Research article Special Issues

Novel insights into the precise boundedness and Lipschitz continuity of Hardy-type operators within central Morrey spaces

  • Published: 16 October 2025
  • MSC : 42B35, 26D10, 47B38, 47G10

  • In this study, precise evaluations of the optimal constants associated with weighted weak-type Hardy inequalities are established. The analysis extends to the computation of the weak-type operator norm of the fractional Hardy operator within the framework of weighted central Morrey spaces. Furthermore, it is demonstrated that the commutators of the Hardy operator exhibit boundedness on these weighted central Morrey spaces when the symbol functions reside in the weighted Lipschitz space.

    Citation: Muhammad Asim, Ghada AlNemer. Novel insights into the precise boundedness and Lipschitz continuity of Hardy-type operators within central Morrey spaces[J]. AIMS Mathematics, 2025, 10(10): 23547-23563. doi: 10.3934/math.20251046

    Related Papers:

  • In this study, precise evaluations of the optimal constants associated with weighted weak-type Hardy inequalities are established. The analysis extends to the computation of the weak-type operator norm of the fractional Hardy operator within the framework of weighted central Morrey spaces. Furthermore, it is demonstrated that the commutators of the Hardy operator exhibit boundedness on these weighted central Morrey spaces when the symbol functions reside in the weighted Lipschitz space.



    加载中


    [1] W. G. Faris, Weak Lebesgue spaces and quantum mechanical binding, Duke Math. J., 43 (1976), 365–373. https://doi.org/10.1215/S0012-7094-76-04332-5 doi: 10.1215/S0012-7094-76-04332-5
    [2] M. Christ, L. Grafakos, Best constants for two nonconvolution inequalities, P. Am. Math. Soc., 123 (1995), 1687–1693. https://doi.org/10.2307/2161122 doi: 10.2307/2161122
    [3] Z. W. Fu, Q. Y. Wu, S. Z. Lu, Sharp estimates of $p$-adic Hardy and Hardy-Littlewood-Pólya operators, Acta Math. Sin., 29 (2013), 137–150. https://doi.org/10.1007/s10114-012-0149-3 doi: 10.1007/s10114-012-0149-3
    [4] S. Z. Lu, D. C. Yang, The central BMO space and Littlewood-Paley operators, Approx. Theory Appl., 11 (1995), 72–94. https://doi.org/10.1007/BF02836580 doi: 10.1007/BF02836580
    [5] S. Z. Lu, D. C. Yang, F. Y. Zhao, Sharp bounds for Hardy type operators on higher-dimensional product spaces, J. Inequal. Appl., 2013 (2013). https://doi.org/10.1186/1029-242X-2013-148
    [6] R. H. Liu, J. Zhou, Sharp estimates for the $p$-adic Hardy type operator on higher-dimensional product spaces, J. Inequal. Appl., 2017 (2017). https://doi.org/10.1186/s13660-017-1491-z
    [7] Q. J. He, X. Li, D. Y. Yan, Sharp bounds for Hardy type operators on higher-dimensional product spaces, Front. Math. China, 13 (2018), 1341–1353. https://doi.org/10.1007/s11464-018-0740-x doi: 10.1007/s11464-018-0740-x
    [8] M. Q. Wei, D. Y. Yan, Sharp bounds for Hardy type operators on product spaces, Acta Math. Sci., 38 (2018), 441–449. https://doi.org/10.1016/S0252-9602(18)30759-8 doi: 10.1016/S0252-9602(18)30759-8
    [9] O. A. Omer, K. Saibi, M. Z. Abidin, M. Osman, Parametric Marcinkiewicz integral and its higher-order commutators on variable exponents Morrey-Herz spaces, J. Funct. Space., 2022. https://doi.org/10.1155/2022/7209977
    [10] M. Z. Abidin, J. C. Chen, Global well-posedness of generalized magnetohydrodynamics equations in variable exponent Fourier-Besov-Morrey spaces, Acta Math. Sin., 38 (2022), 2187–2198. https://doi.org/10.1007/s10114-022-0581-0 doi: 10.1007/s10114-022-0581-0
    [11] R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611–635. https://doi.org/10.2307/1970954 doi: 10.2307/1970954
    [12] S. Long, J. Wang, Commutators of Hardy operators, J. Math. Anal. Appl., 274 (2002), 626–644.
    [13] Z. Fu, Z. Liu, S. Lu, H. Wang, Characterization for commutators of $n$-dimensional fractional Hardy operators, Sci. China Ser. A, 50 (2007), 1418–1426. https://doi.org/10.1007/s11425-007-0094-4 doi: 10.1007/s11425-007-0094-4
    [14] Z. Fu, S. Lu, A characterization of $\lambda$-central $BMO$ spaces, Front. Math. China, 8 (2013), 229–238.
    [15] S. Shi, S. Lu, Characterization of the central Campanato space via the commutator operator of Hardy type, J. Math. Anal. Appl., 429 (2015), 713–732. https://doi.org/10.1016/j.jmaa.2015.03.083 doi: 10.1016/j.jmaa.2015.03.083
    [16] G. Gao, M. Wang, Weighted estimates for commutators of higher dimensional Hardy operators, Appl. Math. J. Chin. Univ. Ser. A, 27 (2012), 104–111.
    [17] Z. Ren, S. Tao, Weighted estimates for commutators of $n$-dimensional rough Hardy operators, J. Funct. Space. Appl., 2013. https://doi.org/10.1155/2013/568202
    [18] W. Li, T. Zhang, L. Xue, Two-weight inequalities for the Hardy operator and commutators, J. Math. Inequal., 9 (2015), 653–664. https://doi.org/10.7153/jmi-09-55 doi: 10.7153/jmi-09-55
    [19] J. Álvarez, M. Guzmán-Partida, J. Lakey, Spaces of bounded $\lambda$-central mean oscillation, Morrey spaces, and $\lambda$-central Carleson measure, Collect. Math., 51 (2000), 1–47.
    [20] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, T. Am. Math. Soc., 165 (1972), 207–226. https://doi.org/10.1090/S0002-9947-1972-0293384-6 doi: 10.1090/S0002-9947-1972-0293384-6
    [21] J. García-Cuerva, Weighted norm inequalities and related topics, North-Holland, Amsterdam, 1985.
    [22] Y. Komori, S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr., 282 (2009), 219–231. https://doi.org/10.1002/mana.200610733 doi: 10.1002/mana.200610733
    [23] X. Yu, H. Zhang, G. Zhao, Weighted boundedness of some integral operators on weighted $\lambda$-central Morrey space, Appl. Math. J. Chin. Univ. Ser. B, 31 (2016), 331–342. https://doi.org/10.1007/s11766-016-3348-5 doi: 10.1007/s11766-016-3348-5
    [24] J. García-Cuerva, Weighted $H^p$ spaces, Diss. Math., 162 (1979).
    [25] G. Gao, X. Hu, C. Zhong, Sharp weak estimates for Hardy-type operators, Ann. Funct. Anal., 7 (2016), 421–433. https://doi.org/10.1215/20088752-3605447 doi: 10.1215/20088752-3605447
    [26] Q. Y. Wu, Z. W. Fu, Hardy–Littlewood–Sobolev inequalities on $p$-adic central Morrey spaces, J. Funct. Space., 2015. https://doi.org/10.1155/2015/419532
    [27] J. Journé, Calderón–Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón, Lect. Notes Math., 994 (1983), 1–127. https://doi.org/10.1007/BFb0061463 doi: 10.1007/BFb0061463
    [28] Y. Lin, Z. Liu, M. Song, Lipschitz estimates for commutators of singular integral operators on weighted Herz spaces, Jordan J. Math. Stat., 3 (2010), 53–64.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(265) PDF downloads(18) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog