indices being variable
exponents.

The grand variable Herz space K̇α(·),p),θ
q(·) (Rn) introduced by Nafis et al. [20] represents a significant

extension of the variable Herz space K̇α(·),p
q(·) (Rn). In [20], the authors established the boundedness

of the Marcinkiewicz integral µΩ on the space K̇α(·),p),θ
q(·) (Rn). The grand variable Herz-Morrey space,

introduced by Sultan et al. [28–30], extends the grand variable Herz space, and they showed the
boundedness of higher-order commutators of the Marcinkiewicz integral operator and Hardy operators.
Inspired by previous works [20, 29, 30], it is natural to consider the boundedness of the operators µρ

Ω

and [Λm, µ
ρ

Ω
] on grand variable Herz-Morrey spaces. It is noteworthy that, even in the case where α(·)

is constant, the results presented in Theorems 6-10 are still new.
In this paper, Z represents all integers. 1E denotes the characteristic function of a measurable set E.

p′(·) is the conjugate exponent defined by p′(·) = p(·)
p(·)−1 . C represents a positive constant that may vary

in different contexts. ϕ ≲ ψ means ϕ ⩽ Cψ, and ϕ ≈ ψ means ϕ ≲ ψ ≲ ϕ.

2. Preliminaries

We start by briefly discussing the variable Lebesgue spaces; for more details see the recent
monographs [4, 5, 15, 16].

Let q(·) : Rn → [1,∞) be a measurable function. We assume that

1 ≤ q− ≤ q(x) ≤ q+ < ∞,
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where q− := ess inf
x∈Rn

q(x) and q+ := ess sup
x∈Rn

q(x). The variable Lebesgue space Lq(·)(Rn) consists of all

measurable functions f defined on Rn such that

Iq(·)( f ) :=
∫
Rn
| f (x)|q(x)dx < ∞.

This space is a Banach space endowed with the norm

∥ f ∥Lq(·)(Rn) = inf
{
µ > 0 : Iq(·)

( f
µ

)
≤ 1
}
.

If q(x) ≡ q is constant, then Lq(·)(Rn) = Lq(Rn) is the standard Lebesgue space.
The set P(Rn) consists of all measurable functions q(·) satisfying q− > 1 and q+ < ∞. If q(·) ∈

P(Rn), then the generalized Hölder inequality∫
Rn
| f (x)g(x)|dx ≲ ∥ f ∥Lq(·)(Rn)∥g∥Lq′(·)(Rn), (2.1)

holds for every f ∈ Lq(·)(Rn) and g ∈ Lq′(·)(Rn), see [17].
For f ∈ L1

loc(R
n) and x ∈ Rn, the Hardy-Littlewood maximal operator M is defined by

M f (x) = sup
r>0

1
rn

∫
B(x,r)
| f (y)|dy.

The set B(Rn) consists of all measurable functions q(·) ∈ P(Rn) satisfying the condition that M is
bounded on Lq(·)(Rn).

A function Φ : Rn → R is locally log-Hölder continuous if there exists a constant Clog > 0 such that

|Φ(x) − Φ(y)| ≤
Clog

−log|x − y|
, |x − y| ≤

1
2
, x, y ∈ Rn. (2.2)

If, for some Φ∞ ∈ R, there holds

|Φ(x) − Φ∞| ≤
Clog

log(e + |x|)
, x ∈ Rn, (2.3)

then we say Φ(·) is log-Hölder continuous at infinity.
The class Plog

∞ (Rn) consists of all exponents q(·) ∈ P(Rn) that satisfy the conditions (2.2) and (2.3),
where q∞ := lim|x|→∞ q(x). It is worth noting that when q− > 1, q(·) ∈ Plog

∞ (Rn) if and only if q′(·) ∈
P

log
∞ (Rn). Additionally, if q(·) ∈ Plog

∞ (Rn), then the boundedness of the Hardy-Littlewood maximal
operator M on Lq(·)(Rn) implies that q(·) ∈ B(Rn), see [5, Theorem 4.3.8].

In the following, we denote B j = {x ∈ Rn : |x| ⩽ 2 j}, R j = B j\B j−1 and 1 j = 1R j , j ∈ Z.

Definition 1. Let α(·) : Rn → R with α(·) ∈ L∞(Rn), 0 < γ ≤ ∞, and β(·) ∈ P(Rn). The variable Herz
space K̇α(·),γ

β(·) (Rn) consists of all f ∈ Lβ(·)
loc (Rn\{0⃗n}) such that

∥ f ∥K̇α(·),γ
β(·) (Rn) :=

( ∞∑
j=−∞

∥2 jα(·) f 1 j∥
γ

Lβ(·)(Rn)

)1/γ
< ∞,

with the usual modifications when γ = ∞.
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Obviously, if α(·) ≡ α is constant, then K̇α(·),γ
β(·) (Rn) is equivalent to K̇α,γ

β(·)(R
n) as defined in [12,13]. In

the case where both α and β are constant functions, the Herz spaces K̇α(·),γ
β(·) (Rn) are equal to K̇α,γ

β (Rn) as
defined in [19].

Definition 2. Let α(·) : Rn → R with α(·) ∈ L∞(Rn), 0 < γ < ∞, θ > 0, 0 ≤ λ < ∞, and β(·) ∈ P(Rn).
The grand variable Herz-Morrey space MK̇α(·),γ),θ

λ,β(·) (Rn) consists of all f ∈ Lβ(·)
loc (Rn\{0⃗n}) such that

∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn) := sup

ζ>0
sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=−∞

∥2 jα(·) f 1 j∥
γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

< ∞.

If λ = 0, then grand variable Herz-Morrey space MK̇α(·),γ),θ
λ,β(·) (Rn) reduces to grand variable Herz

space K̇α(·),γ),θ
β(·) (Rn). The result in [32, Proposition 2.4] shows that variable Herz space K̇α(·),γ

β(·) (Rn) is a
subset of grand variable Herz space K̇α(·),γ),θ

β(·) (Rn).

3. Boundedness of the parametric Marcinkiewicz integral

In this subsection, we show that the parametric Marcinkiewicz integral µρ
Ω

is bounded on grand
variable Herz-Morrey spaces. As a result, we also establish the boundedness of this operator on grand
variable Herz spaces. We first present some lemmas necessary for proving the main theorems.

Lemma 3. If β(·) ∈ Plog
∞ (Rn) and τ > 1, then we have

1
ν0

R
n
β(0) ≤ ∥1B(0,τR)\B(0,R)∥Lβ(·)(Rn) ≤ ν0R

n
β(0) , 0 < R ≤ 1,

and

1
ν∞

R
n
β∞ ≤ ∥1B(0,τR)\B(0,R)∥Lβ(·)(Rn) ≤ ν∞R

n
β∞ , R ≥ 1,

where ν0, ν∞ ≥ 1 are dependent on τ but are independent of R.

Lemma 4. If q(·) ∈ P(Rn), p > q+, and 1
q(x) =

1
r(x) +

1
p , then we have

∥ f g∥Lq(·)(Rn) ≲ ∥ f ∥Lr(·)(Rn)∥g∥Lp(Rn)

for any f ∈ Lr(·)(Rn) and g ∈ Lp(Rn).

The Lemmas 3 and 4 are shown in [26] and [5], respectively. We refer to Izuki [12] for the following
Lemma 5.

Lemma 5. If q(·) ∈ B(Rn), then we have for all measurable subsets A ⊂ B,

∥1B∥Lq(·)(Rn)

∥1A∥Lq(·)(Rn)
≲
|A|
|B|
,
∥1A∥Lq(·)(Rn)

∥1B∥Lq(·)(Rn)
≲
(
|A|
|B|

)κ
,

where κ is constant with 0 < κ < 1.

Our main results can be summarized as follows.

AIMS Mathematics Volume 10, Issue 10, 23652–23675.



23656

Theorem 6. Let ρ > n/2, θ > 0, 0 < λ < ∞, 1 < γ < ∞, α(·), β(·) ∈ Plog
∞ (Rn), and Ω ∈ Ls(Sn−1), s >

(β′)+. If α satisfies
(i) λ − n

β(0) < α(0) < n( 1
β′(0) −

1
s ),

(ii) λ − n
β∞
< α∞ < n( 1

β′∞
− 1

s ),
then the parametric Marcinkiewicz integral µρ

Ω
is bounded on MK̇α(·),γ),θ

λ,β(·) (Rn). Moreover, there exists a
constant C > 0 such that for any f ∈ MK̇α(·),γ),θ

λ,β(·) (Rn),

∥µ
ρ

Ω
( f )∥MK̇α(·),γ),θ

λ,β(·) (Rn) ≤ C∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn).

Remark 7. For any f belonging to the grand Herz-Morrey spaces with variable exponent, we can
demonstrate that these spaces are embedded into certain weighted Lebesgue spaces with Muckenhoupt
weights. This conclusion is derived by employing the ideas from the grand Morrey spaces as outlined
in (5.1) of Ho [8] and from the Herz-Morrey spaces with variable exponent discussed in (26) of
Ho [9]. Consequently, the definition of µρ

Ω
( f ) is established based on the corresponding definition

of the parametric Marcinkiewicz integral operators on the weighted Lebesgue spaces.

If λ = 0, slight modifications to the proof of Theorem 6 yield the following result.

Theorem 8. Let ρ > n/2, θ > 0, 1 < γ < ∞, α(·), β(·) ∈ Plog
∞ (Rn), and Ω ∈ Ls(Sn−1), s > (β′)+. If

− n
β(0) < α(0) < n( 1

β′(0) −
1
s ) and − n

β∞
< α∞ < n( 1

β′∞
− 1

s ), then there exists a constant C > 0 such that for

any f ∈ K̇α(·),γ),θ
β(·) (Rn),

∥µ
ρ

Ω
( f )∥K̇α(·),γ),θ

β(·) (Rn) ≤ C∥ f ∥K̇α(·),γ),θ
β(·) (Rn).

Proof of Theorem 6. Let f ∈ MK̇α(·),γ),θ
λ,β(·) (Rn). We decompose

f (x) =
∞∑

l=−∞

f (x)1l(x) =
∞∑

l=−∞

fl(x).

By Minkowski’s inequality, we have

∥µ
ρ

Ω
( f )∥MK̇α(·),γ),θ

λ,β(·) (Rn)

= sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=−∞

∥2 jα(·)µ
ρ

Ω
( f )1 j∥

γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=−∞

( j−1∑
l=−∞

∥2 jα(·)µ
ρ

Ω
( f 1l)1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

+ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=−∞

∥2 jα(·)µ
ρ

Ω
( f 1 j)1 j∥

γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

+ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=−∞

( ∞∑
l= j+1

∥2 jα(·)µ
ρ

Ω
( f 1l)1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

=: E + F +G.
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For F, we have

F ≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

∥2 jα(·)µ
ρ

Ω
( f 1 j)1 j∥

γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

+ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

∥2 jα(·)µ
ρ

Ω
( f 1 j)1 j∥

γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

=: F1 + F2.

For F1, by using the boundedness of µρ
Ω

on Lβ(·)(Rn) (see [31]) and 2 jα(x) ≈ 2 jα(0) for j < 0 and x ∈ R j,
it follows that

F1 ≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

2 jα(0)γ(1+ζ)∥µ
ρ

Ω
( f 1 j)1 j∥

γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

2 jα(0)γ(1+ζ)∥ f 1 j∥
γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

∥2 jα(·) f 1 j∥
γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

≲ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn).

For F2, when j ≥ 0 and x ∈ R j, we observe that 2 jα(x) ≈ 2 jα∞ and obtain

F2 ≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

2 jα∞γ(1+ζ)∥µ
ρ

Ω
( f 1 j)1 j∥

γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

2 jα∞γ(1+ζ)∥ f 1 j∥
γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

∥2 jα(·) f 1 j∥
γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

≲ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn).

Combining the estimates above, we get

F ≲ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn).

To estimate E, we split the operator into

|µ
ρ

Ω
( f 1l)(x)| ≤

( ∫ |x|

0

∣∣∣∣∣ 1tρ
∫
|x−y|≤t

Ω(x − y)
|x − y|n−ρ

fl(y)dy
∣∣∣∣∣2 dt

t

) 1
2

+

( ∫ ∞

|x|

∣∣∣∣∣ 1tρ
∫
|x−y|≤t

Ω(x − y)
|x − y|n−ρ

fl(y)dy
∣∣∣∣∣2 dt

t

) 1
2
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=: I1 + I2.

When l ≤ j − 1, x ∈ R j, and y ∈ Rl, noting that |x − y| ∼ |x| ∼ 2 j, we use the mean value theorem and
obtain ∣∣∣∣∣|x − y|−2ρ − |x|−2ρ

∣∣∣∣∣ ≲ |y||x − ξy|2ρ−1

|x|2ρ|x − y|2ρ
≲

|y|
|x − y|2ρ+1 , for some ξ ∈ (0, 1).

Thus, by Minkowski’s inequality for integrals, we get

I1 ≲

∫
Rl

|Ω(x − y)|
|x − y|n−ρ

| f (y)|
( ∫
|x−y|≤t,|x|≥t

dt
t2ρ+1

) 1
2

dy

≲

∫
Rl

|Ω(x − y)|
|x − y|n−ρ

| f (y)|
∣∣∣∣∣|x − y|−2ρ − |x|−2ρ

∣∣∣∣∣ 12 dy

≲

∫
Rl

|Ω(x − y)|| f (y)|
|y|

1
2

|x − y|n+
1
2

dy

≲ 2
l− j
2 2− jn

∫
Rl

|Ω(x − y)|| f (y)|dy

≲ 2
l− j
2 2− jn∥ f 1l∥Lβ(·)(Rn)∥Ω(x − ·)1l∥Lβ′(·)(Rn).

Similarly, we get

I2 ≲ 2− jn∥ f 1l∥Lβ(·)(Rn)∥Ω(x − ·)1l∥Lβ′(·)(Rn).

Therefore, we have

|µ
ρ

Ω
( f 1l)(x)| ≲ 2− jn∥ f 1l∥Lβ(·)(Rn)∥Ω(x − ·)1l∥Lβ′(·)(Rn). (3.1)

Since s > (β′)+, it follows that there exists a variable exponent r(·) ∈ Plog
∞ (Rn) such that 1

β′(x) =
1

r(x) +
1
s ,

then, using Lemma 4, Lemma 5, and the fact that ∥1Bl∥Lr(·)(Rn) ≈ 2−
ln
s ∥1Bl∥Lβ′(·)(Rn) (see [31] ), we obtain

∥Ω(x − ·)1l∥Lβ′(·)(Rn)

≲ ∥1l∥Lr(·)(Rn)∥Ω(x − ·)1l∥Ls(Rn)

≲ 2−
ln
s ∥1Bl∥Lβ′(·)(Rn)

( ∫ |x|+2l

|x|−2l

∫
Sn−1
|Ω(y′)|sdσ(y′)ϱn−1dϱ

) 1
s

≲ 2
( j−l)n

s ∥Ω∥Ls(Sn−1)∥1Bl∥Lβ′(·)(Rn)

≲ 2
( j−l)n

s
|Rl|

|Bl|
∥1l∥Lβ′(·)(Rn)

≲ 2
( j−l)n

s ∥1l∥Lβ′(·)(Rn).

(3.2)

By Minkowski’s inequality, we get

E ≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

( j−1∑
l=−∞

∥2 jα(·)µ
ρ

Ω
( f 1l)1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

+ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

( j−1∑
l=−∞

∥2 jα(·)µ
ρ

Ω
( f 1l)1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

=: E1 + E2.
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For E1, Lemma 3 yields

∥1l∥Lβ′(·)(Rn)∥1 j∥Lβ(·)(Rn) ≲ 2
ln

β′(0) 2
jn
β(0) ≲ 2 jn2

(l− j)n
β′(0) . (3.3)

Using (3.1), (3.2), (3.3), and 2 jα(x) ≈ 2 jα(0), we obtain

E1 ≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

( j−1∑
l=−∞

2 jα(0)∥ f 1l∥Lβ(·)(Rn)

× 2
( j−l)n

s 2− jn∥1l∥Lβ′(·)(Rn)∥1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

( j−1∑
l=−∞

2lα(0)∥ f 1l∥Lβ(·)(Rn)

× 2( j−l)[α(0)−n( 1
β′(0)−

1
s )]
)γ(1+ζ)) 1

γ(1+ζ)

.

For simplicity, we set δ = α(0) − n( 1
β′(0) −

1
s ). Since 2−γ(1+ζ) < 2−γ and δ < 0, it follows from Hölder’s

inequality that

E1 ≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

( j−1∑
l=−∞

2lα(0)γ(1+ζ)∥ f 1l∥
γ(1+ζ)
Lβ(·)(Rn)2

( j−l)δγ(1+ζ)/2
)

×

( j−1∑
l=−∞

2( j−l)δ(γ(1+ζ))′/2
)γ(1+ζ)/(γ(1+ζ))′) 1

γ(1+ζ)

≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−2∑
l=−∞

2lα(0)γ(1+ζ)∥ f 1l∥
γ(1+ζ)
Lβ(·)(Rn)

−1∑
j=l+1

2( j−l)δγ(1+ζ)/2
) 1
γ(1+ζ)

≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−2∑
l=−∞

2lα(0)γ(1+ζ)∥ f 1l∥
γ(1+ζ)
Lβ(·)(Rn)

−1∑
j=l+1

2( j−l)δγ/2
) 1
γ(1+ζ)

≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−2∑
l=−∞

∥2lα(·) f 1l∥
γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

≲ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn).

For E2, Minkowski’s inequality implies that

E2 ≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

( −1∑
l=−∞

∥2 jα(·)µ
ρ

Ω
( f 1l)1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

+ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

( j−1∑
l=0

∥2 jα(·)µ
ρ

Ω
( f 1l)1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

=: E21 + E22.
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For E21, by Lemma 3, we have

∥1l∥Lβ′(·)(Rn)∥1 j∥Lβ(·)(Rn) ≲ 2
ln

β′(0) 2
jn
β∞ ≲ 2 jn2

− jn
β′∞ 2

ln
β′(0) . (3.4)

Using (3.1), (3.2), (3.4), and 2 jα(x) ≈ 2 jα∞ , we obtain

E21 ≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

( −1∑
l=−∞

2 jα∞∥ f 1l∥Lβ(·)(Rn)

× 2
( j−l)n

s 2− jn∥1l∥Lβ′(·)(Rn)∥1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

2− j[n( 1
β′∞
− 1

s )−α∞]γ(1+ζ)

×

( −1∑
l=−∞

2lα(0)∥ f 1l∥Lβ(·)(Rn)2
−l[α(0)−n( 1

β′(0)−
1
s )]
)γ(1+ζ)) 1

γ(1+ζ)

.

Since α∞ < n( 1
β′∞
− 1

s ) and α(0) < n( 1
β′(0) −

1
s ), by Hölder’s inequality, we get

E21 ≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

2− j[n( 1
β′∞
− 1

s )−α∞]γ

×

( −1∑
l=−∞

2lα(0)∥ f 1l∥Lβ(·)(Rn)2
−l[α(0)−n( 1

β′(0)−
1
s )]
)γ(1+ζ)) 1

γ(1+ζ)

≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ
( −1∑

l=−∞

2lα(0)∥ f 1l∥Lβ(·)(Rn)2
−l[α(0)−n( 1

β′(0)−
1
s )]
)γ(1+ζ)) 1

γ(1+ζ)

≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ
( −1∑

l=−∞

2lα(0)γ(1+ζ)∥ f 1l∥
γ(1+ζ)
Lβ(·)(Rn)

)
×

( −1∑
l=−∞

2−l[α(0)−n( 1
β′(0)−

1
s )](γ(1+ζ))′

)γ(1+ζ)/(γ(1+ζ))′) 1
γ(1+ζ)

≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
l=−∞

2lα(0)γ(1+ζ)∥ f 1l∥
γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
l=−∞

∥2lα(·) f 1l∥
γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

≲ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn).

For E22, Lemma 3 gives

∥1l∥Lβ′(·)(Rn)∥1 j∥Lβ(·)(Rn) ≲ 2
ln
β′∞ 2

jn
β∞ ≲ 2 jn2

(l− j)n
β′∞ . (3.5)
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Using (3.1), (3.2), (3.5), and 2 jα(x) ≈ 2 jα∞ , we have

E22 ≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

( j−1∑
l=0

2 jα∞∥ f 1l∥Lβ(·)(Rn)

× 2
( j−l)n

s 2− jn∥1l∥Lβ′(·)(Rn)∥1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

( j−1∑
l=0

2lα∞∥ f 1l∥Lβ(·)(Rn)2
(l− j)[n( 1

β′∞
− 1

s )−α∞]
)γ(1+ζ)) 1

γ(1+ζ)

.

Since α∞ < n( 1
β′∞
− 1

s ) and 2−γ(1+ζ) < 2−γ, we use Hölder’s inequality and obtain

E22 ≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

( j−1∑
l=0

2lα∞γ(1+ζ)∥ f 1l∥
γ(1+ζ)
Lβ(·)(Rn)2

(l− j)[n( 1
β′∞
− 1

s )−α∞]γ(1+ζ)/2
)

×

( j−1∑
l=0

2(l− j)[n( 1
β′∞
− 1

s )−α∞](γ(1+ζ))′/2
)γ(1+ζ)/(γ(1+ζ))′) 1

γ(1+ζ)

≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0−1∑
l=0

2lα∞γ(1+ζ)∥ f 1l∥
γ(1+ζ)
Lβ(·)(Rn)

×

j0∑
j=l+1

2(l− j)[n( 1
β′∞
− 1

s )−α∞]γ(1+ζ)/2
) 1
γ(1+ζ)

≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0−1∑
l=0

2lα∞γ(1+ζ)∥ f 1l∥
γ(1+ζ)
Lβ(·)(Rn)

j0∑
j=l+1

2(l− j)[n( 1
β′∞
− 1

s )−α∞]γ/2
) 1
γ(1+ζ)

≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0−1∑
l=0

∥2lα(·) f 1l∥
γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

≲ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn).

Next, we estimate G. Observing that for l ≥ j + 1, if x ∈ R j and y ∈ Rl, it follows that |x − y| ∼ |y| ∼
2l. Similar to the proof of E, we have

|µ
ρ

Ω
( f 1l)(x)| ≲

( ∫ |y|

0

∣∣∣∣∣ 1tρ
∫
|x−y|≤t

Ω(x − y)
|x − y|n−ρ

fl(y)dy
∣∣∣∣∣2 dt

t

) 1
2

+

( ∫ ∞

|y|

∣∣∣∣∣ 1tρ
∫
|x−y|≤t

Ω(x − y)
|x − y|n−ρ

fl(y)dy
∣∣∣∣∣2 dt

t

) 1
2

≲ 2
j−l
2 2−ln

∫
Rl

|Ω(x − y)|| f (y)|dy + 2−ln
∫

Rl

|Ω(x − y)|| f (y)|dy

≲ 2−ln∥ f 1l∥Lβ(·)(Rn)∥Ω(x − ·)1l∥Lβ′(·)(Rn).

(3.6)
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As argued in (3.2), we have

∥Ω(x − ·)1l∥Lβ′(·)(Rn)

≲ 2−
ln
s ∥1l∥Lβ′(·)(Rn)

( ∫ 2l+1

0

∫
Sn−1
|Ω(y′)|sdσ(y′)ϱn−1dϱ

) 1
s

≲ ∥Ω∥Ls(Sn−1)∥1l∥Lβ′(·)(Rn).

(3.7)

By Minkowski’s inequality, we get

G ≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

( ∞∑
l= j+1

∥2 jα(·)µ
ρ

Ω
( f 1l)1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

+ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

( ∞∑
l= j+1

∥2 jα(·)µ
ρ

Ω
( f 1l)1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

=: G1 +G2.

For G2, by Lemma 3, we have

∥1l∥Lβ′(·)(Rn)∥1k∥Lβ(·)(Rn) ≲ 2
ln
β′∞ 2

kn
β∞ ≲ 2ln2

(k−l)n
β∞ . (3.8)

Using (3.6), (3.7), and (3.8), we obtain

G2 ≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

( ∞∑
l= j+1

2 jα∞∥ f 1l∥Lβ(·)(Rn)

× 2−ln∥1l∥Lβ′(·)(Rn)∥1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

( ∞∑
l= j+1

2lα∞∥ f 1l∥Lβ(·)(Rn)2
( j−l)(α∞+ n

β∞
)
)γ(1+ζ)) 1

γ(1+ζ)

.

(3.9)

On the other hand, we note that

∥ f 1l∥Lβ(·)(Rn) = 2−lα∞
(
2lα∞γ(1+ζ)∥ f 1l∥

γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

≲ 2−lα∞
( l∑

j=−∞

2 jα∞γ(1+ζ)∥ f 1 j∥
γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

≲ 2−lα∞2lλζ−
θ

γ(1+ζ) 2−lλ
(
ζθ

l∑
j=−∞

2 jα∞γ(1+ζ)∥ f 1 j∥
γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

≲ 2−lα∞2lλζ−
θ

γ(1+ζ) ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn).

(3.10)
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Therefore, since α∞ > − n
β∞
+ λ, combining (3.9) and (3.10), we get

G2 ≲ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn) sup

ζ>0
sup
j0∈Z

2− j0λ
( j0∑

j=0

2 jλγ(1+ζ)
( ∞∑

l= j+1

2( j−l)(α∞+ n
β∞
−λ)
)γ(1+ζ)) 1

γ(1+ζ)

≲ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn) sup

ζ>0
sup
j0∈Z

2− j0λ
( j0∑

j=0

2 jλγ(1+ζ)
) 1
γ(1+ζ)

≲ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn).

For G1, Minkowski’s inequality implies that

G1 ≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

( −1∑
l= j+1

∥2 jα(·)µ
ρ

Ω
( f 1l)1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

+ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

( ∞∑
l=0

∥2 jα(·)µ
ρ

Ω
( f 1l)1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

=: G11 +G12.

The estimation for G11 proceeds analogously to that of G2, with the substitution of β∞ by β(0) and
the utilization of the inequality α(0) > − n

β(0) + λ.

For G12, by Lemma 3, we get

∥1l∥Lβ′(·)(Rn)∥1 j∥Lβ(·)(Rn) ≲ 2
ln
β′∞ 2

jn
β(0) ≲ 2ln2

jn
β(0) 2

−ln
β∞ . (3.11)

Using (3.6), (3.7), and (3.11), we have

G12 ≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

( ∞∑
l=0

2 jα(0)∥ f 1l∥Lβ(·)(Rn)

× 2−ln∥1l∥Lβ′(·)(Rn)∥1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

( ∞∑
l=0

2lα∞∥ f 1l∥Lβ(·)(Rn)

× 2 j(α(0)+ n
β(0) )2−l(α∞+ n

β∞
)
)γ(1+ζ)) 1

γ(1+ζ)

.
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Since α(0) > − n
β(0) + λ and α∞ > − n

β∞
+ λ, using (3.10) and 2−γ(1+ζ) < 2−γ, we get

G12 ≲ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn) sup

ζ>0
sup
j0∈Z

2− j0λ
( −1∑

j=−∞

2 j(α(0)+ n
β(0) )γ(1+ζ)

×

( ∞∑
l=0

2−l(α∞+ n
β∞
−λ)
)γ(1+ζ)) 1

γ(1+ζ)

≲ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn) sup

ζ>0
sup
j0∈Z

2− j0λ
( −1∑

j=−∞

2 j(α(0)+ n
β(0) )γ(1+ζ)

) 1
γ(1+ζ)

≲ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn) sup

ζ>0
sup
j0∈Z

2− j0λ
( −1∑

j=−∞

2 j[α(0)+ n
β(0)−λ]γ(1+ζ)2 jλγ(1+ζ)

) 1
γ(1+ζ)

≲ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn) sup

ζ>0
sup
j0∈Z

2− j0λ
( −1∑

j=−∞

2 j[α(0)+ n
β(0)−λ]γ2 jλγ(1+ζ)

) 1
γ(1+ζ)

≲ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn) sup

ζ>0
sup
j0∈Z

2− j0λ
( j0∑

j=−∞

2 jλγ(1+ζ)
) 1
γ(1+ζ)

≲ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn).

This proves Theorem 6. □

4. Boundedness of higher-order commutators of the parametric Marcinkiewicz integral

In this subsection, we prove that the higher-order commutators [Λm, µ
ρ

Ω
] generated by µρ

Ω
and BMO

functions are bounded on grand variable Herz-Morrey spaces. We also show that these operators are
bounded on grand variable Herz spaces.

Theorem 9. Let Λ ∈ BMO(Rn), m ∈ N, ρ > n/2, θ > 0, 0 < λ < ∞, 1 < γ < ∞, α(·), β(·) ∈ Plog
∞ (Rn),

and Ω ∈ Ls(Sn−1), s > (β′)+. If α satisfies
(i) λ − n

β(0) < α(0) < n( 1
β′(0) −

1
s ),

(ii) λ − n
β∞
< α∞ < n( 1

β′∞
− 1

s ),
then the higher-order commutator [Λm, µ

ρ

Ω
] is bounded on MK̇α(·),γ),θ

λ,β(·) (Rn). Moreover, there exists a
constant C > 0 such that for any f ∈ MK̇α(·),γ),θ

λ,β(·) (Rn),

∥[Λm, µ
ρ

Ω
]( f )∥MK̇α(·),γ),θ

λ,β(·) (Rn) ≤ C∥Λ∥m∗ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn).

If λ = 0, we can obtain the following result using a proof similar to Theorem 9.

Theorem 10. Let Λ ∈ BMO(Rn), m ∈ N, ρ > n/2, θ > 0, 1 < γ < ∞, α(·), β(·) ∈ Plog
∞ (Rn), and

Ω ∈ Ls(Sn−1), s > (β′)+. If − n
β(0) < α(0) < n( 1

β′(0) −
1
s ) and − n

β∞
< α∞ < n( 1

β′∞
− 1

s ), then there exists a

constant C > 0 such that for any f ∈ K̇α(·),γ),θ
β(·) (Rn),

∥[Λm, µ
ρ

Ω
]( f )∥K̇α(·),γ),θ

β(·) (Rn) ≤ C∥Λ∥m∗ ∥ f ∥K̇α(·),γ),θ
β(·) (Rn).
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The following lemma is due to Izuki [13].

Lemma 11. Let Λ ∈ BMO(Rn), j > l, and j, l,m ∈ N. If β(·) ∈ B(Rn), then we have

sup
B⊂Rn

1
∥1B∥Lβ(·)(Rn)

∥(Λ − ΛB)m1B∥Lβ(·)(Rn) ≈ ∥Λ∥
m
∗ ,

and

∥(Λ − ΛBl)
m1B j∥Lβ(·)(Rn) ≲ ( j − l)m∥Λ∥m∗ ∥1B j∥Lβ(·)(Rn).

Proof of Theorem 9. Let f ∈ MK̇α(·),γ),θ
λ,β(·) (Rn). We decompose

f (x) =
∞∑

l=−∞

f (x)1l(x) =
∞∑

l=−∞

fl(x).

It follows from Minkowski’s inequality that

∥[Λm, µ
ρ

Ω
]( f )∥MK̇α(·),γ),θ

λ,β(·) (Rn)

= sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=−∞

∥2 jα(·)[Λm, µ
ρ

Ω
]( f )1 j∥

γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=−∞

( j−1∑
l=−∞

∥2 jα(·)[Λm, µ
ρ

Ω
]( f 1l)1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

+ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=−∞

∥2 jα(·)[Λm, µ
ρ

Ω
]( f 1 j)1 j∥

γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

+ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=−∞

( ∞∑
l= j+1

∥2 jα(·)[Λm, µ
ρ

Ω
]( f 1l)1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

=: U + V +W.

For U, we have

|[Λm, µ
ρ

Ω
]( f 1l)(x)| ≤

( ∫ |x|

0

∣∣∣∣∣ 1tρ
∫
|x−y|≤t

Ω(x − y)
|x − y|n−ρ

[Λ(x) − Λ(y)]m fl(y)dy
∣∣∣∣∣2 dt

t

) 1
2

+

( ∫ ∞

|x|

∣∣∣∣∣ 1tρ
∫
|x−y|≤t

Ω(x − y)
|x − y|n−ρ

[Λ(x) − Λ(y)]m fl(y)dy
∣∣∣∣∣2 dt

t

) 1
2

=: J1 + J2.

