Research article Special Issues

Existence and stability results of pantograph equation with three sequential fractional derivatives

  • Received: 18 October 2022 Revised: 23 November 2022 Accepted: 04 December 2022 Published: 14 December 2022
  • MSC : 34A08, 39A30, 37C25

  • The subject of this work is the existence and Mittag-Leffler-Ulam (MLU) stability of solutions for fractional pantograph equations with three sequential fractional derivatives. Sufficient conditions for the existence and uniqueness of solutions are constructed by utilizing well-known classical fixed point theorems such as the Banach contraction principle, and Leray-Schauder nonlinear alternative. The generalized singular Gronwall's inequality is used to show the MLU stability results. An illustrated example is provided to support the main findings.

    Citation: Mohamed Houas, Kirti Kaushik, Anoop Kumar, Aziz Khan, Thabet Abdeljawad. Existence and stability results of pantograph equation with three sequential fractional derivatives[J]. AIMS Mathematics, 2023, 8(3): 5216-5232. doi: 10.3934/math.2023262

    Related Papers:

  • The subject of this work is the existence and Mittag-Leffler-Ulam (MLU) stability of solutions for fractional pantograph equations with three sequential fractional derivatives. Sufficient conditions for the existence and uniqueness of solutions are constructed by utilizing well-known classical fixed point theorems such as the Banach contraction principle, and Leray-Schauder nonlinear alternative. The generalized singular Gronwall's inequality is used to show the MLU stability results. An illustrated example is provided to support the main findings.



    加载中


    [1] M. Ahmad, J. Jiang, A. Zada, Z. Ali, Z. Fu, J. Xu, Hyers-Ulam-Mittag-Leffler stability for a system of fractional neutral differential equations, Discrete Dyn. Nat. Soc., 2020 (2020), 2786041. https://doi.org/10.1155/2020/2786041 doi: 10.1155/2020/2786041
    [2] I. Ahmad, J. J. Nieto, G. U. Rahman, K. Shah, Existence and stability for fractional order pantograph equations with nonlocal conditions, Electron. J. Differ. Equ., 132 (2020), 1–16.
    [3] G. Ali, K. Shah, G. ur Rahman, Investigating a class of pantograph differential equations under multi-points boundary conditions with fractional order, Int. J. Appl. Comput. Math., 7 (2021), 2. https://doi.org/10.1007/s40819-020-00932-0 doi: 10.1007/s40819-020-00932-0
    [4] K. Balachandran, S. Kiruthika, J. J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci., 33 (2013), 712–720. https://doi.org/10.1016/S0252-9602(13)60032-6 doi: 10.1016/S0252-9602(13)60032-6
    [5] A. Granas, J. Dugundji, Fixed point theory, New York: Springer-Verlag, 2003. https://doi.org/10.1007/978-0-387-21593-8
    [6] Y. Gouari, Z. Dahmani, I. Jebri, Application of fractional calculus on a new differential problem of Duffing type, Adv. Math.: Sci. J., 9 (2020), 10989–11002. https://doi.org/10.37418/amsj.9.12.82 doi: 10.37418/amsj.9.12.82
    [7] M. Houas, Existence and stability of fractional pantograph differential equations with Caputo-Hadamard type derivative, Turkish J. Ineqal., 4 (2020), 29–38.
    [8] M. Houas, M, Bezziou, Existence of solutions for neutral Caputo-type fractional integro-differential equations with nonlocal boundary conditions, Commun. Optim. Theory, 2021 (2021), 10.
    [9] M. Houas, Z. Dahmani, On existence of solutions for fractional differential equations with nonlocal multi-point boundary conditions, Lobachevskii J. Math., 37 (2016), 120–127. https://doi.org/10.1134/S1995080216020050 doi: 10.1134/S1995080216020050
    [10] A. Iserles, Exact and discretized stability of the pantograph equation, Appl. Numer. Math., 24 (1997), 295–308. https://doi.org/10.1016/S0168-9274(97)00027-5 doi: 10.1016/S0168-9274(97)00027-5
    [11] A. Iserles, On the generalized pantograph functional-differential equation, Eur. J. Appl. Math., 4 (1993), 1–38. https://doi.org/10.1017/S0956792500000966 doi: 10.1017/S0956792500000966
    [12] E. T. Karimov, B. Lopez, K. Sadarangani, About the existence of solutions for a hybrid nonlinear generalized fractional pantograph equation, Fract. Differ. Calculus, 6 (2016), 95–110. https://doi.org/10.7153/fdc-06-06 doi: 10.7153/fdc-06-06
    [13] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Vol. 204, Elsevier Science B.V. Amsterdam, 2006.
    [14] V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear. Anal., 69 (2008), 2677–2682. https://doi.org/10.1016/j.na.2007.08.042 doi: 10.1016/j.na.2007.08.042
    [15] S. Y. Lin, Generalized Gronwall inequalities and their applications to fractional differential equations, J. Inequal. Appl., 2013 (2013), 549. https://doi.org/10.1186/1029-242X-2013-549 doi: 10.1186/1029-242X-2013-549
    [16] S. K. Ntouyas, A. Alsaedi, B. Ahmad, Existence theorems for mixed Riemann-Liouville and Caputo fractional differential equations and inclusions with nonlocal fractional integro-differential boundary conditions, Fractal Fract., 3 (2019), 21. https://doi.org/10.3390/fractalfract3020021 doi: 10.3390/fractalfract3020021
    [17] S. K. Ntouyas, D. Vivek, Existence and uniqueness results for sequential Hilfer fractional differential equations with multi-point boundary conditions, Acta Math. Univ. Comen., 90 (2021), 171–185.
    [18] L. Podlubny, Fractional differential equations, New York: Academic Press, 1999.
    [19] K. Shah, D. Vivek, K. Kanagarajan, Dynamics and stability of $\psi -$fractional pantograph equations with boundary conditions, Bol. Soc. Paran. Mat., 39 (2021), 43–55. https://doi.org/10.5269/bspm.41154 doi: 10.5269/bspm.41154
    [20] M. Sezer, S. Yalçinbaş, N. Şahin, Approximate solution of multi-pantograph equation with variable coefficients, J. Comput. Appl. Math., 214 (2008), 406–416. https://doi.org/10.1016/j.cam.2007.03.024 doi: 10.1016/j.cam.2007.03.024
    [21] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107.
    [22] D. Vivek, K. Kanagarajan, S. Sivasundaram, Dynamics and stability of pantograph equations via Hilfer fractional derivative, Nonlinear Stud., 23 (2016), 685–698.
    [23] D. Vivek, E. M. Elsayed, K. Kanagarajan, Existence and Ulam stability results for a class of boundary value problem of neutral pantograph equations with complex order, SeMA J., 77 (2021), 243–256. https://doi.org/10.1007/s40324-020-00214-1 doi: 10.1007/s40324-020-00214-1
    [24] J. Wang, Y. Zhang, Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations, Optimization, 63 (2014), 1181–1190. https://doi.org/10.1080/02331934.2014.906597 doi: 10.1080/02331934.2014.906597
    [25] Z. H. Yu, Variational iteration method for solving the multi-pantograph delay equation, Phys. Lett. A, 372 (2008), 6475–6479. https://doi.org/10.1016/j.physleta.2008.09.013 doi: 10.1016/j.physleta.2008.09.013
    [26] M. R. Fatehi, M. Samavat, M. A. Vali, F. Khaleghi, State analysis and optimal control of linear time-invariant scaled systems using the Chebyshev wavelets, Contemp. Eng. Sci., 5 (2012), 91–105.
    [27] F. Ghomanjani, M. H. Farahi, A. V. Kamyad, Numerical solution of some linear optimal control systems with pantograph delays, IMA J. Math. Control Inf., 32 (2015), 225–243. https://doi.org/10.1093/imamci/dnt037 doi: 10.1093/imamci/dnt037
    [28] S. M. Hoseini, Optimal control of linear pantograph-type delay systems via composite Legendre method, J. Franklin Inst., 357 (2020), 5402–5427. https://doi.org/10.1016/j.jfranklin.2020.02.051 doi: 10.1016/j.jfranklin.2020.02.051
    [29] Z. Gong, C. Liu, K. L. Teo, X. Yi, Optimal control of nonlinear fractional systems with multiple pantograph-delays, Appl. Math. Comput., 425 (2022), 127094. https://doi.org/10.1016/j.amc.2022.127094 doi: 10.1016/j.amc.2022.127094
    [30] J. F. Gómez-Aguilar, Space-time fractional diffusion equation using a derivative with nonsingular and regular kernel, Phys. A: Stat. Mech. Appl., 465 (2017), 562–572. https://doi.org/10.1016/j.physa.2016.08.072 doi: 10.1016/j.physa.2016.08.072
    [31] J. F. Gómez-Aguilar, A. Atangana, Time-fractional variable-order telegraph equation involving operators with Mittag-Leffler kernel, J. Electromagnet. Waves Appl., 33 (2019), 165–177. https://doi.org/10.1080/09205071.2018.1531791 doi: 10.1080/09205071.2018.1531791
    [32] P. Pandey, J. F. Gómez-Aguilar, On solution of a class of nonlinear variable order fractional reaction-diffusion equation with Mittag-Leffler kernel, Numer. Methods Partial Differ. Equ., 37 (2021), 998–1011. https://doi.org/10.1002/num.22563 doi: 10.1002/num.22563
    [33] J. F. Gómez-Aguilar, H. Yépez-Martínez, J. Torres-Jiménez, T. Córdova-Fraga, R. F. Escobar-Jiménez, V. H. Olivares-Peregrino, Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Adv. Differ. Equ., 2017 (2017), 68. https://doi.org/10.1186/s13662-017-1120-7 doi: 10.1186/s13662-017-1120-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(954) PDF downloads(109) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog