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1. Introduction

Let S"! be the unit sphere in R*(n > 2) with the normalized Lebesgue measure do- = do(x’), where

/

x' =7 forany x # 0. Let Q € L'(S") be homogeneous of degree zero and satisfy

f Q(x)do(x") =0, (1.1)
gn-1

Then, the parametric Marcinkiewicz integral 1, is defined as

“11 Q
%mw:u:—f 20D fyy

g x—y|l<t |X y|”_p
where 0 < p < n. If p = 1, then 4, is just the Marcinkiewicz integral yq introduced by Stein in [27].
Hormander [11] proved that if Q € Lipa(S”‘l) with 0 < a < 1, then ,ug is bounded on L”(R") for
1 < p < oo. Ding, Lu, and Yabuta [6] extended this result for p = 2 to Q € Llog*L(S"™!), while
Al-Salman [2] showed L”(R")-boundedness of 1, for any 1 < p < co with Q € H'(S"™).
The space BMO(R") consists of all locally integrable functions f such that

2dt)

WH—mefvw faldy < oo,
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where and below B = B(x,r) :={z€ R": |[x—z] < r}, and fp := B f f(H)dt. Given a natural number
m and A € BMO(R"), the higher-order commutators [A"™ ,,uQ] generated by yQ and A are defined as
2 1

follows:
m P _ * g 2
A" 1@ = fo o)

These commutators are of interest in various situations, as discussed in [18,22,31] and their references.

In recent years, there has been significant progress in the development of the theory of variable
exponent function spaces. These spaces are of particular interest due to their applications in partial
differential equations [7], electrorheological fluids [25], and image restoration [3]. The concept of
variable Lebesgue spaces was first introduced by Orlicz [23], but it was Kovacik and Rakosnik [17]
who initiated the systematic study of these spaces and the corresponding variable Sobolev spaces.
Subsequently, a variety of other function spaces and classical operators in harmonic analysis have been
extensively investigated with variable exponents. See, for example, [10,21,33].

The Herz spaces K, (R") and K;”(R") are crucial in harmonic analysis and partial differential
equations. These spaces provide an effective substitute for the ordinary Hardy spaces in the study of
singular integrals. They are also important in the regularity theory for elliptic and parabolic equations
in divergence form, see [24]. Izuki [12, 13] introduced Herz spaces with variable exponent ¢ and
Almeida and Direhem [1] investigated Herz spaces with variable exponents ¢(-) and «(-), and obtained
boundedness results for a broad range of sublinear operators on these spaces. The most generalized
Herz spaces K ()” O(®R") and K“( PO (R were recently introduced in discrete and continuous settings
by Izuki and N01 [14] and Samko [26], respectively, with all three main indices being variable
exponents.

The grand variable Herz space K“()p "(R") introduced by Nafis et al. [20] represents a significant

extension of the variable Herz space K“()p (R™. In [20], the authors established the boundedness
a()p)G

1 f| S A ) = AT Fy)dy

g x—y|<t |X )’|" R

of the Marcinkiewicz integral o on the space K (R™). The grand variable Herz-Morrey space,
introduced by Sultan et al. [28-30], extends the grand variable Herz space, and they showed the
boundedness of higher-order commutators of the Marcinkiewicz integral operator and Hardy operators.
Inspired by previous works [20, 29, 30], it is natural to consider the boundedness of the operators ,ug
and [A™, /sz] on grand variable Herz-Morrey spaces. It is noteworthy that, even in the case where «(-)
is constant, the results presented in Theorems 6-10 are still new.

In this paper, Z represents all integers. 15 denotes the characteristic function of a measurable set E.
p’(+) is the conjugate exponent defined by p’(-) = [%. C represents a positive constant that may vary
in different contexts. ¢ < ¥ means ¢ < Cy, and ¢ = y means ¢ < Y < ¢.

2. Preliminaries

We start by briefly discussing the variable Lebesgue spaces; for more details see the recent
monographs [4,5,15,16].

Let g(-) : R" — [1, c0) be a measurable function. We assume that

1 <g-<q(x)<gy <oo,
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where g_ := ess ian g(x) and g, := esssup g(x). The variable Lebesgue space L/“(R") consists of all
xeR” YeER”?
measurable functions f defined on R” such that

Lo (f) == | [f(0)1"¥dx < co.

Rn

This space is a Banach space endowed with the norm
_ ) f
ANl e @n = infp > 02 Ly . <1\

If g(x) = g is constant, then LY9(R") = LY(R") is the standard Lebesgue space.
The set P(R") consists of all measurable functions ¢(-) satisfying g_ > 1 and g, < oo. If g(-) €
P(R"), then the generalized Holder inequality

IFCgCOldx < Il fllzsor@nllgll o g 2.1

Rﬂ

holds for every f € LY)(R") and g € LY O(R"), see [17].
For f € L, (R") and x € R", the Hardy-Littlewood maximal operator M is defined by

1
Mf(x) = sup — lfWldy.

r>0 rt B(x,r)

The set B(R") consists of all measurable functions g(-) € P(R") satisfying the condition that M is
bounded on LIO(R").
A function @ : R" — R is locally log-Holder continuous if there exists a constant Cy,, > 0 such that

Cio 1
D(x) — DO < ———2—, |x—y/ <=, xyeR" (2.2)
—log|x -yl 2
If, for some @, € R, there holds
|D(x) — D |<& eR" (2.3)
“'~ log(e + |x|)’ ’ ’

then we say @(-) is log-Holder continuous at infinity.

The class P}gg(R”) consists of all exponents g(-) € P(R") that satisfy the conditions (2.2) and (2.3),
where go, 1= limjy. g(x). It is worth noting that when g_ > 1, g(-) € Pﬁg(R”) if and only if ¢'(-) €
POYR"). Additionally, if g(-) € PE(R"), then the boundedness of the Hardy-Littlewood maximal
operator M on L/O(R") implies that g(-) € B(R"), see [5, Theorem 4.3.8].

In the following, we denote B; = {x € R" : |x] < 27, Rj=B)\B;1and1; =1, j € Z.

Definition 1. Let a(:) : R" — R with a(-) € L*(R"), 0 <y < oo, and B(-) € P(R"). The variable Herz

space Kg((f))’y(R") consists of all f € Lﬁfg(R"\{@n}) such that

b 1/y
- Jja(-) Y
Wl = (D RO F L) < o0,

j:—oo

with the usual modifications when y = oo.
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Obviously, if a(-) = a is constant, then I'(/;’((.'))’Y(R”) is equivalent to Kg(’.y)(R") as defined in [12,13]. In
the case where both « and 3 are constant functions, the Herz spaces K7(R") are equal to Kg’y(R”) as

BE)
defined in [19].

Definition 2. Let a(:) : R" —» R with a(-) € L*(R"), 0 < y < 00,60 > 0,0 < A < oo, and B(-) € P(R").

The grand variable Herz-Morrey space M Kizz’j)’e(R") consists of all f € Lﬁ(g(R”\{ﬁ‘n}) such that

Jo 1

s Pl (1+:) y(1+0)
Wl = supsup2 (¢ 120 rL0 )™ < o
MK/L/;(.) (R ) 4V>0 j()EZ J 1A( )(R )

Jj=—0

If A = 0, then grand variable Herz-Morrey space MK;;%)V)’B

space KZ‘;(FS)’V)’G(R"). The result in [32, Proposition 2.4] shows that variable Herz space I'(,,;f((_'))’y(R”) isa

subset of grand variable Herz space Kg((f))”)’e(R”).

(R™) reduces to grand variable Herz

3. Boundedness of the parametric Marcinkiewicz integral

In this subsection, we show that the parametric Marcinkiewicz integral 4, is bounded on grand
variable Herz-Morrey spaces. As a result, we also establish the boundedness of this operator on grand
variable Herz spaces. We first present some lemmas necessary for proving the main theorems.

Lemma 3. IfB(-) € PER") and T > 1, then we have

| n
—R < |[1porr)\BoORNBO®R) < VORFO, 0<R<1,
Yo

and

| n
—RP> < |[LporpB0R0OERY < VR,  R21,

Voo

where vy, v > 1 are dependent on T but are independent of R.

Lemma 4. If ¢q(-) € PR"), p > q., and $ = @ + ;—7, then we have

Ifgllao@ny < Wfllooenllgllr@n
forany f € L'"O(R") and g € LP(R").

The Lemmas 3 and 4 are shown in [26] and [5], respectively. We refer to [zuki [12] for the following
Lemma 5.

Lemma 5. If q(-) € B(R"), then we have for all measurable subsets A C B,

Mallco@y 1Al allLeo@n (lAl)"
= ) T (),

ILallzoo@n ~ IBI” I1sllao@ey = \IB|
where « is constant with 0 < k < 1.

Our main results can be summarized as follows.
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Theorem 6. Letp > n/2, 0>0,0< A< o0, 1 <y < oo, al-),B(-) € PLUR"Y), and Q € L*(S"),s >
By If satisﬁes

) — 1
(1) 4= 5 < a(0) < Gzl =),
(u)/l——<aoo<n(——§ ,
then the parametric Marcinkiewicz integral ,u‘é is bounded on M Kj;i )7) (R"). Moreover, there exists a

constant C > 0 such that for any f € MKj(ﬁz ?) “Rm),

o
a8 o < C P o+
”/JQ(f)”MK:ﬁJ (R™) ||f||MKﬂ,ﬂ(-;/ (RY)

Remark 7. For any f belonging to the grand Herz-Morrey spaces with variable exponent, we can
demonstrate that these spaces are embedded into certain weighted Lebesgue spaces with Muckenhoupt
weights. This conclusion is derived by employing the ideas from the grand Morrey spaces as outlined
in (5.1) of Ho [8] and from the Herz-Morrey spaces with variable exponent discussed in (26) of
Ho [9]. Consequently, the definition of ul,(f) is established based on the corresponding definition
of the parametric Marcinkiewicz integral operators on the weighted Lebesgue spaces.

If A = 0, slight modifications to the proof of Theorem 6 yield the following result.

Theorem 8. Letp > n/2, 0>01<y<oo a(),B() € PR, and Q € LS(S™™Y), s > B)s. If
n 1 1 .
,3(0) < 04(0())<) ;1( 7O ) and —5n <l < n([z — ), then there exists a constant C > 0 such that for
any f € Kg() PE(RY),

0
||ﬂQ(f)||Kg(())y)g(R”) < CHf”K;(())V)H(Rn)

Proof of Theorem 6. Let f € M K;’(ﬁ)( ?) %(R™). We decompose

f@ =) foum= > fix.
[=—c0 [=—0c0

By Minkowski’s inequality, we have

e
Jo ﬁ
—jod[ #0 ia(- (1+0) +
= supsup2 (¢ 3 1M LI,
>0 joeZ =
Jo

‘ YA+O\ 5t
< sup sup 2_1"’1( Z ( Z 12790 e (fll)lj”lﬁ(')(R")) )

>0 jo€Z

I

1
{Evs)
+supsup2-(¢* > o, )

>0 joeZ

Jj=—00
. oo YA+ON s
+supsup2 (2 S (D IR o) )
>0 joeZ =0 I=jt1
= FE+F+G.
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For F, we have

1
i o '}/(1+() y(1+0)
F < sup sup2 Jo ( Z ||2Ja()ﬂg(flj)1J”lﬁ(>(R”)
>0 joeZ
7D
1 1 y(I+{
+ sup sup 27 ({ Z []2/C) p(flj)ljllylj(;<.;r(§,l))
>0 joeZ
j=0
= Fl + Fz.

For F, by using the boundedness of 1, on I#O(R") (see [31]) and 2/ ~ 2/*® for j < 0 and x € R,

it follows that

Fi <

1
—jod[ #6 Opy(1+4) y(i+g 0
sup S.up2 Jo (f Z 2]0( )y(1+¢ ||,Ug(fll)11”1ﬁ<>(R”)
§>0 JOGZ J——OO
1
i jaOyy(1+0) y(1+g) |7
< supsup2#1(¢ Z R TA VA
>0 joez
_id () 1 rA+0 D
< supsup 27/ Z 127 FL41 0
. ®")
>0 joeZ j=—0
<

For F,, when j > 0 and x € R;, we observe that 277 ~ 2/%> and obtain

F,

y(1+4)
LFORM)

1
y(1+0)
)
1
)y<1+£)

< sup sup 2704
>0 joeZ

1
)mm

(¢ S 2t (11

j=0

y(1+4)
POR?

N

sup sup 27/
>0 jo€Z

(¢ Zzw“f)nfl,n

(¢ SN

j=0

y(1+{)
LEORM)

N

sup sup 2704
>0 joeZ

N

| |f| |MKZ;?§,)'€(R") .

Combining the estimates above, we get

F < ()P o -
= ”f”MKi;:;/)H(R")

To estimate E, we split the operator into

S| Q(x —y) 2dr\z
P _
1)) < fo iy f| o] T)
<11 Q(x—y) 2dt\>
— dy
+(j|;| w jl;c—yl<t lx — Y|"_pf@) )
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=1L +D.
When! < j—1,x € R;, and y € R;, noting that |[x — y| ~ [x] ~ 2/, we use the mean value theorem and
obtain

yllx — &yl Iyl
< ,
D

Thus, by Minkowski’s inequality for integrals, we get

Q dt \z
ns [ EE D [ t)dy
|

e =7 = 7| <

for some & € (0, 1).

R, lx — |" L X—yI<t,|x[=1 ot
Q(x — y)|
< | 22Ol -y I |
R lx=y"r
1
y Z
< f Q0 = WIFOI—2—dy
R, |X - y|n+2

< 2o f Q= IOy
R

< 2727 o IR0k = Wil
Similarly, we get
L < 2_jn||f11||1ﬁ<~>(Rn)||Q(x = llpogn)-
Therefore, we have
(SIS 2771 f Ll so@n I = Il eny- (3.1)
_ 1 + 1

/J”(X) r(X)
then, using Lemma 4, Lemma 5, and the fact that |[1p|[0®n ~ 2‘?||1 Bllrogn (see [31]), we obtaln

1Q(x - ')lllllﬁ’<~)(R")
S Il ro@nlQx = )1l Ls@n)

Jx]+2!

Since s > (8')., it follows that there exists a variable exponent r(-) € Plog (R™) such that

1
_n INE N on— s
<2 Ml [ [ 1000Pdoe de)
-2t Jer
G=Dn 3.2)
S 275 19l zsen M g o @)
< g IR/l )
|B)]
G=Dn
<275 Ul oy
By Minkowski’s inequality, we get
4 il Y40\ s
E < supsup2h(¢¢ Z (5 1RO o) )
50 joeZ ol el
=1 YA+O\ 5t
+supsup 2 (¢" Z( > I P o) )
>0 joeZ J=0 =00
= E| + E,.
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For E;, Lemma 3 yields

||11||Lﬁ’<~>(R")||1j||Lﬁ<'>(R") < 2FO 250 < QM FO) (3.3)

Using (3.1), (3.2), (3.3), and 2/°® = 2720 we obtain

-1 '—

sup sup Z_M( Z ( Z 277N 1l o gy

>0 joez

7\

E;

j=—00 [=—c0

Gn Y+ 7177
X252 ||11||[/3’(')(Rn)||1j||1ﬁ('>(]R”)

-1 j-1
sup sup 2_’“(59 2 ( 25 2O Ul

>0 joeZ jm—o0 I=—co

N

(140)\ =
5« U-DIaO) (7l - L) )y ¢ )7““)

For simplicity, we set § = a/(0) — n(m —1). Since 279 < 277 and § < 0, it follows from Holder’s
inequality that
— 7, 1
E, < supsup?2 JM( Z ( Z 21O+ £1, HZ/(;(T(H{RJ" (i~ 1>6y<1+4>/2)
50 joeZ =\ e

L ,
( | 2(/—1)6(y<1+z)>'/Z)Y(HO/(Y(HO) )7“1‘)
x( 2] ‘

< -l 1
—Jjod[ 70 la(0)y(1 1+0) _Dv(1+0)/2 D
sup sup 27 ({ E 2O+ fll”;;wia ; E‘ A (=DEY(1+0)/ )

<
>0 joeZ = ]
S = TTiErs
) _ i
< sup sup 2—10/1( {9 Z 21&(0)7(]+§’)” f11||z(3<1;r(§,,) Z X ,—1)5y/2)
>0 joeZ = =
Ttz
—jod I 1+ YU
S supsup 2" ( Z 12 ¢ )fl ”Zﬁ()(R” )
>0 jo€Z Ie—eo
<

For E,, Minkowski’s inequality implies that
Jo

- YI+0\ 5755
supsup2 (¢ 31 37 I a1 e )

>0 joeZ

E,

A

jO [=—c0
Jo . J-1

. - YI+0\ 5t
#supsup2 (2 (VIR o) )

>0 joezZ =0 =0

. E21 + E22.
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For E,;, by Lemma 3, we have

_n_ _jn =
1Ll 0@l jllpo@ny S 28028 < 27126 270,

Using (3.1), (3.2), (3.4), and 2/°™ ~ 2/%_we obtain

Ey S supsup2” 101(5 Z( Z 27| 1l oy

>0 joeZ

[=—c0

Gbn oy YI+O\ 5
x 25" ||11||m<.><Rn)||1,»||lﬁ<}><Rn)) )

—ae]y(1
< supsup2- ’M(g ZZ Jn(g-—H-awly(1+0)
>0 joeZ

-1

YU+O\ 55
% ( Z 2la(O)||fll||l/3()(R )2 [a(0)— ”(ﬁ’(O) J)]) ) .

I=—c0

Since @, < n(— - —) and a(0) < n(== — %), by Holder’s inequality, we get

1
B0)

E>; < supsup2” Joﬂ(g Z 2 —Jln(g-=5)=awly
>0 joeZ 0

(+O\ 5057
( Z 2la(o)||f11||1ﬁ<>(R 2~ MeO)=n(g75;- a)])y ‘ )y(l o

N

>0 joeZ

I=—00
-1

—jod[ #0 1a(0)y(1+40) y(1+4)
supsup 27 )" 200 - e )

>0 joeZ

A

|=—0c0

-1
x ( Z 2—1[a<o>—n(m—§)](y<1+4>>’

[=—c0

)y<1+4>/(y<1+§>>' )W‘o

1
—Jjod 1a(0Yy(1+) y(1+o )0
supsup2 (gt 3" 20mio o |

=
50 joez =
(11 0
< supsup 2 (¢ Z 120 1,
750 joeZ
=

| |f| |Mkj;zj§/)’g(R") .

For E;,, Lemma 3 gives

(=jn

Ll o @ lILillpo @y < < 2Kk <2 R

. YI+O\ 5155
sup sup 2_”1( ( Z 21O £ oy 21O " 3)]) )

(3.4)

(3.5)
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Using (3.1), (3.2), (3.5), and 2/°™ ~ 2/%_we have

Jo

j-1
Ex < supsup2 (20 (3 2111l e
=0

>0 joeZ =0

G=bn Y+ 5155
x 252 f"||1,||m<.><Rn)||1,||U«»(Rn)) )
j-1

2 I (U= pin(— Y- YV FOVED
< supsup2 (¢ Z(ZZ%HJ‘IIHWW )

>0 joeZ =0

Since @, < n(— — 1) and 2770 < 277, we use Holder’s inequality and obtain
o (= DinG=~Haaly1+0)2
—jod[ #0 laey(l (1+4) Dln ~ oo Jy(1+¢
E» < supsup2™”° (g” Z ( Z a1+ £1, ||Z;<><Rn 2 )
é’>0 j()GZ 1:0 1=0

Vi s 1
X ( Z =PI~ Dl (140 /2)7“*0/ 1+ )y(lm

Jo—1

supsup 2~ 10/1(4 Z 2lam7(1+()”f1 ”;’}(;;r(gn
>0 joez

7

% Z 2(l—j)[n([i—%)—aw]y(1+§)/2)y“+-‘)
Jj=l+1

Jo—1

Jo 1
= (L —H—as]y/2 )70+
sup sup 2~ m({ Zzlam)’(H{)” 1, ”Zf(f:-;(%n) Z =it ~b-as ] )

>0 jo€Z =i+l

7

Jo—1

1
1 P l+o) \70D
sup sup 2~/ ({ Z 120 £1, ||Z/(;(>(§n )

>0 jo€Z

A

7

||f| | MK;’;}*;’)'Q(RH) .

Next, we estimate G. Observing that for / > j + 1, if x € R; and y € R;, it follows that |x — y| ~

2!. Similar to the proof of E, we have

b Q(x-y) 2dr\z
L _
oo < ( [ f| o] )
1 Q(x—y) 2dr\b
+(f|y| * L—m |x - )’|"_pﬁ(y) )

<2 f Q0 = Py + 27" f [0 = IOl
R R

I
< 277Nl s 120 = )Ll ey -

Iyl ~

(3.6)
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As argued in (3.2), we have
1Q(x — ')ll”lﬁ’(-)(R’l)
N 2041 1
< 2_f||11||Lﬁ'<~)(Rn)(f f 1 |Q(Y')|sd0'(y,)Qn_ldg)
0 s
S € sl o gy -
By Minkowski’s inequality, we get

-1

. Y4\ 55
sup sup2-7(¢* ) (3 RO o))

G <
>0 joez I=jt1
. 2o Y1+O\ 515
+ supsup 27/ ( Z( Z 1127 (F1DL | o gy ) )
¢>0 joeZ Jj=0 I=j+1
=: Gy + G,.

For G,, by Lemma 3, we have

(k—Dn
1Ll 50 oy 1l [0y S 2 0% s 2M2m

Using (3.6), (3.7), and (3.8), we obtain

Jo o0

G, < supsup Z_M(fe Z( Z 27| f Lyl ey

$>0 joez j=0 " I=j+1

P YU\ 51z
X2 ||1,||m.)(Rn)||1j||m4>(Rn>) )

Jo )

—io[ 4+ I (ediawt 29 ) T g
< sup sup 277 (g Z( D7 2| o 20 ) ) .

>0 joez j=0 " I=j+1

On the other hand, we note that

1
e lawy(1 (1+¢) y(1+0)
1 Lllon = 27 (2“ MO LT, )

! _1
~lae Jaoy(1+4) y(1+0) y1+0
s 3 2L

j:—oo
d (11 )
P ; y(I+¢
S (Y LR T Vv
Jj=—0

—lae Al __0
RY) l Y(HD”f”MKZ;B,)'e(R”)'

(3.7)

(3.8)

(3.9)

(3.10)
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Therefore, since @ > — ﬂlm + A, combining (3.9) and (3.10), we get

Jo oo

—jod jdy(1+0) (j=D(@o+7=-2) o ﬁ
G < U sopp 3320709 5 ez )
A,5() >0 joeZ = =

JO _1
. . Y1+
S Fll g ge©9:8 oy SUP SUP 2 Jod E 21+
MK/U?(') &™) 0 jneZ
>0 jo j=0

For G, Minkowski’s inequality implies that

-1 -1

. _ YU+O\ s
supsup2 (¢ S (3 IR flpoen) )

>0 joez e

Q
A

-1 00

+ sup sup 2""“({6 Z (Z ||2ja(')/l§2(f11)1j||Uf<»)(R")
1=0

)7( 1 +§) ) Y 11+g)
0 joez

Jj=—00

=: Gy +Gpa.

The estimation for G; proceeds analogously to that of G,, with the substitution of 3., by (0) and

the utilization of the inequality a(0) > — % + A.

For G,, by Lemma 3, we get

dn o jn n__=ln
||11||lﬁ/<.)(Rn)||1j||l,e<.>(Rn) < 28280 < 2MMDE0 DA 3.11)

Using (3.6), (3.7), and (3.11), we have

-1 )

G2 S supsup 2‘]’“(49 > (D2 O Al

>0 joeZ j=—00 [=0

" YA+O\ 55
X2 ||11||W.><Rn)||1,~||U3<-)<Rn>) )

-1 %)
< supsup2 (2 3 (2%l
j=oo " 120

>0 joeZ

YA+ 5
% 2j(<z(0)+ﬁ)2—l(aw+,ﬁ)) )’“ o
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Since a(0) > — 555 + 4 and @w > —3- + 4, using (3.10) and 274D < 277 we get

,3(0)

-1

Gp < ”f”MK““”"(R" sup sup 2~ Jo/l( Z @O+ 5l y(1+0)

>0 joeZ

Jj=—00

«© . Y4\ 55
() )T
=0

S Mgy eomaqen, SUP sup 27 jol
750 joeZ

1

Z @0+ (0>)y(1+:>)’“*“

J——OO

1
A Z a0+ gl =A1y(1+0) j,{7(1+§))7’(1+£)

]——OO

Z L0+ 55 =l ]/ly(1+{))7<1+(>

Jj=—o0

||f||MKn<me(Rn sup sup 27/

(
(
[

S My eroen, SUP sup 27 jol
>0 jo€Z

~.

jo

1
; Ya+D
< f”MK"(”) O sup sup 2~Jjod 21/17(1+{))

>0 joeZ

—00

This proves Theorem 6. O
4. Boundedness of higher-order commutators of the parametric Marcinkiewicz integral

In this subsection, we prove that the higher-order commutators [A™, i, ] generated by 5, and BMO
functions are bounded on grand variable Herz-Morrey spaces. We also show that these operators are
bounded on grand variable Herz spaces.

Theorem 9. Let A € BMOR"), meN,p>n/2,0>0,0<A<00,1<y<oo,a(),B()€ Pff,g(R"),
and Q € L“(S"‘l) s > (B).. If a satisfies
- 1
(l) A- ,B(O) < (1’(0) < n(ﬁ/(O) - })’
(u)/l——<a'oo<n(——l ,

N

then the higher-order commutator [A", 1] is bounded on MK OVYR™). Moreover, there exists a

AB8()
constant C > 0 such that for any f € MK;E,; )7) YR,

m P m
”[A ’ﬂQ](f)”MK;X"T)’Q(R”) < C”A“* “f”MK‘;;zg’)’g(Rn)-

If A = 0, we can obtain the following result using a proof similar to Theorem 9.

Theorem 10. Let A € BMOR"), m € N, p > n/2, 0 > O 1 <y < oo a(),B() e Plog(R”) and
Qe LS, s > @), If—[ﬁ < a(0) < n(ﬁ 1) and — 2 < @y < n(— - —) then there exists a

constant C > 0 such that for any f € Kg(()) PERm,

m P m
A" Mgt zny < CHAIZIA gooa e
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The following lemma is due to Izuki [13].
Lemma 11. Let A € BMO(R"), j > [, and j,l,m € N. If B(-) € B(R"), then we have

1
sup —————[I(A = Ap)"1llp0®n = A,
e |118llp0 @

and

1A = Ap) " 1p llpo@n < (= D™ AN g Nl @n)-

Proof of Theorem 9. Let f € MKj;z )7) %(R"). We decompose

f@ = L@ = )" fitx).
I=—co =0

It follows from Minkowski’s inequality that

m P
||[A ’ﬂQ](f)”MK’i(ﬁz?)g(Rn)

Jo I
. . y(1+0)
= sup sup TM(f > ||2<’“(')[A’”,ug](f)ljllﬁf;‘ggn))

>0 joezZ
. oo YA+ON s
<supsup2 (¢ )" (3 IOIA I o) )
>0 joez

j:—oo [=—00

1

) y(a+0)
+ sup sup 2_’“( Z ||210(>[A’",yQ](f1,)1]||Z/(;>+(§n )

>0 jo€Z

J——DO
, Jo o o YA+O\ 5
+ sup sup 2—10/1({9 Z ( Z ||2Ja(.) [Am,/lg](fll)lj”lﬁ(')(R”)) )
>0 joeZ jm—co “l=jtl
=U+V+W

For U, we have

" B! Q(x—y) "
i< (| f| A Ay

(L

= Ji1+ /s

2a’t)i
dt)5

When!/ < j—1,x € R;, and y € R, as in the estimation of U, using Minkowski’s inequality and the
generalized Holder’s inequality, we obtain

1 Q
1 f| SV A (o) = AT i)y

i x—y|<t |x yln R

dt \2
ss [ A - oo [ ) ay

n—p 20+1
R X = yI"F leoyl<tixizr I
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1

2
lx = [ — x| dy

Q _
< f B =Dl A ) = A O
R

lx — y|*r

< [ 1A= A0IG - DO —dy

|
R |x — y["*2

<2727 | IAG) = AR = DIFOldy

R

Lot S in m
<272 (1A) - Ay f Q= VIFOIdy
R
+ [ 1an = A0IRG - s
R
I=j —in m
< 252 Al ACO ~ A IOk~ Il

+ A = Ag)" Q0= Wil |

Similarly, we have

L s 27 f lzllzﬁo(Rn)(lA(X) — Ap["IQx = )Ll o + IICA — Ap)"Q(x - ')11||U3'(-)(Rn))~ (4.1)

Therefore, we get

A", 1L S 277 Ul (JAG) = A IR = Ml
4.2)
+ A = A" = Ml )

As argued in (3.2), by Lemmas 4 and 11, we have

ICA = Ag)"Q(x = Millpoges)
< A = A" Ul 1 = Yllsany
< IAIZ L Lo IR0 = Wil 43)
< AL 25 Ll 120k = Y llscey

(=

Dn
< 275 I o gy -
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Thus, it follows from (3.2), (4.2), (4.3), and Lemmas 5 and 11 that

||[Am,,uf)](flz)ljllm»(Rn)
< 2_jn||fll||lﬁ('>(R")(”(A = Ag)" 1|l 0@ l1Qx = )l 50 @n)

FIICA = AgY"Qx - ')11||[ﬁr<}>(Rn)||1,‘||m<-><Rn>)

- : Gen
<2 ’"||f11||m<->(Rn)((J = DMIAIE g, po@n 2 Il o gy

(j—hn
125 ||A||T||1B,||m<.)<Rn>||1j||m-)(Rn)

By ot |B]
< 27 Ul o (G = DA (I |||1]||U3<)(R")||1llllﬁ’(>(]R")
J
| Il

IRI
(j=bn .
S G = D"IAIE2 11 Ul o2~ Il o il o ny-

||1l||[ﬁ()(Rn)”l]”lﬁ()(]gn )

By Minkowski’s inequality, we get

, Looe Y1+0\ 55
U < supsup2 (¢ S (3 1RO I o) )
>0 joeZ jm—o0 =0
, o oo YA\ 5t
+supsup2 (20D (3 IO 1P o))
>0 joeZ P
= U, + U,.

For U, by using (3.3), (4.4), and 2/*™ ~ 2/ for j < 0 and x € R;, we derive

-1 ‘—

Ur < I supsup2(2 3 S 2Ol e

>0 joez

j=—00 [=—c0

I T YI+O\ 51
X (J=D"275 271l o e 1Ll o @y

< IAIEsup sup 2-4(¢* Z ( Z 22O f1 0z

>0 joez

—00  [=—00

1+ s
(- l)m2<j—z>[a(0)—n<ﬁ,}0)—L)])7 e )7“ D

4.4)
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Since ¢ = a(0) — m — 1) < 0and 2779 < 277, we use Holder’s inequality and obtain

-1 '—

< IAII" sup sup 2~ m( Z ( Z 2O I+0) #1140 - t>6y<1+g>/2)

() (R"
>0 joeZ LFO®Y

]——oo |=—00

j-1
o ( Z (j = 1y"r1+0) pU=DS1+0) /2

)y(1+§)/<y(1+§»')m‘+0

-2 -1 I
m —jod[ +0 1a(0)y(1+0) y(1+0) Z G-Doy(1+0)/2 79
S I supsup 2~ (22 3 2O HANLD, 52 )
Jo I=—c0 j=I+1
= ! iz
< m —jod( #0 Z 1(0)y(1+0) y(1+0) (j=hoy/2 )"
< I supsup2 (¢ > 2oy S 2
Jo I=—co j=l+1
1
m —jod lo() g4 1+ |79
< IAI sup sup2-(¢* Zuz e )
>0 joeZ

< ||A||T||f||M1'<;',(ﬁ'H>"’(Rn)'

For U,, Minkowski’s inequality implies that

A

oo Jo ol YI+O\ s
Us < supsup 2~ (g (2 NI D))

>0 joeZ

—00

Jo , Jj-1

, YU+O\ 55
+supsup2” M({‘g Z ( Z [[27%¢) [Am,#fz](flz)ljﬂm»(w)) )

>0 joeZ — =0

=: Uy + Un.

For Uy, using (3.4), (4.4), and 2/*@ ~ 2/% for j > 0 and x € R;, we obtain

U < I supsup 277(¢* Z( S 25 Ll

>0 joeZ 7=0 =0

CmAU YI+O\ 55
X(j=D"2"5"2 ||ll||[ﬁ’(»>(R”)”1j||lﬁ(')(R")

w—n(A--Hy
< IAIL sup sup 27/ ¢* Zzﬂw =D

>0 joez =0
-1

YI+O\ 5157
% ( Z 21(1(0)||f11||zﬁ<->(Rn)(j _ l)mzl[”(ﬂ'l(m‘.ls)“’(o)]) )7(1 ,:)-

|=—c0
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Since @ < n(— — 1) and a(0) < n( ﬁ’%O) — 1), by Hélder’s inequality, we get

§>O JoEZ =0

—1

YA+ON s
8 ( D 2O gy — z>mz’[n<m—é>—a<on) ) D

[=—00

-1
< IAIE supsup 29 (2( " 27Ol

>0 joeZ

|=—c0

140)\ ==
X (j — [y"2""Grm =)= )ﬂ »“)M

-1

< Al sup sup 2‘1'01(59( Z 21O 1+0) 71, ”Zg}@ )

>0 joez Pl

-1
x ( Z (- l)m(y(1+{))’2l[n(%—%)—a’(o)]()’(]"{)),

[=—c0

l D
< A} sup sup 2—101( Z 2O 1+0) 71, ||$>+(§n )
>0 joezZ

)y<1+4>/(y<1+r:>>’ )y(llo

[=—c0

_i I (1+ ) 7(1+[)
< A sup sup 270 Z 120 F LI e
>0 joeZ po®n

< ||A||:<n||f||MK;fB'g)’9(R")'

For Uy, using (3.5), (4.4), and 2/%% ~ 2/% we obtain

Jo , J-l1
Af 0 i@ oo
U < I supsup2 (2" 3 (S 2711 Lllpoer
>0 joez =\

. me =n —jn y(1+0) Y0+0
X(j=D"2"+"2 ”1l||[ﬁ/(<)(Rn)||1j||lﬁ(l)(Rn)

< IAI supsup2(¢* Z ( Z 2| o

>0 jo€Z

1 _1
< (j — fyrat M= )y( +{))WO
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Since @, < n(— - —) by Holder’s inequality, we have
Jo , J-1 . o o
U22 < A sup su 2 Jod zl(lm'y(l+§) 1 y(1+0) 2( J)[n( )_0/00]7( +0)/
p sup [ﬁ()(Rn
>0 joeZ =0 =0
j—l 1 1 ’ 1
X (Z(j - l)m(y<1+g>)'2<z—j>[n(,;m—L>—aw]<y<1+g>>'/z)7( *IGA+D) )v<'+<>
1=0
Jo—1 Jo NI S
< [JA|" sup sup 2~ /oﬂ(gaz Qo (1+0) 1, ||§>+‘O Z 2(1_”[”%‘?)“’W]V(“O/z)“ v
@
>0 joeZ ( )j:l+1
IS $ I-pin(z--1 2 e
< IAJEsup sup 274(¢* Z T VS P A S
§>0 ]QEZ j:l+]
{0 7('1 0)
A I TS :
< Al sup sup 277 (5 IR0 f1, |lﬁ(>(Rn)
>0 joeZ =0

m
S AN sy

As in the proof of F, using the [PO(R™) boundedness of [A”, ,ug] (see [31]), we can easily obtain
that

VS AL Ny

Now we estimate W. Observing thatfor/ > j+ 1,if x € R;and y € R;, it follows that |x—y| ~ [|y| ~
Similar to the proof of U, we have
dt)z
1

a’t)2

M Q(x—y)
m P —
i< ([ [ @ = A iy

.

2™ fR IA(xX) = AWI"IQx = VI )Idy

1 Q
1 f| SV 1A (o) = AT i)y

g x—y|<t |x yln e

< 2"”(|A(x) = Agl" f 1Q(x = IfOIdy -
R,

+ [ g, = A0 O
I
$27"f 11||lﬁ<'>(R")(|A(x) = Ap "1Q0x = )Ll o gy
# A = Ap)" Q0 = Wil )
As argued in (3.7), by Lemma 11, we have
1A = Ap)"Qx = llpogn < = DIAIEITLE o). (4.6)
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Thus, it follows from (4.5), (4.6), and Lemma 5 that

||[Am,ﬂf)](fll)lj”zﬁ(-)(Rn)
< 2-’"||f11||mw)(||ﬂ<x oA = Ag )"l

FIIA = A Y"Qx — -)11||,p<.>(Rn)||1,~||m»)<Rn))

-1
<2 "||f11||m4>(Rn)(||A||'3||11||l,w>(w)||1B,||m-)<Rn>

_ “4.7)
+( - J)mIIAIITI|1j||m<->(Rn)||1B,||m'<-><Rn))
i ——) 5
< 2 Ll = Y IAIE (T o e Pl
J
|B|

T Mo 1o

< (= DM IAIRF Ll o n 2 10l o 1Ll so -
By Minkowski’s inequality, we get
, 1> Y+ 55
W < supsup 2"0’1({9 Z ( Z IIZJQ(')[Am,,llg](flz)ljﬂzﬁ(v(R")) )
{>O j()EZ j:—oo l=./‘+1
_ oo, @ _ YI+O\ 5055
+supsup2 (2 ) (D IO I o) )
¢>0 joeZ =0 I=j+1
= W+ W,.
For W,, using (3.8) and (4.7) we obtain
. jo i .
Wa < AT supsup 2(2 " (37 2/ Ll
>0 JjoeZ =0 I=j+l
ol YU+ 555
X (= "2 Mo losn) )
(4.8)

Jjo o0
<A supsup2#(20 ) (D 271 Ll

>0 joez =0 I=j+1

1 _1
x (I - j)m2(j_l)(<loo+ﬁ:;))7( +§))*/<1+:>.
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Therefore, since @ > — ﬂlm + A, combining (3.10) and (4.8), we get

Jo
Wa < IAIZI e, sup sup 274 - 279010

>0 joeZ =0

- 1 _1
X ( Z (l _ j)mz(j—l)(<zw+l£°_/l))7( +§))7(1+£>

I=j+1

7(1+()
||A||m||f||MKa()y)H gy SUP SUD 2 Jod 2”7(”0
(

>0 joeZ =0

S A m e e
” ”* ”f”MKA,ﬁ(;Y 1 0)
For Wy, using the Minkowski inequality we obtain

. -1 -l , YU+O\ 505
sup sup 2—]0/1(40 Z ( Z ||2](¥(')[Am’#g](fll)lj”m(.)(Rn)) )

Wi <
>0 joeZ jm—oo I=jt1
1 N (S e A 0 VOV
#supsup2 (2 3 (D IRFOIAT I o) )
>0 joeZ P— =0
J (o)
= Wi + Wi

The estimate for W11 is derived similarly to W5, but with the substitution of S8, with £(0) and using

the condition a(0) > — ﬁ(o) + A

For Wy,, using (3.11) and (4.7), we have

-1 00

Wiz < A supsup2 (2" 3" (32O e
>0 joeZ j=—o0 * =0
Y+ s
X U= P2 ool o) )
-1 00
S supsup2 (2" 3" ( 3 20l Ll )
50 joeZ =V

1 _1
(I j)mz_l("wJ’ﬁi’))Y( +§))~/<1+:>
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Since a(0) > — ﬁ(o)

bl
Wia S NIAIY ”f”MKw()w@(Rn sup sup 2~/
>0 joeZ

(S g

-1
Z /(@O 5y (1+0)

>0 joeZ

—1

1
. 0 . y1+D
S A ey SUpsup 2 " 210y~ (13070201+0 )

>0 joeZ

—1

y(1+0)
S A ey SUp sup 2" 21003~ in0120 ) 7

>0 joez

Jj=—0
m A jO il (1+() Y(llJr()
S IAIIS Ny supsup 277 ( 7 27 )
>0 joeZ

S AL Mmooy

j=—00

This proves Theorem 9.

5. Conclusions

+ A and & > —3- + 4, using (3.10) and 274D < 277 we get

-1
7(1+{)
< IAIZ Uy sup sup 2 > e ts0)

In this paper, we prove the boundedness of the parametric Marcinkiewicz integral and its higher-

order commutators with BMO symbols on grand variable Herz-Morrey spaces.

extend to grand variable Herz spaces, including when a(-) is constant.
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