When l ≤ j − 1, x ∈ R j, and y ∈ Rl, as in the estimation of U1, using Minkowski’s inequality and the
generalized Hölder’s inequality, we obtain

J1 ≲

∫
Rl

|Ω(x − y)|
|x − y|n−ρ

|Λ(x) − Λ(y)|m| f (y)|
( ∫
|x−y|≤t,|x|≥t

dt
t2ρ+1

) 1
2

dy
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≲

∫
Rl

|Ω(x − y)|
|x − y|n−ρ

|Λ(x) − Λ(y)|m| f (y)|
∣∣∣∣∣|x − y|−2ρ − |x|−2ρ

∣∣∣∣∣ 12 dy

≲

∫
Rl

|Λ(x) − Λ(y)|m|Ω(x − y)|| f (y)|
|y|

1
2

|x − y|n+
1
2

dy

≲ 2
l− j
2 2− jn

∫
Rl

|Λ(x) − Λ(y)|m|Ω(x − y)|| f (y)|dy

≲ 2
l− j
2 2− jn

(
|Λ(x) − ΛBl |

m
∫

Rl

|Ω(x − y)|| f (y)|dy

+

∫
Rl

|ΛBl − Λ(y)|m|Ω(x − y)|| f (y)|dy
)

≲ 2
l− j
2 2− jn∥ f 1l∥Lβ(·)(Rn)

(
|Λ(x) − ΛBl |

m∥Ω(x − ·)1l∥Lβ′(·)(Rn)

+ ∥(Λ − ΛBl)
mΩ(x − ·)1l∥Lβ′(·)(Rn)

)
.

Similarly, we have

J2 ≲ 2− jn∥ f 1l∥Lβ(·)(Rn)

(
|Λ(x) − ΛBl |

m∥Ω(x − ·)1l∥Lβ′(·)(Rn) + ∥(Λ − ΛBl)
mΩ(x − ·)1l∥Lβ′(·)(Rn)

)
. (4.1)

Therefore, we get

|[Λm, µ
ρ

Ω
]( f 1l)(x)| ≲ 2− jn∥ f 1l∥Lβ(·)(Rn)

(
|Λ(x) − ΛBl |

m∥Ω(x − ·)1l∥Lβ′(·)(Rn)

+ ∥(Λ − ΛBl)
mΩ(x − ·)1l∥Lβ′(·)(Rn)

)
.

(4.2)

As argued in (3.2), by Lemmas 4 and 11, we have

∥(Λ − ΛBl)
mΩ(x − ·)1l∥Lβ′(·)(Rn)

≲ ∥(Λ − ΛBl)
m1l∥Lr(·)(Rn)∥Ω(x − ·)1l∥Ls(Rn)

≲ ∥Λ∥m∗ ∥1Bl∥Lr(·)(Rn)∥Ω(x − ·)1l∥Ls(Rn)

≲ ∥Λ∥m∗ 2−
ln
s ∥1Bl∥Lβ′(·)(Rn)∥Ω(x − ·)1l∥Ls(Rn)

≲ 2
( j−l)n

s ∥Λ∥m∗ ∥1Bl∥Lβ′(·)(Rn).

(4.3)
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Thus, it follows from (3.2), (4.2), (4.3), and Lemmas 5 and 11 that

∥[Λm, µ
ρ

Ω
]( f 1l)1 j∥Lβ(·)(Rn)

≲ 2− jn∥ f 1l∥Lβ(·)(Rn)

(
∥(Λ − ΛBl)

m1 j∥Lβ(·)(Rn)∥Ω(x − ·)1l∥Lβ′(·)(Rn)

+ ∥(Λ − ΛBl)
mΩ(x − ·)1l∥Lβ′(·)(Rn)∥1 j∥Lβ(·)(Rn)

)
≲ 2− jn∥ f 1l∥Lβ(·)(Rn)

(
( j − l)m∥Λ∥m∗ ∥1B j∥Lβ(·)(Rn)2

( j−l)n
s ∥1l∥Lβ′(·)(Rn)

+ 2
( j−l)n

s ∥Λ∥m∗ ∥1Bl∥Lβ′(·)(Rn)∥1 j∥Lβ(·)(Rn)

)
≲ 2− jn∥ f 1l∥Lβ(·)(Rn)( j − l)m∥Λ∥m∗ 2

( j−l)n
s

(
|B j|

|R j|
∥1 j∥Lβ(·)(Rn)∥1l∥Lβ′(·)(Rn)

+
|Bl|

|Rl|
∥1l∥Lβ′(·)(Rn)∥1 j∥Lβ(·)(Rn)

)
≲ ( j − l)m∥Λ∥m∗ 2

( j−l)n
s ∥ f 1l∥Lβ(·)(Rn)2− jn∥1 j∥Lβ(·)(Rn)∥1l∥Lβ′(·)(Rn).

(4.4)

By Minkowski’s inequality, we get

U ≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

( j−1∑
l=−∞

∥2 jα(·)[Λm, µ
ρ

Ω
]( f 1l)1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

+ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

( j−1∑
l=−∞

∥2 jα(·)[Λm, µ
ρ

Ω
]( f 1l)1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

=: U1 + U2.

For U1, by using (3.3), (4.4), and 2 jα(x) ≈ 2 jα(0) for j < 0 and x ∈ R j, we derive

U1 ≲ ∥Λ∥
m
∗ sup

ζ>0
sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

( j−1∑
l=−∞

2 jα(0)∥ f 1l∥Lβ(·)(Rn)

× ( j − l)m2
( j−l)n

s 2− jn∥1l∥Lβ′(·)(Rn)∥1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

≲ ∥Λ∥m∗ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

( j−1∑
l=−∞

2lα(0)∥ f 1l∥Lβ(·)(Rn)

× ( j − l)m2( j−l)[α(0)−n( 1
β′(0)−

1
s )]
)γ(1+ζ)) 1

γ(1+ζ)

.
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Since δ = α(0) − n( 1
β′(0) −

1
s ) < 0 and 2−γ(1+ζ) < 2−γ, we use Hölder’s inequality and obtain

U1 ≲ ∥Λ∥
m
∗ sup

ζ>0
sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

( j−1∑
l=−∞

2lα(0)γ(1+ζ)∥ f 1l∥
γ(1+ζ)
Lβ(·)(Rn)2

( j−l)δγ(1+ζ)/2
)

×

( j−1∑
l=−∞

( j − l)m(γ(1+ζ))′2( j−l)δ(γ(1+ζ))′/2
)γ(1+ζ)/(γ(1+ζ))′) 1

γ(1+ζ)

≲ ∥Λ∥m∗ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−2∑
l=−∞

2lα(0)γ(1+ζ)∥ f 1l∥
γ(1+ζ)
Lβ(·)(Rn)

−1∑
j=l+1

2( j−l)δγ(1+ζ)/2
) 1
γ(1+ζ)

≲ ∥Λ∥m∗ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−2∑
l=−∞

2lα(0)γ(1+ζ)∥ f 1l∥
γ(1+ζ)
Lβ(·)(Rn)

−1∑
j=l+1

2( j−l)δγ/2
) 1
γ(1+ζ)

≲ ∥Λ∥m∗ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−2∑
l=−∞

∥2lα(·) f 1l∥
γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

≲ ∥Λ∥m∗ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn).

For U2, Minkowski’s inequality implies that

U2 ≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

( −1∑
l=−∞

∥2 jα(·)[Λm, µ
ρ

Ω
]( f 1l)1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

+ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

( j−1∑
l=0

∥2 jα(·)[Λm, µ
ρ

Ω
]( f 1l)1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

=: U21 + U22.

For U21, using (3.4), (4.4), and 2 jα(x) ≈ 2 jα∞ for j ≥ 0 and x ∈ R j, we obtain

U21 ≲ ∥Λ∥
m
∗ sup

ζ>0
sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

( −1∑
l=−∞

2 jα∞∥ f 1l∥Lβ(·)(Rn)

× ( j − l)m2
( j−l)n

s 2− jn∥1l∥Lβ′(·)(Rn)∥1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

≲ ∥Λ∥m∗ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

2 j[α∞−n( 1
β′∞
− 1

s )]γ(1+ζ)

×

( −1∑
l=−∞

2lα(0)∥ f 1l∥Lβ(·)(Rn)( j − l)m2l[n( 1
β′(0)−

1
s )−α(0)]

)γ(1+ζ)) 1
γ(1+ζ)

.
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Since α∞ < n( 1
β′∞
− 1

s ) and α(0) < n( 1
β′(0) −

1
s ), by Hölder’s inequality, we get

U21 ≲ ∥Λ∥
m
∗ sup

ζ>0
sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

2 j[α∞−n( 1
β′∞
− 1

s )]γ

×

( −1∑
l=−∞

2lα(0)∥ f 1l∥Lβ(·)(Rn)( j − l)m2l[n( 1
β′(0)−

1
s )−α(0)]

)γ(1+ζ)) 1
γ(1+ζ)

≲ ∥Λ∥m∗ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ
( −1∑

l=−∞

2lα(0)∥ f 1l∥Lβ(·)(Rn)

× ( j − l)m2l[n( 1
β′(0)−

1
s )−α(0)]

)γ(1+ζ)) 1
γ(1+ζ)

≲ ∥Λ∥m∗ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ
( −1∑

l=−∞

2lα(0)γ(1+ζ)∥ f 1l∥
γ(1+ζ)
Lβ(·)(Rn)

)
×

( −1∑
l=−∞

( j − l)m(γ(1+ζ))′2l[n( 1
β′(0)−

1
s )−α(0)](γ(1+ζ))′

)γ(1+ζ)/(γ(1+ζ))′) 1
γ(1+ζ)

≲ ∥Λ∥m∗ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
l=−∞

2lα(0)γ(1+ζ)∥ f 1l∥
γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

≲ ∥Λ∥m∗ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
l=−∞

∥2lα(·) f 1l∥
γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

≲ ∥Λ∥m∗ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn).

For U22, using (3.5), (4.4), and 2 jα(x) ≈ 2 jα∞ , we obtain

U22 ≲ ∥Λ∥
m
∗ sup

ζ>0
sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

( j−1∑
l=0

2 jα∞∥ f 1l∥Lβ(·)(Rn)

× ( j − l)m2
( j−l)n

s 2− jn∥1l∥Lβ′(·)(Rn)∥1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

≲ ∥Λ∥m∗ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

( j−1∑
l=0

2lα∞∥ f 1l∥Lβ(·)(Rn)

× ( j − l)m2( j−l)[α∞−n( 1
β′∞
− 1

s )]
)γ(1+ζ)) 1

γ(1+ζ)

.
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Since α∞ < n( 1
β′∞
− 1

s ), by Hölder’s inequality, we have

U22 ≲ ∥Λ∥
m
∗ sup

ζ>0
sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

( j−1∑
l=0

2lα∞γ(1+ζ)∥ f 1l∥
γ(1+ζ)
Lβ(·)(Rn)2

(l− j)[n( 1
β′∞
− 1

s )−α∞]γ(1+ζ)/2
)

×

( j−1∑
l=0

( j − l)m(γ(1+ζ))′2(l− j)[n( 1
β′∞
− 1

s )−α∞](γ(1+ζ))′/2
)γ(1+ζ)/(γ(1+ζ))′) 1

γ(1+ζ)

≲ ∥Λ∥m∗ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0−1∑
l=0

2lα∞γ(1+ζ)∥ f 1l∥
γ(1+ζ)
Lβ(·)(Rn)

j0∑
j=l+1

2(l− j)[n( 1
β′∞
− 1

s )−α∞]γ(1+ζ)/2
) 1
γ(1+ζ)

≲ ∥Λ∥m∗ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0−1∑
l=0

2lα∞γ(1+ζ)∥ f 1l∥
γ(1+ζ)
Lβ(·)(Rn)

j0∑
j=l+1

2(l− j)[n( 1
β′∞
− 1

s )−α∞]γ/2
) 1
γ(1+ζ)

≲ ∥Λ∥m∗ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0−1∑
l=0

∥2lα(·) f 1l∥
γ(1+ζ)
Lβ(·)(Rn)

) 1
γ(1+ζ)

≲ ∥Λ∥m∗ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn).

As in the proof of F, using the Lβ(·)(Rn) boundedness of [Λm, µ
ρ

Ω
] (see [31]), we can easily obtain

that

V ≲ ∥Λ∥m∗ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn).

Now we estimate W. Observing that for l ≥ j + 1, if x ∈ R j and y ∈ Rl, it follows that |x−y| ∼ |y| ∼ 2l.
Similar to the proof of U, we have

|[Λm, µ
ρ

Ω
]( f 1l)(x)| ≲

( ∫ |y|

0

∣∣∣∣∣ 1tρ
∫
|x−y|≤t

Ω(x − y)
|x − y|n−ρ

[Λ(x) − Λ(y)]m fl(y)dy
∣∣∣∣∣2 dt

t

) 1
2

+

( ∫ ∞

|y|

∣∣∣∣∣ 1tρ
∫
|x−y|≤t

Ω(x − y)
|x − y|n−ρ

[Λ(x) − Λ(y)]m fl(y)dy
∣∣∣∣∣2 dt

t

) 1
2

≲ 2−ln
∫

Rl

|Λ(x) − Λ(y)|m|Ω(x − y)|| f (y)|dy

≲ 2−ln
(
|Λ(x) − ΛB j |

m
∫

Rl

|Ω(x − y)|| f (y)|dy

+

∫
Rl

|ΛB j − Λ(y)|m|Ω(x − y)|| f (y)|dy
)

≲ 2−ln∥ f 1l∥Lβ(·)(Rn)

(
|Λ(x) − ΛB j |

m∥Ω(x − ·)1l∥Lβ′(·)(Rn)

+ ∥(Λ − ΛB j)
mΩ(x − ·)1l∥Lβ′(·)(Rn)

)
.

(4.5)

As argued in (3.7), by Lemma 11, we have

∥(Λ − ΛB j)
mΩ(x − ·)1l∥Lβ′(·)(Rn) ≲ (l − j)m∥Λ∥m∗ ∥1Bl∥Lβ′(·)(Rn). (4.6)
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Thus, it follows from (4.5), (4.6), and Lemma 5 that

∥[Λm, µ
ρ

Ω
]( f 1l)1 j∥Lβ(·)(Rn)

≲ 2−ln∥ f 1l∥Lβ(·)(Rn)

(
∥Ω(x − ·)1l∥Lβ′(·)(Rn)∥(Λ − ΛB j)

m1 j∥Lβ(·)(Rn)

+ ∥(Λ − ΛB j)
mΩ(x − ·)1l∥Lβ′(·)(Rn)∥1 j∥Lβ(·)(Rn)

)
≲ 2−ln∥ f 1l∥Lβ(·)(Rn)

(
∥Λ∥m∗ ∥1l∥Lβ′(·)(Rn)∥1B j∥Lβ(·)(Rn)

+ (l − j)m∥Λ∥m∗ ∥1 j∥Lβ(·)(Rn)∥1Bl∥Lβ′(·)(Rn)

)
≲ 2−ln∥ f 1l∥Lβ(·)(Rn)(l − j)m∥Λ∥m∗

(
|B j|

|R j|
∥1 j∥Lβ(·)(Rn)∥1l∥Lβ′(·)(Rn)

+
|Bl|

|Rl|
∥1l∥Lβ′(·)(Rn)∥1 j∥Lβ(·)(Rn)

)
≲ (l − j)m∥Λ∥m∗ ∥ f 1l∥Lβ(·)(Rn)2−ln∥1l∥Lβ′(·)(Rn)∥1 j∥Lβ(·)(Rn).

(4.7)

By Minkowski’s inequality, we get

W ≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

( ∞∑
l= j+1

∥2 jα(·)[Λm, µ
ρ

Ω
]( f 1l)1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

+ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

( ∞∑
l= j+1

∥2 jα(·)[Λm, µ
ρ

Ω
]( f 1l)1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

=: W1 +W2.

For W2, using (3.8) and (4.7) we obtain

W2 ≲ ∥Λ∥
m
∗ sup

ζ>0
sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

( ∞∑
l= j+1

2 jα∞∥ f 1l∥Lβ(·)(Rn)

× (l − j)m2−ln∥1l∥Lβ′(·)(Rn)∥1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

≲ ∥Λ∥m∗ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

j0∑
j=0

( ∞∑
l= j+1

2lα∞∥ f 1l∥Lβ(·)(Rn)

× (l − j)m2( j−l)(α∞+ n
β∞

)
)γ(1+ζ)) 1

γ(1+ζ)

.

(4.8)
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Therefore, since α∞ > − n
β∞
+ λ, combining (3.10) and (4.8), we get

W2 ≲ ∥Λ∥
m
∗ ∥ f ∥MK̇α(·),γ),θ

λ,β(·) (Rn) sup
ζ>0

sup
j0∈Z

2− j0λ
( j0∑

j=0

2 jλγ(1+ζ)

×

( ∞∑
l= j+1

(l − j)m2( j−l)(α∞+ n
β∞
−λ)
)γ(1+ζ)) 1

γ(1+ζ)

≲ ∥Λ∥m∗ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn) sup

ζ>0
sup
j0∈Z

2− j0λ
( j0∑

j=0

2 jλγ(1+ζ)
) 1
γ(1+ζ)

≲ ∥Λ∥m∗ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn).

For W1, using the Minkowski inequality we obtain

W1 ≲ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

( −1∑
l= j+1

∥2 jα(·)[Λm, µ
ρ

Ω
]( f 1l)1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

+ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

( ∞∑
l=0

∥2 jα(·)[Λm, µ
ρ

Ω
]( f 1l)1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

=: W11 +W12.

The estimate for W11 is derived similarly to W2, but with the substitution of β∞ with β(0) and using
the condition α(0) > − n

β(0) + λ.

For W12, using (3.11) and (4.7), we have

W12 ≲ ∥Λ∥
m
∗ sup

ζ>0
sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

( ∞∑
l=0

2 jα(0)∥ f 1l∥Lβ(·)(Rn)

× (l − j)m2−ln∥1l∥Lβ′(·)(Rn)∥1 j∥Lβ(·)(Rn)

)γ(1+ζ)) 1
γ(1+ζ)

≲ ∥Λ∥m∗ sup
ζ>0

sup
j0∈Z

2− j0λ
(
ζθ

−1∑
j=−∞

( ∞∑
l=0

2lα∞∥ f 1l∥Lβ(·)(Rn)2
j(α(0)+ n

β(0) )

× (l − j)m2−l(α∞+ n
β∞

)
)γ(1+ζ)) 1

γ(1+ζ)

.
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Since α(0) > − n
β(0) + λ and α∞ > − n

β∞
+ λ, using (3.10) and 2−γ(1+ζ) < 2−γ, we get

W12 ≲ ∥Λ∥
m
∗ ∥ f ∥MK̇α(·),γ),θ

λ,β(·) (Rn) sup
ζ>0

sup
j0∈Z

2− j0λ
( −1∑

j=−∞

2 j(α(0)+ n
β(0) )γ(1+ζ)

×

( ∞∑
l=0

(l − j)m2−l(α∞+ n
β∞
−λ)
)γ(1+ζ)) 1

γ(1+ζ)

≲ ∥Λ∥m∗ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn) sup

ζ>0
sup
j0∈Z

2− j0λ
( −1∑

j=−∞

2 j(α(0)+ n
β(0) )γ(1+ζ)

) 1
γ(1+ζ)

≲ ∥Λ∥m∗ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn) sup

ζ>0
sup
j0∈Z

2− j0λ
( −1∑

j=−∞

2 j[α(0)+ n
β(0)−λ]γ(1+ζ)2 jλγ(1+ζ)

) 1
γ(1+ζ)

≲ ∥Λ∥m∗ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn) sup

ζ>0
sup
j0∈Z

2− j0λ
( −1∑

j=−∞

2 j[α(0)+ n
β(0)−λ]γ2 jλγ(1+ζ)

) 1
γ(1+ζ)

≲ ∥Λ∥m∗ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn) sup

ζ>0
sup
j0∈Z

2− j0λ
( j0∑

j=−∞

2 jλγ(1+ζ)
) 1
γ(1+ζ)

≲ ∥Λ∥m∗ ∥ f ∥MK̇α(·),γ),θ
λ,β(·) (Rn).

This proves Theorem 9. □

5. Conclusions

In this paper, we prove the boundedness of the parametric Marcinkiewicz integral and its higher-
order commutators with BMO symbols on grand variable Herz-Morrey spaces. These results also
extend to grand variable Herz spaces, including when α(·) is constant.
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