Processing math: 100%
Research article Special Issues

Analytical study of ABC-fractional pantograph implicit differential equation with respect to another function

  • This article aims to establish sufficient conditions for qualitative properties of the solutions for a new class of a pantograph implicit system in the framework of Atangana-Baleanu-Caputo (ABC) fractional derivatives with respect to another function under integral boundary conditions. The Schaefer and Banach fixed point theorems (FPTs) are utilized to investigate the existence and uniqueness results for this pantograph implicit system. Moreover, some stability types such as the Ulam-Hyers (UH), generalized UH, Ulam-Hyers-Rassias (UHR) and generalized UHR are discussed. Finally, interpretation mathematical examples are given in order to guarantee the validity of the main findings. Moreover, the fractional operator used in this study is more generalized and supports our results to be more extensive and covers several new and existing problems in the literature.

    Citation: Sabri T. M. Thabet, Miguel Vivas-Cortez, Imed Kedim. Analytical study of ABC-fractional pantograph implicit differential equation with respect to another function[J]. AIMS Mathematics, 2023, 8(10): 23635-23654. doi: 10.3934/math.20231202

    Related Papers:

    [1] Ishfaq Mallah, Idris Ahmed, Ali Akgul, Fahd Jarad, Subhash Alha . On $ \psi $-Hilfer generalized proportional fractional operators. AIMS Mathematics, 2022, 7(1): 82-103. doi: 10.3934/math.2022005
    [2] Iman Ben Othmane, Lamine Nisse, Thabet Abdeljawad . On Cauchy-type problems with weighted R-L fractional derivatives of a function with respect to another function and comparison theorems. AIMS Mathematics, 2024, 9(6): 14106-14129. doi: 10.3934/math.2024686
    [3] Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438
    [4] Iyad Suwan, Mohammed S. Abdo, Thabet Abdeljawad, Mohammed M. Matar, Abdellatif Boutiara, Mohammed A. Almalahi . Existence theorems for $ \Psi $-fractional hybrid systems with periodic boundary conditions. AIMS Mathematics, 2022, 7(1): 171-186. doi: 10.3934/math.2022010
    [5] Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112
    [6] Dinghong Jiang, Chuanzhi Bai . On coupled Gronwall inequalities involving a $ \psi $-fractional integral operator with its applications. AIMS Mathematics, 2022, 7(5): 7728-7741. doi: 10.3934/math.2022434
    [7] Naveed Iqbal, Azmat Ullah Khan Niazi, Ikram Ullah Khan, Rasool Shah, Thongchai Botmart . Cauchy problem for non-autonomous fractional evolution equations with nonlocal conditions of order $ (1, 2) $. AIMS Mathematics, 2022, 7(5): 8891-8913. doi: 10.3934/math.2022496
    [8] Bounmy Khaminsou, Weerawat Sudsutad, Jutarat Kongson, Somsiri Nontasawatsri, Adirek Vajrapatkul, Chatthai Thaiprayoon . Investigation of Caputo proportional fractional integro-differential equation with mixed nonlocal conditions with respect to another function. AIMS Mathematics, 2022, 7(6): 9549-9576. doi: 10.3934/math.2022531
    [9] Nattapong Kamsrisuk, Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Quantum calculus with respect to another function. AIMS Mathematics, 2024, 9(4): 10446-10461. doi: 10.3934/math.2024510
    [10] Ricardo Almeida . Variational problems of variable fractional order involving arbitrary kernels. AIMS Mathematics, 2022, 7(10): 18690-18707. doi: 10.3934/math.20221028
  • This article aims to establish sufficient conditions for qualitative properties of the solutions for a new class of a pantograph implicit system in the framework of Atangana-Baleanu-Caputo (ABC) fractional derivatives with respect to another function under integral boundary conditions. The Schaefer and Banach fixed point theorems (FPTs) are utilized to investigate the existence and uniqueness results for this pantograph implicit system. Moreover, some stability types such as the Ulam-Hyers (UH), generalized UH, Ulam-Hyers-Rassias (UHR) and generalized UHR are discussed. Finally, interpretation mathematical examples are given in order to guarantee the validity of the main findings. Moreover, the fractional operator used in this study is more generalized and supports our results to be more extensive and covers several new and existing problems in the literature.



    Fractional differential equations (FDEs) are a type of mathematical equation that involves non-integer orders of derivatives. These equations have become increasingly important in recent years, as they provide a powerful tool for modeling systems with long-range dependence and memory. The solutions to FDEs can exhibit unique behaviors, including power-law decay and non-locality, which distinguish them from solutions to traditional differential equations, for more detailed information, see these works [1,2,3,4,5,6,7,8,9,10,11]. Furthermore, FPT is a mathematical discipline that explores the existence and behavior of fixed points of the mapping equation. These points are those that remain invariant under the action of the mapping. The study of fixed points has many applications in diverse fields such as analysis, geometry, topology, physics, economics, and engineering. For instance, in physics, FPT can be used to assess the stability of dynamic systems. In economics, it can help identify equilibrium points of economic models. In general, FPT provides a powerful tool for finding solutions to problems involving nonlinear equations and systems, we refer the researchers to some works applied FPT in the literature studies [12,13,14,15,16,17,18,19,20,21]. In fact, pantograph problems are a type of differential equations that arises in the study of systems with a delayed feedback, particularly in mechanical systems. These equations are characterized by fractional derivatives and a time delay term, making them difficult to solve. Pantograph problems have a wide range of applications in fields such as physics, engineering, and biology [22,23,24,25,26,27].

    In fractional calculus field, Atangana and Baleanu (AB) [28] introduced a new non-singular fractional operator via a function of Mittag-Leffler in the sense of Caputo and Riemann-Liouville. These two operators attracted the attention of many researchers to study various problems and applications [29,30,31,32,33,34,35,36,37]. Afterwards, Fernandez and Baleanu [38] generalized the AB operator to differintegration with respect to other functions and so called ϱ-ABC in the Caputo sense and ϱ-ABR in the Riemann-Liouville sense, where ϱ is a positive and increasing function of its domains. Very recently, Abdeljawad et al. [39] extended these operators to higher-order and derived the Gronwall-type inequality in the framework of an ϱ-AB factional integral.

    In 2020, Ali et al. [40] studied some essential conditions of qualitative results for a delay problem in the sense of ABC fractional derivatives, given by:

    {ABCDϑ0ϖ(υ)=g(υ,ϖ(υ),ϖ(δυ)),υJ=[0,z],ϑ(1,2],ϖ(0)=γ1,ϖ(z)=γ2,γ1,γ2R,δ(0,1). (1.1)

    After that, in 2021 [41], Banach and Krasnoselskii used FPTs to establish the existence and uniqueness theorems for a ABC-fractional implicit problem, given as follows:

    {ABCDϑ0ϖ(υ)=g(υ,ϖ(υ),ABCDϑ0ϖ(υ)),υJ=[0,z],ϑ(1,2],ϖ(0)=γ1,ϖ(z)=γ2,γ1,γ2R. (1.2)

    Furthermore, the authors of [42] investigated an implicit ABC-fractional differential system under integral conditions:

    {ABCDϑιϖ(υ)=g(υ,ϖ(υ),ABCDϑιϖ(υ)),υJ=[ι,z],ϑ(1,2],ϖ(ι)=0,ϖ(z)=γ2zιf(κ,ϖ(κ))dκ. (1.3)

    Motivated by the aforementioned research works [40,41,42], and as an application for the work in [39], in this article, we aim to study the existence, uniqueness and verity types of UH stability of the solution for a new class of ϱ-ABC fractional pantograph implicit systems supplemented by the integral boundary conditions of the form:

    {ABCDϑ,ϱιϖ(υ)=g(υ,ϖ(υ),ϖ(δυ),ABCDϑ,ϱιϖ(υ)),υJ=[ι,z],ϖ(ι)=γ1,ϖ(z)=γ2zιf(κ,ϖ(κ))dκ, (1.4)

    where 0<δ<1,γ1,γ2R, ABCDϑ,ϱι denotes the ϱ-ABC fractional derivative of the arbitrary order ϑ(1,2], and the functions g:J×R3R,f:J×RR, are continuous. Moreover, let ϱ:[ι,z]R+ be an increasing and positive function with ϱ(u)C1((ι,z),R+) and ϱ(υ)0,υJ.

    Here, we ensure that this research work displays a novelty by considering a new class of pantograph implicit problems in the framework of ϱ-ABC fractional derivatives. Furthermore, the contributions of this work are interesting and more generalized of a new and existing problems in the literature, for instance:

    i) If ϱ(υ)=υ, then the system (1.4) returns to a system in the sense of ABC-fractional derivatives;

    ii) If ϱ(υ)=υ, and zιf(κ,ϖ(κ))dκ=1, then the system (1.4), reduces to the problem (1.1) when the implicit term finishes and reduces to problem (1.2) when the delay term finishes;

    iii) The system (1.4), returns to Eq (1.3) in the case where ϱ(υ)=υ and delay term finishes;

    iv) Our system (1.4) covers numerous problems by taking any positive and increasing the function ϱ on the interval J.

    The paper's remaining sections are organized as follows. In Section 2, some fundamental preliminaries are presented. In Section 3, a corresponding fractional integral equation of the ϱ-ABC fractional pantograph implicit system (1.4) is derived. In Section 4, the existence and uniqueness results are proven by applying the Schaefer and Banach FPTs. In Section 5, UH and UHR stability are discussed. In Section 6, some examples are provided to illustrate the main findings.

    In this section, we recall several major preliminaries and definitions. Let Ω:=C(J=[ι,z],R) denote the Banach space of all the continuous functions ϖ endowed with the supremum norm ϖ=supυ[ι,z]|ϖ(υ)|.

    Definition 2.1. ([43]) The ϱ-Riemann-Liouville fractional integral of order ϑ>0 for an integrable function ϖ:[ι,z]R is given by the following:

    RLIϑ,ϱιϖ(υ)=1Γ(ϑ)υι(ϱ(υ)ϱ(κ))ϑ1ϱ(κ)ϖ(κ)dκ,

    where Γ(ϑ)=+0eυυϑ1dυ,ϑ>0.

    Lemma 2.2. ([43]) Let ϑ,μ>0 and ϖ:[ι,z]R. Then,

    (i) RLIϑ,ϱι[ϱ(υ)ϱ(ι)]μ1=Γ(μ)Γ(ϑ+μ)[ϱ(υ)ϱ(ι)]ϑ+μ1;

    (ii) RLIϑ,ϱιRLIμ,ϱιϖ(υ)=RLIϑ+μ,ϱιϖ(υ);

    (iii) ((1ϱ(υ)ddυ)nRLIn,ϱιϖ)(υ)=ϖ(υ),nN.

    Definition 2.3. ([38,44]) The ϱ-ABC fractional derivative of order ϑ(0,1]  of a function ϖH1(ι,z) is given by the following:

    (ABCDϑ,ϱιϖ)(υ)=Λ(ϑ)1ϑυιϱ(κ)Eϑ(ϑ1ϑ(ϱ(υ)ϱ(κ))ϑ)ϖϱ(κ)dκ, υ[ι,z],

    where ϖϱ(υ)=ϖ(υ)ϱ(υ), Λ(ϑ) is the normalization function with Λ(0)=Λ(1)=1, and Eϑ is called the Mittag-Leffler function defined by the following:

    Eϑ(z)=i=0ziΓ(ϑi+1),Re(ϑ)>0,zC.

    Definition 2.4. ([44]) The ϱ-AB fractional integral of order ϑ(0,1]  of an integrable function ϖ is given by the following:

    (ABIϑ,ϱιϖ)(υ)=1ϑΛ(ϑ)ϖ(υ)+ϑΛ(ϑ)RLIϑ,ϱιϖ(υ), υ[ι,z].

    Definition 2.5. ([39]) The ϱ-ABC fractional derivative of order ϑ(n,n+1],ν=ϑn,n=0,1,2,, of a function ϖ(n+1)H1(ι,z) is given by the following:

    (ABCDϑ,ϱιϖ)(υ)=(ABCDν,ϱιϖ(n)ϱ)(υ)=Λ(ϑn)n+1ϑυιϱ(κ)Eϑn((ϑn)n+1ϑ(ϱ(υ)ϱ(κ))ϑn)ϖ(n+1)ϱ(κ)dκ,

    where ϖ(n)ϱ(υ)=(1ϱ(υ)ddυ)nϖ(υ) and ϖ(0)ϱ(υ)=ϖ(υ). If ϑ=kN, then (ABCDϑ,ϱιϖ)(υ)=ϖ(k)ϱ(υ).

    Definition 2.6. ([39]) The ϱ-AB fractional integral of order ϑ(n,n+1],ν=ϑn,n=0,1,2,, of a function ϖ is given by the following:

    (ABIϑ,ϱιϖ)(υ)=(RLIn,ϱιABIν,ϱιϖ)(υ)=(ABIν,ϱιRLIn,ϱιϖ)(υ)=n+1ϑΛ(ϑn)RLIn,ϱιϖ(υ)+(ϑn)Λ(ϑn)RLIϑ,ϱιϖ(υ),

    where RLIn,ϱι is defined as:

    (RLIn,ϱιϖ)(υ)=1Γ(n)υιϱ(κ)(ϱ(υ)ϱ(κ))n1ϖ(κ)dκ,υ>ι.

    Lemma 2.7. ([39]) Let ϖC(J,R) and ϱCn(J,R). For ϑ(n,n+1],ν=ϑn,n=0,1,2,, the following relation holds:

    (ABIϑ,ϱιABCDϑ,ϱιϖ)(υ)=ϖ(υ)nk=0ek(ϱ(υ)ϱ(ι))k,ekR.

    Lemma 2.8. ([39]) Let ϱCn(J,R+) with ϱ(υ)0. For ϑ(n,n+1],ν=ϑn,n=0,1,2,,βn+1. Then, the following equations hold:

    (i) ABCDϑ,ϱι[ϱ(υ)ϱ(ι)]β=Λ(ϑn)(n+1ϑ)i=0((ϑn)n+1ϑ)iΓ(β+1)[ϱ(υ)ϱ(ι)]i(ϑn)+βnΓ(i(ϑn)+βn+1);

    (ii) ABCDϑ,ϱι[ϱ(υ)ϱ(ι)]ζ=0,ζ=0,1,,n;

    (iii) (ABIϑ,ϱι1)(υ)=(n+1ϑ)[ϱ(υ)ϱ(ι)]nΛ(ϑn)Γ(n+1)+(ϑn)[ϱ(υ)ϱ(ι)]ϑΛ(ϑn)Γ(ϑ+1).

    Theorem 2.9. ([45], Banach's FPT) Suppose that K be a Banach space. If :KK is a contraction, then has one and only one fixed point in K.

    Theorem 2.10. ([46], Schaefer's FPT) Let K be a Banach space and :KK be a completely continuous mapping. If U={ζK:ϖ=ηϖ, for some η(0,1)} is bounded set. Then, possesses fixed points.

    We start this section by deriving the corresponding fractional integral equation of the ϱ-ABC fractional pantograph implicit system (1.4). For this, we need to introduce the next lemma.

    Lemma 3.1. Consider ϖΩ. Then, the corresponding fractional integral equation of the following ϱ-ABC fractional system,

    {ABCDϑ,ϱιϖ(υ)=q(υ),υJ=[ι,z],ϑ(1,2],ϖ(ι)=γ1,ϖ(z)=γ2zιf(κ,ϖ(κ))dκ, (3.1)

    is given by

    ϖ(υ)=γ1[1(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))]+(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))[γ2zιf(κ,ϖ(κ))dκABIϑ,ϱιq(z)]+ABIϑ,ϱιq(υ).

    Proof. We start our proof by applying ABIϑ,ϱι on both sides of Eq (3.1). According to the Definition 2.6 with using Lemma 2.7, we get

    ϖ(υ)=e0+e1(ϱ(υ)ϱ(ι))+ABIϑ,ϱιq(υ)=e0+e1(ϱ(υ)ϱ(ι))+2ϑΛ(ϑ1)RLI1,ϱιq(υ)+(ϑ1)Λ(ϑ1)RLIϑ,ϱιq(υ). (3.2)

    Then, by the boundary condition ϖ(ι)=γ1, we deduce that e0=γ1, which implies that

    ϖ(υ)=γ1+e1(ϱ(υ)ϱ(ι))+2ϑΛ(ϑ1)RLI1,ϱιq(υ)+(ϑ1)Λ(ϑ1)RLIϑ,ϱιq(υ).

    Again, due to the boundary condition ϖ(z)=γ2zιf(κ,ϖ(κ))dκ, we conclude that

    e1=1(ϱ(z)ϱ(ι))[γ2zιf(κ,ϖ(κ))dκγ12ϑΛ(ϑ1)RLI1,ϱιq(z)(ϑ1)Λ(ϑ1)RLIϑ,ϱιq(z)].

    By substituting the values of e0 and e1 into Eq (3.2), we obtain

    ϖ(υ)=γ1[1(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))]+(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))[γ2zιf(κ,ϖ(κ))dκ2ϑΛ(ϑ1)RLI1,ϱιq(z)(ϑ1)Λ(ϑ1)RLIϑ,ϱιq(z)]+2ϑΛ(ϑ1)RLI1,ϱιq(υ)+(ϑ1)Λ(ϑ1)RLIϑ,ϱιq(υ).

    Hence, the proof is finished.

    As a consequence of the above lemma, we conclude the following interesting lemma.

    Lemma 3.2. Consider ϖΩ. Then, the corresponding fractional integral equation of the ϱ-ABC fractional pantograph implicit system (1.4), is given by

    ϖ(υ)=γ1[1(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))]+(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))[γ2zιf(κ,ϖ(κ))dκABIϑ,ϱιg(z,ϖ(z),ϖ(δz),ABCDϑ,ϱιϖ(z))]+ABIϑ,ϱιg(υ,ϖ(υ),ϖ(δυ),ABCDϑ,ϱιϖ(υ)). (3.3)

    We start this section by investigating the uniqueness criteria of the solution for the system (1.4) via Banach FPTs. Thus, the next assumption is required:

    H1) There are constants 1,2,3>0 such that for all υ[ι,z] and ϖi,ˆϖiΩ,(i=1,2,3) satisfy

    |g(υ,ϖ1,ϖ2,ϖ3)g(υ,ˆϖ1,ˆϖ2,ˆϖ3)|1(|ϖ1ˆϖ1|+|ϖ2ˆϖ2|)+2|ϖ3ˆϖ3|,

    and

    |f(υ,ϖ1)f(υ,ˆϖ1)|3|ϖ1ˆϖ1|.

    Theorem 4.1. Let H1 hold, and if

    β1:={|γ2|(zι)3+4112[(2ϑ)[ϱ(z)ϱ(ι)]Λ(ϑ1)+(ϑ1)[ϱ(z)ϱ(ι)]ϑΛ(ϑ1)Γ(ϑ+1)]}<1, (4.1)

    then there exists a exactly one solution for the ϱ-ABC fractional pantograph implicit system (1.4) on J.

    Proof. At the beginning, we define the operator :ΩΩ as follows:

    (ϖ)(υ)=γ1(1(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι)))+(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))[γ2zιf(κ,ϖ(κ))dκABIϑ,ϱιg(z,ϖ(z),ϖ(δz),ABCDϑ,ϱιϖ(z))]+ABIϑ,ϱιg(υ,ϖ(υ),ϖ(δυ),ABCDϑ,ϱιϖ(υ)). (4.2)

    In order to investigate the uniqueness solution of the ϱ-ABC fractional pantograph implicit system (1.4), we will use the Banach FPT. Regarding this, let ϖ,ˆϖΩ, υJ, and by using H1, we have

    |(ϖ)(υ)(ˆϖ)(υ)|(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))[|γ2|zι|f(κ,ϖ(κ))f(κ,ˆϖ(κ))|dκ+ABIϑ,ϱι|g(z,ϖ(z),ϖ(δz),ABCDϑ,ϱιϖ(z))g(z,ˆϖ(z),ˆϖ(δz),ABCDϑ,ϱιˆϖ(z))|]+ABIϑ,ϱι|g(υ,ϖ(υ),ϖ(δυ),ABCDϑ,ϱιϖ(υ))g(υ,ˆϖ(υ),ˆϖ(δυ),ABCDϑ,ϱιˆϖ(υ))|(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))[|γ2|zι3|ϖ(κ)ˆϖ(κ)|dκ+ABIϑ,ϱι[1(|ϖ(z)ˆϖ(z)|+|ϖ(δz)ˆϖ(δz)|)+2|ABCDϑ,ϱιϖ(z)ABCDϑ,ϱιˆϖ(z)|]]+ABIϑ,ϱι[1(|ϖ(υ)ˆϖ(υ)|+|ϖ(δυ)ˆϖ(δυ)|)+2|ABCDϑ,ϱιϖ(υ)ABCDϑ,ϱιˆϖ(υ)|]. (4.3)

    In fact, we have ABCDϑ,ϱιϖ(υ)=g(υ,ϖ(υ),ϖ(δυ),ABCDϑ,ϱιϖ(υ)), thus

    |ABCDϑ,ϱιϖ(υ)ABCDϑ,ϱιˆϖ(υ)|=|g(υ,ϖ(υ),ϖ(δυ),ABCDϑ,ϱιϖ(υ))g(υ,ˆϖ(υ),ˆϖ(δυ),ABCDϑ,ϱιˆϖ(υ))|1(|ϖ(υ)ˆϖ(υ)|+|ϖ(δυ)ˆϖ(δυ)|)+2|ABCDϑ,ϱιϖ(υ)ABCDϑ,ϱιˆϖ(υ)|.

    Therefore,

    |ABCDϑ,ϱιϖ(υ)ABCDϑ,ϱιˆϖ(υ)|112(|ϖ(υ)ˆϖ(υ)|+|ϖ(δυ)ˆϖ(δυ)|). (4.4)

    In view of Eqs (4.3), (4.4), and Lemma 2.8 part (iii), we obtain

    |(ϖ)(υ)(ˆϖ)(υ)|(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))[|γ2|zι3|ϖ(κ)ˆϖ(κ)|dκ+ABIϑ,ϱι[112(|ϖ(z)ˆϖ(z)|+|ϖ(δz)ˆϖ(δz)|)]]+ABIϑ,ϱι[112(|ϖ(υ)ˆϖ(υ)|+|ϖ(δυ)ˆϖ(δυ)|)]|γ2|(zι)3ϖˆϖ+4112[(2ϑ)[ϱ(z)ϱ(ι)]Λ(ϑ1)+(ϑ1)[ϱ(z)ϱ(ι)]ϑΛ(ϑ1)Γ(ϑ+1)]ϖˆϖ{|γ2|(zι)3+4112[(2ϑ)[ϱ(z)ϱ(ι)]Λ(ϑ1)+(ϑ1)[ϱ(z)ϱ(ι)]ϑΛ(ϑ1)Γ(ϑ+1)]}ϖˆϖ.

    Hence, ϖˆϖβ1ϖˆϖ, and by condition (4.1), the operator is a contraction. Based on the Banach FPT 2.9, the ϱ-ABC fractional pantograph implicit system (1.4) possesses exactly one solution on J.

    Next, we discuss the existence result of the ϱ-ABC fractional pantograph implicit system (1.4) via Schaefer's FPT. Thus, we need to present the following hypothesis:

    H2) There are constants ξ1,ξ2,ξ3,ξ4,ξ5>0, such that for all υ[ι,z] and ϖiΩ,(i=1,2,3) satisfy

    |g(υ,ϖ1,ϖ2,ϖ3)|ξ1+ξ2(|ϖ1|+|ϖ2|)+ξ3|ϖ3|, (4.5)

    and

    |f(υ,ϖ1)|ξ4+ξ5|ϖ1|.

    Theorem 4.2. Let H2 hold. Then, there exists a solution for the ϱ-ABC fractional pantograph implicit system (1.4) provided that

    β3:=ξ5|γ2|(zι)+4ξ21ξ3[(2ϑ)[ϱ(z)ϱ(ι)]Λ(ϑ1)+(ϑ1)[ϱ(z)ϱ(ι)]ϑΛ(ϑ1)Γ(ϑ+1)]<1. (4.6)

    Proof. In order to investigate the conditions of Schaefer's FPT, we define the operator :ΩΩ as given in (4.2). Additionally, we set the bounded closed and convex ball ς:={ϖΩ:ϖς}, with radius ςβ21β3 and β3<1, such that

    β2:=2|γ1|+ξ4|γ2|(zι)+2ξ11ξ3[(2ϑ)[ϱ(z)ϱ(ι)]Λ(ϑ1)+(ϑ1)[ϱ(z)ϱ(ι)]ϑΛ(ϑ1)Γ(ϑ+1)],

    and β3 given in Eq (4.6). Our proof will be divided into two of the procedures.

    First: We show that the operator is completely continuous. For this, let the sequence {ϖn}nN is convergence to ϖ in the ball ς as n. Therefore, based on the continuity of the functions g, f, and by using the dominated convergence theorem in the sense of Lebesgue, we find that

    limn(ϖn)(υ)=γ1[1(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))]+(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))[γ2zιlimnf(κ,ϖn(κ))dκABIϑ,ϱιlimng(z,ϖn(z),ϖn(δz),ABCDϑ,ϱιϖn(z))]+ABIϑ,ϱιlimng(υ,ϖn(υ),ϖn(δυ),ABCDϑ,ϱιϖn(υ))=(ϖ)(υ).

    Thus, the operator is continuous.

    Next, we show that ςς. By using H2, for ϖς and υJ, we obtain

    |(ϖ)(υ)||γ1||1(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))|+(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))[|γ2|zι|f(κ,ϖ(κ))|dκ+ABIϑ,ϱι|g(z,ϖ(z),ϖ(δz),ABCDϑ,ϱιϖ(z))|]+ABIϑ,ϱι|g(υ,ϖ(υ),ϖ(δυ),ABCDϑ,ϱιϖ(υ))||γ1||1(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))|+(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))[|γ2|zι(ξ4+ξ5|ϖ(υ)|)dκ+ABIϑ,ϱι[ξ1+ξ2(|ϖ(z)|+|ϖ(δz)|)+ξ3|ABCDϑ,ϱιϖ(z)|]]+ABIϑ,ϱι[ξ1+ξ2(|ϖ(υ)|+|ϖ(δυ)|)+ξ3|ABCDϑ,ϱιϖ(υ)|]. (4.7)

    By the relation 4.5, we find that

    |ABCDϑ,ϱιϖ(υ)|=|g(υ,ϖ(υ),ϖ(δυ),ABCDϑ,ϱιϖ(υ))|ξ1+ξ2(|ϖ(υ)|+|ϖ(δυ)|)+ξ3|ABCDϑ,ϱιϖ(υ)|.

    Thus,

    |ABCDϑ,ϱιϖ(υ)|ξ11ξ3+ξ21ξ3(|ϖ(υ)|+|ϖ(δυ)|). (4.8)

    Now, by substituting Eq (4.8) into Eq (4.7) and by taking the supremum to both sides, and based on Lemma 2.8, part (iii), with (ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))<1, we obtain

    ϖ2|γ1|+|γ2|(zι)(ξ4+ξ5ϖ)+[2ξ11ξ3+4ξ21ξ3ϖ][(2ϑ)[ϱ(z)ϱ(ι)]Λ(ϑ1)+(ϑ1)[ϱ(z)ϱ(ι)]ϑΛ(ϑ1)Γ(ϑ+1)]2|γ1|+ξ4|γ2|(zι)+2ξ11ξ3[(2ϑ)[ϱ(z)ϱ(ι)]Λ(ϑ1)+(ϑ1)[ϱ(z)ϱ(ι)]ϑΛ(ϑ1)Γ(ϑ+1)]+{ξ5|γ2|(zι)+4ξ21ξ3[(2ϑ)[ϱ(z)ϱ(ι)]Λ(ϑ1)+(ϑ1)[ϱ(z)ϱ(ι)]ϑΛ(ϑ1)Γ(ϑ+1)]}ϖβ2+β3ϖβ2+β3ςς. (4.9)

    Hence, ςς, concluding that :ςς.

    In the following, we prove that the operator :ςς is equicontinuos on ς. For each ϖς and ιυ1υ2z, we have the following:

    |(ϖ)(υ2)(ϖ)(υ1)||γ1||(ϱ(υ2)ϱ(υ1))(ϱ(z)ϱ(ι))|+|(ϱ(υ2)ϱ(υ1))|(ϱ(z)ϱ(ι))[|γ2|zι|f(κ,ϖ(κ))|dκ+ABIϑ,ϱι|g(z,ϖ(z),ϖ(δz),ABCDϑ,ϱιϖ(z))|]+|ABIϑ,ϱιg(υ2,ϖ(υ2),ϖ(δυ2),ABCDϑ,ϱιϖ(υ2))ABIϑ,ϱιg(υ1,ϖ(υ1),ϖ(δυ1),ABCDϑ,ϱιϖ(υ1))||γ1||(ϱ(υ2)ϱ(υ1))(ϱ(z)ϱ(ι))|+|(ϱ(υ2)ϱ(υ1))|(ϱ(z)ϱ(ι))[|γ2|zι|f(κ,ϖ(κ))|dκ+ABIϑ,ϱι|g(z,ϖ(z),ϖ(δz),ABCDϑ,ϱιϖ(z))|]+|2ϑΛ(ϑ1)υ2ιϱ(κ)g(κ,ϖ(κ),ϖ(δκ),ABCDϑ,ϱιϖ(κ))dκ2ϑΛ(ϑ1)υ1ιϱ(κ)g(κ,ϖ(κ),ϖ(δκ),ABCDϑ,ϱιϖ(κ))dκ|+|(ϑ1)Λ(ϑ1)Γ(ϑ)υ2ιϱ(κ)(ϱ(υ2)ϱ(κ))ϑ1g(κ,ϖ(κ),ϖ(δκ),ABCDϑ,ϱιϖ(κ))dκ(ϑ1)Λ(ϑ1)Γ(ϑ)υ1ιϱ(κ)(ϱ(υ1)ϱ(κ))ϑ1g(κ,ϖ(κ),ϖ(δκ),ABCDϑ,ϱιϖ(κ))dκ||γ1||(ϱ(υ2)ϱ(υ1))(ϱ(z)ϱ(ι))|+|(ϱ(υ2)ϱ(υ1))|(ϱ(z)ϱ(ι))[|γ2|(zι)(ξ4+ςξ5)+[ξ11ξ3+2ςξ21ξ3]1Γ(ϑ+1)[ϱ(z)ϱ(ι)]ϑ]+|2ϑΛ(ϑ1)[ξ11ξ3+2ςξ21ξ3][ϱ(υ2)ϱ(ι)]2ϑΛ(ϑ1)[ξ11ξ3+2ςξ21ξ3][ϱ(υ1)ϱ(ι)]|+|(ϑ1)Λ(ϑ1)Γ(ϑ)[ξ11ξ3+2ςξ21ξ3]1Γ(ϑ+1)[ϱ(υ1)ϱ(ι)]ϑ(ϑ1)Λ(ϑ1)Γ(ϑ)[ξ11ξ3+2ςξ21ξ3]1Γ(ϑ+1)[ϱ(υ1)ϱ(ι)]ϑ|.

    Clearly, |(ϖ)(υ2)(ϖ)(υ1)|0 as υ1υ2 and is independent of ϖς. Therefore, is equicontinuos on ς. Thus, according to the Arzela Ascoli theorem, the mapping :ΩΩ is completely continuous.

    Second: We investigate that the set U={ϖΩ:ϖ=ηϖ,0<η<1} is bounded. Then, for ϖU, υ[ι,z], and by direct computation as in (4.9), we obtain

    ϖ=supz[ι,z]|ηϖ(υ)|β2+β3ϖ.

    Hence, ϖ=β21β3, then U is bounded set. Therefore, based on Theorem 2.10, the mapping possesses at least fixed point in Ω, which is a solution of the ϱ-ABC fractional pantograph implicit system (1.4).

    The UH stability are a type of stability for functional equations. This stability was first introduced by Ulam in 1940 [48]; Hyers [49] gave a partial affirmative answer to Ulam's question in 1941, after which, Rassias extended Hyers's theorem in 1978 [50]. The UH and UHR stabilities have been applied to a variety of problems in mathematics, physics, and economics and are also useful for studying the behavior of solutions to functional equations when the equations are only approximately satisfied.

    In this section, we are going to discuss the UH and UHR stabilities by using nonlinear analysis themes. Thus, we present the following concepts that are related to UH stability:

    Definition 5.1. ([51]) The ϱ-ABC fractional pantograph implicit problem (1.4) is defined as UH stable if there is a constant χg>0 such that for each ε>0, when ˆϖΩ is any solution of the inequality

    |ABCDϑ,ϱιˆϖ(υ)g(υ,ˆϖ(υ),ˆϖ(δυ),ABCDϑ,ϱιˆϖ(υ))|ε,υ[ι,z], (5.1)

    then there is one solution ϖΩ of the Eq (1.4) satisfied

    |ϖ(υ)ˆϖ(υ)|χgε,υ[ι,z]. (5.2)

    Definition 5.2. ([51]) The ϱ-ABC fractional pantograph implicit problem (1.4) is defined as generalized UH stable if there is a function αC(R+,R+),α(0)=0, such that for when ˆϖΩ is any solution of the identity (5.1), then there is one solution ϖΩ, of the Eq (1.4) satisfied by

    |ˆϖ(υ)ϖ(υ)|χgα(ε),υ[ι,z]. (5.3)

    Remark 5.3. For ε>0, a function ˆϖΩ is a solution of the inequality (5.1), for all υ[ι,z] iff there is a function ρΩ such that

    i) |ρ(υ)|ε,υ[ι,z];

    ii) ABCDϑ,ϱιˆϖ(υ)=g(υ,ˆϖ(υ),ˆϖ(δυ),ABCDϑ,ϱιˆϖ(υ))+ρ(υ).

    Theorem 5.4. Suppose that H1 is satisfied and β1<1. Then, the unique solution of the ϱ-ABC fractional pantograph system (1.4) is UH stable and generalized UH stable.

    Proof. Consider ˆϖΩ which satisfies the inequality (5.1), hence by using the Remark 5.3, we obtain

    ABCDϑ,ϱιˆϖ(υ)=g(υ,ˆϖ(υ),ˆϖ(δυ),ABCDϑ,ϱιˆϖ(υ))+ρ(υ),υ[ι,z].

    In view of Eq (3.3), we have

    ˆϖ(υ)=γ1[1(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))]+(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))[γ2zιf(κ,ˆϖ(κ))dκABIϑ,ϱιg(z,ˆϖ(z),ˆϖ(δz),ABCDϑ,ϱιˆϖ(z))ABIϑ,ϱιρ(z)]+ABIϑ,ϱιg(υ,ˆϖ(υ),ˆϖ(δυ),ABCDϑ,ϱιˆϖ(υ))+ABIϑ,ϱιρ(υ), (5.4)

    which gives

    |ˆϖ(υ)γ1[1(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))](ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))[γ2zιf(κ,ˆϖ(κ))dκABIϑ,ϱιg(z,ˆϖ(z),ˆϖ(δz),ABCDϑ,ϱιˆϖ(z))]ABIϑ,ϱιg(υ,ˆϖ(υ),ˆϖ(δυ),ABCDϑ,ϱιˆϖ(υ))|(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))ABIϑ,ϱι|ρ(z)|+ABIϑ,ϱι|ρ(υ)|2ε[(2ϑ)[ϱ(z)ϱ(ι)]Λ(ϑ1)+(ϑ1)[ϱ(z)ϱ(ι)]ϑΛ(ϑ1)Γ(ϑ+1)]. (5.5)

    Now, for ϖ,ˆϖΩ, by using Eqs (3.3), (5.5) and H1, we obtain

    |ˆϖ(υ)ϖ(υ)|=|ˆϖ(υ)γ1[1(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))](ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))[γ2zιf(κ,ϖ(κ))dκABIϑ,ϱιg(z,ϖ(z),ϖ(δz),ABCDϑ,ϱιϖ(z))]ABIϑ,ϱιg(υ,ϖ(υ),ϖ(δυ),ABCDϑ,ϱιϖ(υ))||ˆϖ(υ)γ1[1(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))](ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))[γ2zιf(κ,ˆϖ(κ))dκABIϑ,ϱιg(z,ˆϖ(z),ˆϖ(δz),ABCDϑ,ϱιˆϖ(z))]ABIϑ,ϱιg(υ,ˆϖ(υ),ˆϖ(δυ),ABCDϑ,ϱιˆϖ(υ))|+(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))[|γ2|zι|f(κ,ˆϖ(κ))f(κ,ϖ(κ))|dκ+ABIϑ,ϱι|g(z,ˆϖ(z),ˆϖ(δz),ABCDϑ,ϱιˆϖ(z))g(z,ϖ(z),ϖ(δz),ABCDϑ,ϱιϖ(z))|]+ABIϑ,ϱι|g(υ,ˆϖ(υ),ˆϖ(δυ),ABCDϑ,ϱιˆϖ(υ))g(υ,ϖ(υ),ϖ(δυ),ABCDϑ,ϱιϖ(υ))|2ε[(2ϑ)[ϱ(z)ϱ(ι)]Λ(ϑ1)+(ϑ1)[ϱ(z)ϱ(ι)]ϑΛ(ϑ1)Γ(ϑ+1)]+{|γ2|(zι)3+4112[(2ϑ)[ϱ(z)ϱ(ι)]Λ(ϑ1)+(ϑ1)[ϱ(z)ϱ(ι)]ϑΛ(ϑ1)Γ(ϑ+1)]}ˆϖϖ2ε[(2ϑ)[ϱ(z)ϱ(ι)]Λ(ϑ1)+(ϑ1)[ϱ(z)ϱ(ι)]ϑΛ(ϑ1)Γ(ϑ+1)]+β1ˆϖϖ,

    which further implies

    ˆϖϖβ41β1ε, (5.6)

    where

    β4:=2[(2ϑ)[ϱ(z)ϱ(ι)]Λ(ϑ1)+(ϑ1)[ϱ(z)ϱ(ι)]ϑΛ(ϑ1)Γ(ϑ+1)].

    Thus, yields that

    ˆϖϖχgε;χg:=β41β1.

    Therefore, the solution of the ϱ-ABC fractional pantograph implicit system (1.4) is UH stable. Moreover, there is an increasing function α:(0,)(0,), where α(ε)=ε with α(0)=0; thus from (5.6), we obtain

    ˆϖϖχgα(ε).

    Hence, the ϱ-ABC fractional pantograph implicit system (1.4) is generalized UH stable.

    Next, before discussing the UHR stability, we present the following concepts:

    Definition 5.5. ([52]) The ϱ-ABC fractional pantograph implicit problem (1.4) is called UHR stable with respect to θC(J,R), if there is a constant χg,θ>0, ε>0, for all ˆϖΩ which satisfies

    |ABCDϑ,ϱιˆϖ(υ)g(υ,ˆϖ(υ),ˆϖ(δυ),ABCDϑ,ϱιˆϖ(υ))|εθ(υ),υ[ι,z], (5.7)

    then there is one solution ϖΩ of the Eq (1.4) which satisfies

    |ϖ(υ)ˆϖ(υ)|χg,θεθ(υ),υ[ι,z]. (5.8)

    Definition 5.6. ([52]) The ϱ-ABC fractional pantograph implicit problem (1.4) is called generalized UHR stable with respect to θC(J,R), if there is a constant χg,θ>0, for all ˆϖΩ satisfy (5.7), then there is one solution ϖΩ of the Eq (1.4) which satisfies

    |ˆϖ(υ)ϖ(υ)|χg,θθ(υ),υ[ι,z]. (5.9)

    Remark 5.7. For ε>0, a function ˆϖΩ is a solution of the inequality (5.7), for all υ[ι,z] iff there is a function ζΩ such that

    i) |ζ(υ)|εθ(υ),υ[ι,z];

    ii) ABCDϑ,ϱιˆϖ(υ)=g(υ,ˆϖ(υ),ˆϖ(δυ),ABCDϑ,ϱιˆϖ(υ))+ζ(υ).

    Remark 5.8. There exists a real number λθ>0 and non-decreasing function θ(υ)Ω such that ABIϑ,ϱιθ(υ)λθθ(υ),υ[ι,z].

    Theorem 5.9. If H1 holds, subject to β1<1, then the unique solution of the ϱ-ABC fractional pantograph implicit system (1.4) is UHR stable and is consequently generalized UHR stable.

    Proof. Suppose that ˆϖΩ verifies the inequality (5.7). Thus, due to the Remark 5.7, we find

    ABCDϑ,ϱιˆϖ(υ)=g(υ,ˆϖ(υ),ˆϖ(δυ),ABCDϑ,ϱιˆϖ(υ))+ζ(υ),υ[ι,z].

    Based on the Eq (3.3), we have

    ˆϖ(υ)=γ1[1(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))]+(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))[γ2zιf(κ,ˆϖ(κ))dκABIϑ,ϱιg(z,ˆϖ(z),ˆϖ(δz),ABCDϑ,ϱιˆϖ(z))ABIϑ,ϱιρ(z)]+ABIϑ,ϱιg(υ,ˆϖ(υ),ˆϖ(δυ),ABCDϑ,ϱιˆϖ(υ))+ABIϑ,ϱιζ(υ). (5.10)

    In view of the Remarks 5.7 and 5.8, it is implied that

    |ˆϖ(υ)γ1[1(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))](ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))[γ2zιf(κ,ˆϖ(κ))dκABIϑ,ϱιg(z,ˆϖ(z),ˆϖ(δz),ABCDϑ,ϱιˆϖ(z))]ABIϑ,ϱιg(υ,ˆϖ(υ),ˆϖ(δυ),ABCDϑ,ϱιˆϖ(υ))|(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))ABIϑ,ϱι|ζ(z)|+ABIϑ,ϱι|ζ(υ)|(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))εABIϑ,ϱιθ(z)+εABIϑ,ϱιθ(υ)2ελθθ(υ). (5.11)

    Now, for ϖ,ˆϖΩ, by using Eqs (3.3), (5.11) and H1, we obtain

    |ˆϖ(υ)ϖ(υ)||ˆϖ(υ)γ1[1(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))](ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))[γ2zιf(κ,ˆϖ(κ))dκABIϑ,ϱιg(z,ˆϖ(z),ˆϖ(δz),ABCDϑ,ϱιˆϖ(z))]ABIϑ,ϱιg(υ,ˆϖ(υ),ˆϖ(δυ),ABCDϑ,ϱιˆϖ(υ))|+(ϱ(υ)ϱ(ι))(ϱ(z)ϱ(ι))[|γ2|zι|f(κ,ˆϖ(κ))f(κ,ϖ(κ))|dκ+ABIϑ,ϱι|g(z,ˆϖ(z),ˆϖ(δz),ABCDϑ,ϱιˆϖ(z))g(z,ϖ(z),ϖ(δz),ABCDϑ,ϱιϖ(z))|]+ABIϑ,ϱι|g(υ,ˆϖ(υ),ˆϖ(δυ),ABCDϑ,ϱιˆϖ(υ))g(υ,ϖ(υ),ϖ(δυ),ABCDϑ,ϱιϖ(υ))|2ελθθ(υ)+β1ˆϖϖ,

    which yields

    ˆϖϖ2λθθ(υ)1β1ε. (5.12)

    Hence, we have

    ˆϖϖχg,θεθ(υ),such thatχg,θ:=2λθ1β1.

    Then, the ϱ-ABC fractional pantograph implicit system (1.4) is UHR stable. Additionally, if ε=1, the solution of the ϱ-ABC fractional pantograph implicit system (1.4) is generalized UHR stable.

    Throughout this section, we present two examples for testing the effectiveness of our findings.

    Example 6.1. Consider the following ϱ-ABC fractional pantograph implicit system:

    {ABCD1.5,ϱ1ϖ(υ)=υ1+υ3+sin(ϖ(υ))19+ϖ(υ)+ϖ(14υ)19+ϖ(14υ)+14ABCD1.5,ϱ1ϖ(υ),υ[1,e],ϖ(1)=1,ϖ(e)=0.5e1ϖ(κ)log(κ)+ϖ(κ)dκ. (6.1)

    Here, ϑ=1.5,ι=1,z=e,γ1=1,γ2=0.5,ϱ(υ)=log(υ),f(υ,ϖ)=ϖ(υ)log(υ)+ϖ(υ), and

    g(υ,ϖ,ϖ,ϖ)=υ1+υ3+sin(ϖ(υ))19+ϖ(υ)+ϖ(14υ)19+ϖ(14υ)+14ABCD1.5,ϱ1ϖ(υ).

    Hence,

    |f(υ,ϖ)f(υ,ˆϖ)||ϖlog(υ)+ϖˆϖlog(υ)+ˆϖ|12|ϖˆϖ|,

    and

    |g(υ,ϖ1,ϖ2,ϖ3)g(υ,ˆϖ1,ˆϖ2,ˆϖ3)||sin(ϖ1)19+ϖ1sin(ˆϖ1)19+ˆϖ1|+|ϖ219+ϖ2ˆϖ219+ˆϖ2|+14|ϖ3ˆϖ3|19|ϖ1ˆϖ1|+19|ϖ2ˆϖ2|+14|ϖ3ˆϖ3|.

    Thus, we have 1=19,2=14,and3=12. Moreover, for Λ(ϑ1)=1, by the Mathematica software, we can calculate the following:

    β1:={|γ2|(zι)3+4112[(2ϑ)[ϱ(z)ϱ(ι)]Λ(ϑ1)+(ϑ1)[ϱ(z)ϱ(ι)]ϑΛ(ϑ1)Γ(ϑ+1)]}0.948756<1.

    Therefore, based on the Theorem 4.1, the ϱ-ABC fractional pantograph implicit system (6.1) possesses exactly one solution on [1,e]. Furthermore, in view of Theorem 5.4, the solution is UH stable with χg20.263474, and is consequently generalized UH stable. Analogously, we can easily draw a conclusion that UHR and generalized UHR stability conditions by obtaining a non-decreasing function θ(υ)=υ,υ[1,e].

    Example 6.2. Consider the following ϱ-ABC fractional pantograph implicit system:

    {ABCD1.8,ϱ0ϖ(υ)=110eυ3+115tan1(ϖ(υ))+ϖ(12υ)36+12ϖ(12υ)+ABCD1.8,ϱ0ϖ(υ)4+2ABCD1.8,ϱ0ϖ(υ),υ[0,1],ϖ(0)=0,ϖ(1)=0.2510(κ3+cos(ϖ(κ))1+ϖ(κ))dκ. (6.2)

    Here, ϑ=1.8,ι=0,z=1,γ1=0,γ2=0.25,ϱ(υ)=υ2,f(υ,ϖ)=υ3+cos(ϖ(υ))1+ϖ(υ), and

    g(υ,ϖ,ϖ,ϖ)=110eυ3+115tan1(ϖ(υ))+ϖ(12υ)36+12ϖ(12υ)+ABCD1.8,ϱ0ϖ(υ)4+2ABCD1.8,ϱ0ϖ(υ).

    Hence,

    |f(υ,ϖ)||υ3+cos(ϖ)1+ϖ|13+|ϖ|,

    and

    |g(υ,ϖ1,ϖ2,ϖ3)|=|110eυ3+115tan1(ϖ1)+ϖ236+12ϖ2+ϖ34+2ϖ3|110+112(|ϖ1|+|ϖ2|)+12|ϖ3|.

    Then, we obtain ξ1=110,ξ2=112,ξ3=12,ξ4=13,andξ5=1. Furthermore, by putting Λ(ϑ1)=1, and using the Mathematica software, we find the following:

    β3:=ξ5|γ2|(zι)+4ξ21ξ3[(2ϑ)[ϱ(z)ϱ(ι)]Λ(ϑ1)+(ϑ1)[ϱ(z)ϱ(ι)]ϑΛ(ϑ1)Γ(ϑ+1)]0.701456<1.

    Hence, in view of the Theorem 4.2, the ϱ-ABC fractional pantograph implicit system (6.2) possesses a solution on [0,1].

    The current study was devoted to investigate the existence, uniqueness and several types of UH stability of the solution for a new class of ϱ-ABC factional pantograph implicit systems under integral boundary conditions (1.4). The Scheafer and Banach FPTs were employed to establish sufficient conditions of the existence and uniqueness results of such system (1.4). The UH, generalized UH, UHR and generalized UHR stabilities were discussed by non-linear analysis themes and fractional calculus. Finally, two mathematical examples were enhanced to examine the validity of the main outcomes. In fact, with respect to another function which was used in this study, the ABC fractional operator is more generalized and supports our system to be more extensive and covers several of new and existing problems in the literature. As a future direction, the studied problem would be interesting if it was studied with an integral term and under impulsive boundary conditions.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    Pontificia Universidad Católica del Ecuador, Proyecto Título: "Algunos resultados Cualitativos sobre Ecuaciones diferenciales fraccionales y desigualdades integrales" Cod UIO2022.

    This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444).

    The authors express their gratitude to dear unknown referees for their helpful suggestions which improved the final version of this paper.

    The authors declare that they have no competing interests.



    [1] M. I. Abbas, M. Ghaderi, S. Rezapour, S. T. M. Thabet, On a coupled system of fractional differential equations via the generalized proportional fractional derivatives, J. Funct. Space., 2022 (2022), 4779213. https://doi.org/10.1155/2022/4779213 doi: 10.1155/2022/4779213
    [2] M. S. Abdo, T. Abdeljawad, K. D. Kucche, M. A. Alqudah, S. M. Ali, M. B. Jeelani, On nonlinear pantograph fractional differential equations with Atangana-Baleanu-Caputo derivative, Adv. Diff. Equ., 2021 (2021), 65. https://doi.org/10.1186/s13662-021-03229-8 doi: 10.1186/s13662-021-03229-8
    [3] S. T. M. Thabet, M. B. Dhakne, On boundary value problems of higher order abstract fractional integro-differential equations, Int. J. Nonlinear Anal. Appl., 7 (2016), 165–184.
    [4] M. S. Abdo, T. Abdeljawad, K. Shah, F. Jarad, Study of impulsive problems under Mittag-Leffler power law, Heliyon, 2020, 6e05109. https://doi.org/10.1016/j.heliyon.2020.e05109 doi: 10.1016/j.heliyon.2020.e05109
    [5] R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000.
    [6] S. T. M. Thabet, M. B. Dhakne, M. A. Salman, R. Gubran, Generalized fractional Sturm-Liouville and Langevin equations involving Caputo derivative with nonlocal conditions, Progr. Fract. Differ. Appl., 6 (2020), 225–237. https://doi.org/10.18576/pfda/060306 doi: 10.18576/pfda/060306
    [7] O. Nikan, S. M. Molavi-Arabshai, H. Jafari, Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves, Discrete Cont. Dyn.-S, 14 (2021), 3685–3701. https://doi.org/10.3934/dcdss.2020466 doi: 10.3934/dcdss.2020466
    [8] N. H. Can, O. Nikan, M. N. Rasoulizadeh, H. Jafari, Y. S. Gasimov, Numerical computation of the time non-linear fractional generalized equal width model arising in shallow water channel, Therm. Sci., 24 (2020), 49–58. https://doi.org/10.2298/TSCI20S1049C doi: 10.2298/TSCI20S1049C
    [9] W. Qiu, D. Xu, H. Chen, J. Guo, An alternating direction implicit Galerkin finite element method for the distributed-order time-fractional mobile-immobile equation in two dimensions, Comput. Math. Appl., 80 (2020), 3156–3172. https://doi.org/10.1016/j.camwa.2020.11.003 doi: 10.1016/j.camwa.2020.11.003
    [10] X. Yang, W. Qiu, H. Zhang, L. Tang, An efficient alternating direction implicit finite difference scheme for the three-dimensional time-fractional telegraph equation, Comput. Math. Appl., 102 (2021), 233–247. https://doi.org/10.1016/j.camwa.2021.10.021 doi: 10.1016/j.camwa.2021.10.021
    [11] W. Qiu, D. Xu, J. Guo, J. Zhou, A time two-grid algorithm based on finite difference method for the two-dimensional nonlinear time-fractional mobile/immobile transport model, Numer. Algorithms, 85 (2020), 39–58. https://doi.org/10.1007/s11075-019-00801-y doi: 10.1007/s11075-019-00801-y
    [12] S. T. M. Thabet, M. M. Matar, M. A. Salman, M. E. Samei, M. Vivas-Cortez, I. Kedim, On coupled snap system with integral boundary conditions in the G-Caputo sense, AIMS Math., 8 (2023), 12576–12605. https://doi.org/10.3934/math.2023632 doi: 10.3934/math.2023632
    [13] F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Soliton. Fract., 117 (2018), 16–20.
    [14] S. T. M. Thabet, B. Ahmad, R. P. Agarwal, On abstract Hilfer fractional integrodifferential equations with boundary conditions, Arab J. Math. Sci., 26 (2020), 107–125. https://doi.org/10.1016/j.ajmsc.2019.03.001 doi: 10.1016/j.ajmsc.2019.03.001
    [15] S. Rezapour, S. T. M. Thabet, M. M. Matar, J. Alzabut, S. Etemad, Some existence and stability criteria to a generalized FBVP having fractional composite p-Laplacian operator, J. Funct. Space., 2021 (2021), 9554076. https://doi.org/10.1155/2021/9554076 doi: 10.1155/2021/9554076
    [16] S. T. M. Thabet, M. B. Dhakne, On positive solutions of higher order nonlinear fractional integro-differential equations with boundary conditions, Malaya J. Mat., 7 (2019), 20–26. https://doi.org/10.26637/MJM0701/0005 doi: 10.26637/MJM0701/0005
    [17] M. S. Abdo, Boundary value problem for fractional neutral differential equations with infinite delay, Abh. J. Basic Appl. Sci., 1 (2022), 1–18. https://doi.org/10.59846/ajbas.v1i1.357 doi: 10.59846/ajbas.v1i1.357
    [18] A. S. Rafeeq, Periodic solution of Caputo-Fabrizio fractional integro-differential equation with periodic and integral boundary conditions, Eur. J. Pure Apppl. Math., 15 (2022), 144–157. https://doi.org/10.29020/nybg.ejpam.v15i1.4247 doi: 10.29020/nybg.ejpam.v15i1.4247
    [19] S. T. M. Thabet, I. Kedim, Study of nonlocal multiorder implicit differential equation involving Hilfer fractional derivative on unbounded domains, J. Math., 2023 (2023), 1–14. https://doi.org/10.1155/2023/8668325 doi: 10.1155/2023/8668325
    [20] A. Boutiara, S. Etemad, S. T. M. Thabet, S. K. Ntouyas, S. Rezapour, J. Tariboon, A mathematical theoretical study of a coupled fully hybrid (κ,ϕ)-fractional order system of BVPs in generalized Banach spaces, Symmetry, 15 (2023), 1041. https://doi.org/10.3390/sym15051041 doi: 10.3390/sym15051041
    [21] S. T. M. Thabet, M. B. Dhakne, On nonlinear fractional integro-differential equations with two boundary conditions, Adv. Stud. Contemp. Math., 26 (2016), 513–526.
    [22] A. Ali, I. Mahariq, K. Shah, T. Abdeljawad, B. Al-Sheikh, Stability analysis of initial value problem of pantograph-type implicit fractional differential equations with impulsive conditions, Adv. Diff. Equ., 2021 (2021), 55. https://doi.org/10.1186/s13662-021-03218-x doi: 10.1186/s13662-021-03218-x
    [23] S. T. M. Thabet, S. Al-Sádi, I. Kedim, A. S. Rafeeq, S. Rezapour, Analysis study on multi-order ϱ-Hilfer fractional pantograph implicit differential equation on unbounded domains, AIMS Math., 8 (2023), 18455–18473. https://doi.org/10.3934/math.2023938 doi: 10.3934/math.2023938
    [24] M. Houas, K. Kaushik, A. Kumar, A. Khan, T. Abdeljawad, Existence and stability results of pantograph equation with three sequential fractional derivatives, AIMS Math., 8 (2022), 5216–5232. https://doi.org/10.3934/math.2023262 doi: 10.3934/math.2023262
    [25] Z. H. Yu, Variational iteration method for solving the multi-pantograph delay equation, Phys. Lett. A, 372 (2008), 6475–6479. https://doi.org/10.1016/j.physleta.2008.09.013 doi: 10.1016/j.physleta.2008.09.013
    [26] K. Balachandran, S. Kiruthika, J. J. Trujillo, Existence of solution of nonlinear fractional pantograph equations, Acta Math. Sci., 33 (2013), 712–720. https://doi.org/10.1016/S0252-9602(13)60032-6 doi: 10.1016/S0252-9602(13)60032-6
    [27] E. Tohidi, A. H. Bhrawy, K. Erfani, A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation, Appl. Math. Model., 37 (2013), 4283–4294. https://doi.org/10.1016/j.apm.2012.09.032 doi: 10.1016/j.apm.2012.09.032
    [28] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [29] T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 2017 (2017), 130. https://doi.org/10.1186/s13660-017-1400-5 doi: 10.1186/s13660-017-1400-5
    [30] T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 9 (2017), 1098–1107.
    [31] M. I. Ayari, S. T. M. Thabet, Qualitative properties and approximate solutions of thermostat fractional dynamics system via a nonsingular kernel operator, Arab J. Math. Sci., 2023. https://doi.org/10.1108/AJMS-06-2022-0147 doi: 10.1108/AJMS-06-2022-0147
    [32] M. Khan, Z. Ahmad, F. Ali, N. Khan, I. Khan, K. S. Nisar, Dynamics of two-step reversible enzymatic reaction under fractional derivative with Mittag-Leffler Kernel, Plos One, 18 (2023), e0277806. https://doi.org/10.1371/journal.pone.0277806 doi: 10.1371/journal.pone.0277806
    [33] S. Rashid, Z. Hammouch, R. Ashraf, Y. M. Chu, New computation of unified bounds via a more general fractional operator using generalized Mittag-Leffler function in the kernel, Comput. Model. Eng. Sci., 126 (2021), 359–378. https://doi.org/10.32604/cmes.2021.011782 doi: 10.32604/cmes.2021.011782
    [34] Y. M. Chu, M. F. Khan, S. Ullah, S. A. Shah, M. Farooq, M. B. Mamat, Mathematical assessment of a fractional-order vector-host disease model with the Caputo-Fabrizio derivative, Math. Method. Appl. Sci., 46 (2023), 232–247. https://doi.org/10.1002/mma.8507 doi: 10.1002/mma.8507
    [35] S. Rashid, Z. Hammouch, D. Baleanu, Y. M. Chu, New generalizations in the sense of the weighted non-singular fractional integral operator, Fractals, 28 (2020), 2040003. https://doi.org/10.1142/S0218348X20400034 doi: 10.1142/S0218348X20400034
    [36] F. Jin, Z. S. Qian, Y. M. Chu, M. Rahman, On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative, J. Appl. Anal. Comput., 12 (2022), 790–806. https://doi.org/10.11948/20210357 doi: 10.11948/20210357
    [37] M. D. Ikram, M. A. Imran, Y. M. Chu, A. Akgül, MHD flow of a Newtonian fluid in symmetric channel with ABC fractional model containing hybrid nanoparticles, Comb. Chem. High T. Scr., 25 (2022), 1087–1102. https://doi.org/10.2174/1386207324666210412122544 doi: 10.2174/1386207324666210412122544
    [38] A. Fernandez, D. Baleanu, Differintegration with respect to functions in fractional models involving Mittag-Leffler functions, SSRN Electron. J., 2018. https://doi.org/10.2139/ssrn.3275746 doi: 10.2139/ssrn.3275746
    [39] T. Abdeljawad, S. T. M. Thabet, I. Kedim, M. I. Ayari, A. Khan, A higher-order extension of Atangana-Baleanu fractional operators with respect to another function and a Gronwall-type inequality, Bound. Value Probl., 2023 (2023), 49. https://doi.org/10.1186/s13661-023-01736-z doi: 10.1186/s13661-023-01736-z
    [40] G. Ali, K. Shah, T. Abdeljawad, H. Khan, G. U. Rahman, A. Khan, On existence and stability results to a class of boundary value problems under Mittag-Leffler power law, Adv. Diff. Equ., 2020 (2020), 407. https://doi.org/10.1186/s13662-020-02866-9 doi: 10.1186/s13662-020-02866-9
    [41] S. Asma, K. Shabbir, T. Shah, T. Abdeljawad, Stability analysis for a class of implicit fractional differential equations involving Atangana-Baleanu fractional derivative, Adv. Diff. Equ., 2021 (2021), 395. https://doi.org/10.1186/s13662-021-03551-1 doi: 10.1186/s13662-021-03551-1
    [42] M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, On fractional boundary value problems involving fractional derivatives with Mittag-Leffler kernel and nonlinear integral conditions, Adv. Diff. Equ., 2021 (2021), 37. https://doi.org/10.1186/s13662-020-03196-6 doi: 10.1186/s13662-020-03196-6
    [43] R. Almeida, A. B. Malinowska, M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Method. Appl. Sci., 41 (2018), 336–352. https://doi.org/10.1002/mma.4617 doi: 10.1002/mma.4617
    [44] P. O. Mohammed, T. Abdeljawad, Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel, Adv. Diff. Equ., 2020 (2020), 363. https://doi.org/10.1186/s13662-020-02825-4 doi: 10.1186/s13662-020-02825-4
    [45] A. Granas, J. Dugundji, Fixed point theory, New York, Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8
    [46] Y. Zhou, Basic theory of fractional differential equations, World Scientific, Singapore, 2014.
    [47] Z. Ahmad, F. Ali, N. Khan, I. Khan, Dynamics of fractal-fractional model of a new chaotic system of integrated circuit with Mittag-Leffler kernel, Chaos Soliton. Fract., 153 (2021), 111602. https://doi.org/10.1016/j.chaos.2021.111602 doi: 10.1016/j.chaos.2021.111602
    [48] S. M. Ulam, A problem of stability in functional equations, Bull. Am. Math. Soc., 46 (1940), 1–14.
    [49] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
    [50] T. M. Rassias, On the stability of functional equations in Banach spaces, J. Funct. Anal., 32 (1978), 168–175.
    [51] C. Wang, T. Xu, Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives, Appl. Math., 60 (2015), 383–393. https://doi.org/10.1007/s10492-015-0102-x doi: 10.1007/s10492-015-0102-x
    [52] T. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62 (2000), 23–130. https://doi.org/10.1023/A:1006499223572 doi: 10.1023/A:1006499223572
  • This article has been cited by:

    1. Nawab Hussain, Nawal Alharbi, Ghada Basendwah, Solving Fractional Boundary Value Problems with Nonlocal Mixed Boundary Conditions Using Covariant JS-Contractions, 2024, 16, 2073-8994, 939, 10.3390/sym16080939
    2. Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez, On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay, 2024, 9, 2473-6988, 7372, 10.3934/math.2024357
    3. Seyfeddine Moualkia, Yang Liu, Jinde Cao, Stabilization by feedback control of a novel stochastic chaotic finance model with time-varying fractional derivatives, 2025, 112, 11100168, 496, 10.1016/j.aej.2024.10.077
    4. Shahram Rezapour, Sabri T. M. Thabet, Ava Sh. Rafeeq, Imed Kedim, Miguel Vivas-Cortez, Nasser Aghazadeh, Abuzar Ghaffari, Topology degree results on a G-ABC implicit fractional differential equation under three-point boundary conditions, 2024, 19, 1932-6203, e0300590, 10.1371/journal.pone.0300590
    5. Gopinath Janardhanan, Gunaseelan Mani, Edwin Antony Raj Michael, Sabri T. M. Thabet, Imed Kedim, Solution of a nonlinear fractional-order initial value problem via a C-algebra-valued R-metric space, 2024, 2024, 2730-5422, 10.1186/s13663-024-00763-4
    6. Amit Prakash, Analysis and numerical simulation of fractional Bloch model arising in magnetic resonance imaging using novel iterative technique, 2024, 56, 1572-817X, 10.1007/s11082-023-06123-7
    7. Anil Chavada, Nimisha Pathak, Transmission dynamics of breast cancer through Caputo Fabrizio fractional derivative operator with real data, 2024, 4, 2767-8946, 119, 10.3934/mmc.2024011
    8. Sabri T. M. Thabet, Abdelatif Boutiara, Mohammad Esmael Samei, Imed Kedim, Miguel Vivas-Cortez, Joshua Kiddy K. Asamoah, Efficient results on fractional Langevin-Sturm-Liouville problem via generalized Caputo-Atangana-Baleanu derivatives, 2024, 19, 1932-6203, e0311141, 10.1371/journal.pone.0311141
    9. Brahim Tellab, Abdelkader Amara, Mohammed El-Hadi Mezabia, Khaled Zennir, Loay Alkhalifa, Study of a Coupled Ψ–Liouville–Riemann Fractional Differential System Characterized by Mixed Boundary Conditions, 2024, 8, 2504-3110, 510, 10.3390/fractalfract8090510
    10. Sabri T.M. Thabet, Imed Kedim, Bahaaeldin Abdalla, Thabet Abdeljawad, Explicit iteration of an unbounded solution of turbulent flow model involving ψ-Riemann–Liouville fractional derivatives, 2025, 113, 11100168, 611, 10.1016/j.aej.2024.10.120
    11. Yun-Ho Kim, Multiplicity Results of Solutions to the Fractional p-Laplacian Problems of the Kirchhoff–Schrödinger–Hardy Type, 2024, 13, 2227-7390, 47, 10.3390/math13010047
    12. Abdelkrim Salim, Sabri T.M. Thabet, Ava Sh. Rafeeq, Mohammad Esmael Samei, Imed Kedim, Miguel Vivas-Cortez, Exploring the solutions of tempered (κ,ϖ)-Hilfer hybrid implicit boundary value problem, 2025, 119, 11100168, 138, 10.1016/j.aej.2025.01.069
    13. Muath Awadallah, Mohamed Hannabou, Hajer Zaway, Jihan Alahmadi, Applicability of Caputo-Hadmard fractional operator in mathematical modeling of pantograph systems, 2025, 1598-5865, 10.1007/s12190-025-02421-3
    14. Abdelkader Lamamri, Yazid Gouari, Zoubir Dahmani, Mahdi Rakah, Mehmet Zeki Sarıkaya, A class of nonlinear systems with new boundary conditions: existence of solutions, stability and travelling waves, 2025, 30, 1648-3510, 233, 10.3846/mma.2025.20920
    15. Sabri T. M. Thabet, Reem M. Alraimy, Imed Kedim, Aiman Mukheimer, Thabet Abdeljawad, Exploring the solutions of a financial bubble model via a new fractional derivative, 2025, 10, 2473-6988, 8587, 10.3934/math.2025394
    16. Sabri T. M. Thabet, Imed Kedim, Mohammad Esmael Samei, Thabet Abdeljawad, Analysis study of hybrid Caputo-Atangana-Baleanu fractional pantograph system under integral boundary conditions, 2025, 30, 1648-3510, 386, 10.3846/mma.2025.22328
    17. AHSAN MEHMOOD, MUHAMMAD SAMRAIZ, ZHI-GUO LIU, DUMITRU BALEANU, MIGUEL VIVAS-CORTEZ, A NEW FORMULATION AND ANALYTICAL APPLICATIONS OF FRACTIONAL OPERATORS, 2025, 33, 0218-348X, 10.1142/S0218348X24501305
    18. P. Palani, D. Prabu, Seenith Sivasundaram, Hadamard fractional derivatives for a system of coupled implicit fractional pantograph differential equations, 2025, 86, 14681218, 104402, 10.1016/j.nonrwa.2025.104402
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1862) PDF downloads(98) Cited by(18)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog