This paper explored a new three-dimensional nonlinear system of difference equations, capturing intricate dynamic interactions through advanced analytical and computational methods. By employing strategic transformations and analyzing the system's characteristic polynomial roots, we derived exact closed-form solutions for both distinct and repeated root scenarios. Numerical examples were used to validate the theoretical results and demonstrate that even small variations in initial conditions can induce markedly different dynamical behaviors, ranging from stable oscillations to divergent trajectories.
Citation: Ahmed Ghezal, Najmeddine Attia. Closed-form solutions of a new class of three-dimensional nonlinear difference equations[J]. AIMS Mathematics, 2025, 10(10): 23518-23533. doi: 10.3934/math.20251044
This paper explored a new three-dimensional nonlinear system of difference equations, capturing intricate dynamic interactions through advanced analytical and computational methods. By employing strategic transformations and analyzing the system's characteristic polynomial roots, we derived exact closed-form solutions for both distinct and repeated root scenarios. Numerical examples were used to validate the theoretical results and demonstrate that even small variations in initial conditions can induce markedly different dynamical behaviors, ranging from stable oscillations to divergent trajectories.
| [1] |
A. Ghezal, O. Alzeley, Probabilistic properties and estimation methods for periodic threshold autoregressive stochastic volatility, AIMS Math., 9 (2024), 11805–11832. https://doi.org/10.3934/math.2024578 doi: 10.3934/math.2024578
|
| [2] |
A. Ghezal, M. Balegh, I. Zemmouri, Markov-switching threshold stochastic volatility models with regime changes, AIMS Math., 9 (2024), 3895–3910. https://doi.org/10.3934/math.2024192 doi: 10.3934/math.2024192
|
| [3] |
A. Ghezal, Spectral representation of Markov-switching bilinear processes, Sao Paulo J. Math. Sci., 18 (2024), 459–479. https://doi.org/10.1007/s40863-023-00380-w doi: 10.1007/s40863-023-00380-w
|
| [4] |
H. Althagafi, Dynamics of difference systems: A mathematical study with applications to neural systems, AIMS Math., 10 (2025), 2869–2890. https://doi.org/10.3934/math.2025134 doi: 10.3934/math.2025134
|
| [5] |
H. Althagafi, A. Ghezal, Stability analysis of biological rhythms using three-dimensional systems of difference equations with squared terms, J. Appl. Math. Comput., 71 (2025), 3211–3232. https://doi.org/10.1007/s12190-024-02363-2 doi: 10.1007/s12190-024-02363-2
|
| [6] |
R. Abo-Zeid, Global behavior of two third order rational difference equations with quadratic terms, Math. Slovaca, 69 (2019), 147–158. https://doi.org/10.1515/ms-2017-0210 doi: 10.1515/ms-2017-0210
|
| [7] |
R. Abo-Zeid, C. Cinar, Global behavior of the difference equation $x_{n+1} = \left. Ax_{n-1}\right/ B-Cx_{n}x_{n-2}$, Bol. Soc. Parana. Mat., 31 (2013), 43–49. https://doi.org/10.5269/bspm.v31i1.14432 doi: 10.5269/bspm.v31i1.14432
|
| [8] |
M. Gümüş, R. Abo-Zeid, Global behavior of a rational second order difference equation, J. Appl. Math. Comput., 62 (2020), 119–133. https://doi.org/10.1007/s12190-019-01276-9 doi: 10.1007/s12190-019-01276-9
|
| [9] |
E. M. Elsayed, B. S. Alofi, The periodic nature and expression on solutions of some rational systems of difference equations, Alex. Eng. J., 74 (2023), 269–283. https://doi.org/10.1016/j.aej.2023.05.026 doi: 10.1016/j.aej.2023.05.026
|
| [10] | E. M. Elsayed, N. K. Alshabi, The dynamical behaviour of solutions for nonlinear systems of rational difference equations, Res. Commun. Math. Math. Sci., 15 (2023), 1–20. |
| [11] |
M. Gümüş, R. Abo-Zeid, An explicit formula and forbidden set for a higher order difference equation, J. Appl. Math. Comput., 63 (2020), 133–142. http://dx.doi.org/10.1007/s12190-019-01311-9 doi: 10.1007/s12190-019-01311-9
|
| [12] |
N. Attia, A. Ghezal, Global stability and co-balancing numbers in a system of rational difference equations, Electron. Res. Arch., 32 (2024), 2137–2159. https://doi.org/10.3934/era.2024097 doi: 10.3934/era.2024097
|
| [13] |
H. Althagafi, A. Ghezal, Analytical study of nonlinear systems of higher-order difference equations: Solutions, stability, and numerical simulations, Mathematics, 12 (2024), 1159. https://doi.org/10.3390/math12081159 doi: 10.3390/math12081159
|
| [14] |
M. Kara, Investigation of the global dynamics of two exponential-form difference equations systems, Electron. Res. Arch., 31 (2023), 6697–6724. https://doi.org/10.3934/era.2023338 doi: 10.3934/era.2023338
|
| [15] |
Y. Zhang, X. Yang, G. M. Megson, D. J. Evans, On the system of rational difference equations $x_{n} = A+1/y_{n-p}, $ $y_{n} = A+y_{n-1} /x_{n-r}y_{n-s}$, Appl. Math. Comp., 176 (2006), 403–408.. https://doi.org/10.1016/j.amc.2005.09.039 doi: 10.1016/j.amc.2005.09.039
|
| [16] |
Q. Zhang, L. Yang, J. Liu, Dynamics of a system of rational third order difference equation, Adv. Differ. Equ., 2012 (2012), 136. https://doi.org/10.1186/1687-1847-2012-136 doi: 10.1186/1687-1847-2012-136
|
| [17] |
S. Stević, D. T. Tollu, On a two-dimensional nonlinear system of difference equations close to the bilinear system, AIMS Math., 8 (2023), 20561–20575. https://doi.org/10.3934/math.20231048 doi: 10.3934/math.20231048
|
| [18] |
S. Stević, On the system of difference equations $x_{n} = c_{n}y_{n-3}/(a_{n}+b_{n}y_{n-1}x_{n-2}y_{n-3})$, $y_{n} = \gamma _{n}x_{n-3}/(\alpha_{n}+\beta_{n}x_{n-1}y_{n-2}x_{n-3})$, Appl. Math. Comput., 219 (2013), 4755–4764. https://doi.org/10.1016/j.amc.2012.10.092 doi: 10.1016/j.amc.2012.10.092
|
| [19] |
S. Stević, J. Diblik, B. Iri$\breve{\rm{c}}$anin, Z. $\breve{\rm{S}}$marda, On a third-order system of difference equations with variable coefficients, Abstr. Appl. Anal., 2012 (2012), 1–22. http://dx.doi.org/10.1155/2012/508523 doi: 10.1155/2012/508523
|
| [20] |
S. Stević, Six classes of solvable nonlinear two-dimensional systems of difference equations, J. Math. Inequal., 18 (2024), 533–550. http://dx.doi.org/10.7153/jmi-2024-18-29 doi: 10.7153/jmi-2024-18-29
|
| [21] |
S. Stević, New class of three-dimensional close-to-cyclic systems of difference equations solvable in closed form, Math. Method. Appl. Sci., 45 (2022), 3974–3982. https://doi.org/10.1002/mma.8026 doi: 10.1002/mma.8026
|
| [22] |
M. Kara, O. Aktaş, On solutions of three-dimensional system of difference equations with constant coefficients, Commun. Fac. Sci. Univ., 72 (2023), 462–481. https://doi.org/10.31801/cfsuasmas.1163955 doi: 10.31801/cfsuasmas.1163955
|
| [23] | A. Ghezal, I. Zemmouri, M. Kara, Y. Yazlık, On a three-dimensional system of rational difference equations of (m+1)-order, Dynam. Cont. Dis. Ser. B, 31 (2024), 307–320. |
| [24] |
M. Kara, Y. Yazlık, Global dynamics of the system of difference equations, Math. Slovaca, 75 (2025), 339–352. http://dx.doi.org/10.1515/ms-2025-0026 doi: 10.1515/ms-2025-0026
|