Research article

On the deep holes of a class of Cauchy codes

  • Published: 16 October 2025
  • MSC : 11T71, 11C08, 11Y16, 94B35, 94B65

  • Suppose $ \mathbb{F}_q $ is a finite field having an odd characteristic. Let $ D = \{x_1, \cdots, x_{n-1}, \infty\} $, where $ \{x_1, \cdots, x_{n-1}\}\subsetneq \mathbb{F}_q $. Assume that $ k $ is an integer with $ 2\le k < n $. We show that $ u(D) $ is a deep hole of Cauchy code $ C(D, k) $ if $ u(x) = \lambda(x-\delta)^{q-2}+\nu x^{k-1}+f_{\leq k-2}(x) $, where $ \lambda\in {\mathbb{F}}_q^* $, $ \delta\in{\mathbb{F}}_q\setminus \{x_1, \cdots, x_{n-1}\} $, $ \nu\in {\mathbb{F}}_q $ and $ f_{\leq{k-2}}(x)\in{\mathbb{F}}_q[x] $ of a degree that does not exceed $ k-2 $. This expands the result shown in our previous paper. In particular, we also show that the received word $ {\boldsymbol u} = (u_1, \cdots, u_{n})\in {\mathbb{F}}_q^{n} $ is a deep hole of $ C(D, k) $ if and only if the Lagrange interpolation polynomial of the first $ n-1 $ components of $ {\boldsymbol u} $ is $ \lambda (x-\delta)^{q-2}+u_{n}x^{k-1}+u_{\leq{k-2}}(x), $ where $ \lambda \in {\mathbb{F}}_q^* $, $ \delta\in{\mathbb{F}}_q\setminus \{x_1, \cdots, x_{n-1}\} $, and $ u_{\leq{k-2}}(x) $ is a polynomial over $ {\mathbb{F}}_q $ whose degree does not exceed $ k-2 $, if $ \frac{q-1}{2}\leq k < n\leq q-2 $.

    Citation: Xiaofan Xu, Zongbing Lin. On the deep holes of a class of Cauchy codes[J]. AIMS Mathematics, 2025, 10(10): 23534-23546. doi: 10.3934/math.20251045

    Related Papers:

  • Suppose $ \mathbb{F}_q $ is a finite field having an odd characteristic. Let $ D = \{x_1, \cdots, x_{n-1}, \infty\} $, where $ \{x_1, \cdots, x_{n-1}\}\subsetneq \mathbb{F}_q $. Assume that $ k $ is an integer with $ 2\le k < n $. We show that $ u(D) $ is a deep hole of Cauchy code $ C(D, k) $ if $ u(x) = \lambda(x-\delta)^{q-2}+\nu x^{k-1}+f_{\leq k-2}(x) $, where $ \lambda\in {\mathbb{F}}_q^* $, $ \delta\in{\mathbb{F}}_q\setminus \{x_1, \cdots, x_{n-1}\} $, $ \nu\in {\mathbb{F}}_q $ and $ f_{\leq{k-2}}(x)\in{\mathbb{F}}_q[x] $ of a degree that does not exceed $ k-2 $. This expands the result shown in our previous paper. In particular, we also show that the received word $ {\boldsymbol u} = (u_1, \cdots, u_{n})\in {\mathbb{F}}_q^{n} $ is a deep hole of $ C(D, k) $ if and only if the Lagrange interpolation polynomial of the first $ n-1 $ components of $ {\boldsymbol u} $ is $ \lambda (x-\delta)^{q-2}+u_{n}x^{k-1}+u_{\leq{k-2}}(x), $ where $ \lambda \in {\mathbb{F}}_q^* $, $ \delta\in{\mathbb{F}}_q\setminus \{x_1, \cdots, x_{n-1}\} $, and $ u_{\leq{k-2}}(x) $ is a polynomial over $ {\mathbb{F}}_q $ whose degree does not exceed $ k-2 $, if $ \frac{q-1}{2}\leq k < n\leq q-2 $.



    加载中


    [1] Y. J. Li, D. Q. Wan, On error distance of Reed-Solomon codes, Sci. China Ser. A, 51 (2008), 1982–1988. https://doi.org/10.1007/s11425-008-0066-3 doi: 10.1007/s11425-008-0066-3
    [2] V. Guruswami, M. Sudan, Improved decoding of Reed-Solomon and algebraic-geometry codes, IEEE T. Inform. Theory, 45 (1999), 1757–1767. https://doi.org/10.1109/18.782097 doi: 10.1109/18.782097
    [3] V. Guruswami, A. Vardy, Maximum-likelihood decoding of Reed-Solomon codes is NP-hard, IEEE T. Inform. Theory, 51 (2005), 2249–2256. https://doi.org/10.1109/TIT.2005.850102 doi: 10.1109/TIT.2005.850102
    [4] A. Dür, The decoding of extended Reed-Solomon codes, Discrete Math., 90 (1991), 21–40. https://doi.org/10.1016/0012-365X(91)90093-H doi: 10.1016/0012-365X(91)90093-H
    [5] J. Y. Li, D. Q. Wan, On the subset sum problem over finite fields, Finite Fields Th. Appl., 14 (2008), 911–929. https://doi.org/10.1016/j.ffa.2008.05.003 doi: 10.1016/j.ffa.2008.05.003
    [6] R. J. Wu, S. F. Hong, On deep holes of standard Reed-Solomon codes, Sci. China Math., 55 (2012), 2447–2455. https://doi.org/10.1007/s11425-012-4499-3 doi: 10.1007/s11425-012-4499-3
    [7] S. F. Hong, R. J. Wu, On deep holes of Reed-Solomon codes, AIMS Math., 1 (2016), 96–101. https://doi.org/10.3934/Math.2016.2.96 doi: 10.3934/Math.2016.2.96
    [8] J. C. Zhuang, D. D. Lin, C. Lv, Determining deep hole trees of generalized Reed-Solomon codes and an application (in Chinese), Sci. Sin. Math., 47 (2017), 1615–1620. https://doi.org/10.1360/N012017-00014 doi: 10.1360/N012017-00014
    [9] Y. Y. Gao, Q. Yue, X. M. Huang, J. Zhang, Hulls of generalized Reed-Solomon codes via Goppa codes and their applications to quantum codes, IEEE T. Inform. Theory, 67 (2021), 6619–6626. https://doi.org/10.1109/TIT.2021.3074526 doi: 10.1109/TIT.2021.3074526
    [10] X. Y. Shi, Q. Yue, Some new quantum MDS codes derived from generalized Reed-Solomon codes, Adv. Math. Commun., 16 (2022), 947–959. https://doi.org/10.3934/amc.2022069 doi: 10.3934/amc.2022069
    [11] X. Y. Shi, Q. Yue, Y. S. Wu, New quantum MDS codes with large minimum distance and short length from generalized Reed-Solomon codes, Discrete Math., 342 (2019), 1989–2001. https://doi.org/10.1016/j.disc.2019.03.019 doi: 10.1016/j.disc.2019.03.019
    [12] X. Y. Shi, Q. Yue, S. D. Yang, New LCD MDS codes constructed from generalized Reed-Solomon codes, J. Algebra Appl., 18 (2019), 1–23. https://doi.org/10.1142/s0219498819501500 doi: 10.1142/s0219498819501500
    [13] S. Y. Qiang, H. K. Wei, S. F. Hong, Characterizations of NMDS codes and a proof of the Geng-Yang-Zhang-Zhou conjecture, Finite Fields Th. Appl., 105 (2025), 102616. https://doi.org/10.1016/j.ffa.2025.102616 doi: 10.1016/j.ffa.2025.102616
    [14] J. Zhang, D. Q. Wan, On deep holes of projective Reed-Solomon codes, IEEE Int. Symp. Inform. Theory, 2016,925–929. https://doi.org/10.1109/ISIT.2016.7541434
    [15] X. F. Xu, Y. C. Xu, Some results on deep holes of generalized projective Reed-Solomon codes, AIMS Math., 4 (2019), 176–192. https://doi.org/10.3934/math.2019.2.176 doi: 10.3934/math.2019.2.176
    [16] J. Zhang, D. Q. Wan, K. Kaipa, Deep holes of projective Reed-Solomon codes, IEEE T. Inform. Theory, 66 (2020), 2392–2401. https://doi.org/10.1109/TIT.2019.2940962 doi: 10.1109/TIT.2019.2940962
    [17] J. H. Van Lint, Introduction to coding theory, 3rd edition, Springer-Verlag, Berlin, 1998.
    [18] R. M. Roth, A. Lempel, t-sum generators of finite Abelian groups, Discrete Math., 103 (1992), 279–292. https://doi.org/10.1016/0012-365X(92)90320-F doi: 10.1016/0012-365X(92)90320-F
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(268) PDF downloads(24) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog