
In this manuscript, we study the existence and Ulam's stability results for impulsive multi-order Caputo proportional fractional pantograph differential equations equipped with boundary and integral conditions with respect to another function. The uniqueness result is proved via Banach's fixed point theorem, and the existence results are based on Schaefer's fixed point theorem. In addition, the Ulam-Hyers stability and Ulam-Hyers-Rassias stability of the proposed problem are obtained by applying the nonlinear functional analysis technique. Finally, numerical examples are provided to supplement the applicability of the acquired theoretical results.
Citation: Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut. On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function[J]. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438
[1] | Chutarat Treanbucha, Weerawat Sudsutad . Stability analysis of boundary value problems for Caputo proportional fractional derivative of a function with respect to another function via impulsive Langevin equation. AIMS Mathematics, 2021, 6(7): 6647-6686. doi: 10.3934/math.2021391 |
[2] | Thanin Sitthiwirattham, Rozi Gul, Kamal Shah, Ibrahim Mahariq, Jarunee Soontharanon, Khursheed J. Ansari . Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2022, 7(3): 4017-4037. doi: 10.3934/math.2022222 |
[3] | Sabri T. M. Thabet, Miguel Vivas-Cortez, Imed Kedim . Analytical study of $ \mathcal{ABC} $-fractional pantograph implicit differential equation with respect to another function. AIMS Mathematics, 2023, 8(10): 23635-23654. doi: 10.3934/math.20231202 |
[4] | Fan Wan, Xiping Liu, Mei Jia . Ulam-Hyers stability for conformable fractional integro-differential impulsive equations with the antiperiodic boundary conditions. AIMS Mathematics, 2022, 7(4): 6066-6083. doi: 10.3934/math.2022338 |
[5] | Abdelatif Boutiara, Mohammed S. Abdo, Manar A. Alqudah, Thabet Abdeljawad . On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions. AIMS Mathematics, 2021, 6(6): 5518-5534. doi: 10.3934/math.2021327 |
[6] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues . Ulam-Hyers stabilities of fractional functional differential equations. AIMS Mathematics, 2020, 5(2): 1346-1358. doi: 10.3934/math.2020092 |
[7] | Hasanen A. Hammad, Hassen Aydi, Hüseyin Işık, Manuel De la Sen . Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives. AIMS Mathematics, 2023, 8(3): 6913-6941. doi: 10.3934/math.2023350 |
[8] | Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288 |
[9] | Amjad Ali, Kamal Shah, Dildar Ahmad, Ghaus Ur Rahman, Nabil Mlaiki, Thabet Abdeljawad . Study of multi term delay fractional order impulsive differential equation using fixed point approach. AIMS Mathematics, 2022, 7(7): 11551-11580. doi: 10.3934/math.2022644 |
[10] | Bounmy Khaminsou, Weerawat Sudsutad, Jutarat Kongson, Somsiri Nontasawatsri, Adirek Vajrapatkul, Chatthai Thaiprayoon . Investigation of Caputo proportional fractional integro-differential equation with mixed nonlocal conditions with respect to another function. AIMS Mathematics, 2022, 7(6): 9549-9576. doi: 10.3934/math.2022531 |
In this manuscript, we study the existence and Ulam's stability results for impulsive multi-order Caputo proportional fractional pantograph differential equations equipped with boundary and integral conditions with respect to another function. The uniqueness result is proved via Banach's fixed point theorem, and the existence results are based on Schaefer's fixed point theorem. In addition, the Ulam-Hyers stability and Ulam-Hyers-Rassias stability of the proposed problem are obtained by applying the nonlinear functional analysis technique. Finally, numerical examples are provided to supplement the applicability of the acquired theoretical results.
Fractional calculus (FC) has been more important in pure and applied mathematics in recent decades as a result of its applications in engineering and applied sciences. FC deals with the integral and differential operators of non-integer orders. Fractional differential and integral equations have been confirmed to be powerful equipment to explain various real-world problems such as chemistry, biology, physics, signal processing, electrodynamics, economics, finance, and also many more. For more details, we refer readers to the books in [1,2,3,4,5].
One type of famous differential equation (DEq) involves proportional delay terms called pantograph equations (PEqs) of the form:
{x′(t)=ax(t)+bx(λt),t∈[0,T],T>0,x(0)=x0,λ∈(0,1),a,b,∈R. | (1.1) |
It is studied by Ockendon and Tayler [6] that has been a wide range of applications in a wide range of applied fields of sciences, economics, medicine, engineering and several problems. The PEs is employed to model some processes and phenomena at the present time and depend on previous states. For some interesting papers on PEs, see [7,8,9,10,11,12,13,14,15,16,17,18,19] and the references cited therein. In 2013, Balachandran et al. [20] examined the existence of solutions for nonlinear fractional PEs using the FC and fixed point theorems:
{CDαx(t)=f(t,x(t),x(λt)),α∈(0,1],t∈[0,1],x(0)=x0,x0∈R,λ∈(0,1), | (1.2) |
where CDα denotes the Caputo fractional derivative of order α and f∈C([0,1]×R2,R).
The ordinary impulsive differential equations (IDEs) have been played a significant role almost in every subject to descript physical phenomena in mathematical modeling. They were used to model some processes with discontinuous jumps and instantaneous moves that cannot be modeled by ordinary differential equations. In addition, they have been great considered in many fields of real-world problems such as earthquakes, a mass-spring-damper system with short-term perturbations, finance and pharmacotherapy, see [21,22,23,24].
Recently, a qualitative property is a favorite field to study in the areas of engineering and applied sciences. It has two notable topics that are the existence theory and stability analysis. Stability analysis plays a very important tool to study in many fields such as optimization, numerical analysis, economics, mathematical biology and nonlinear analysis, etc. We encounter situations where finding the exact solution is a very difficult task, so stability analysis comes into a major role. Various types of stability like Exponential stability, Lyapunov stability, Mittag-Lefler stability, and Ulam-Hyers (UH) stability have been applied to examine the stability of functional problems. This paper will be studying the UH stability concept that has been accepted as an easy way and well-known procedure of examination. Ulam and Hyers have initiated the UH stability concept of the functional problems in Banach space by Ulam and Hyers during 1941. Thereafter, Rassias provided a notable generalization of the UH stability of mappings by considering variables in 1978 (is called the Ulam-Hyers-Rassias (UHR) stability). The UH stability and UHR stability have been extended to integral and differential equations. For more historical details [25,26,27,28]. Then the qualitative property of IDEs is very significant and helpful to realize physical phenomena that are not described as in the non-IDEs. Many modern papers apply fractional calculus on IDEs. The researchers have studied the qualitative properties of impulsive fractional differential equations. There are increasingly researches studying the qualitative property on non-impulsive/impulsive fractional differential equations (FDEs).
For instances, in 2009, Benchohra and Slimani [29], using fixed point theory of Banach's, Schaefer's and Leray-Schauder types, discussed the existence and uniqueness criteria of solutions for the initial value problems (IVPs) with impulses:
{CDαx(t)=f(t,x(t)),t≠tk,t∈[0,T],k=1,2,…,m,Δx(tk)=Jk(x(tk)),k=1,2,…,m,x(0)=x0,x0∈R, | (1.3) |
where f∈C([0,T]×R,R), Jk:R→R, k=1,2,…,m, and 0=t0<t1<⋅<tm<tm+1=T, Δx(tk)=x(t+k)−x(t−k), x(t+k)=limϵ→0+x(tk+ϵ), x(t−k)=x(tk) represent the right and left hand limits of x(t) at t=tk, respectively. Benchohra and Seba [30], using Mönch's fixed point theorem merged with the technique of measures of noncompactness, examined the existence and uniqueness of solutions for the IVPs with impulses (1.3). In 2012, Wang et al. [31] studied the sufficient conditions for the existence of solutions for IVPs with impulses (1.3) by using a fixed point theorem on topological degree for condensing maps via a priori estimate method. In 2015, Benchohra and Lazreg [32] considered the implicit FDEs in Caputo sense with impulse:
{CDαt+kx(t)=f(t,x(t),CDαt+kx(t)),t≠tk,t∈[0,T],k=1,2,…,m,Δx(tk)=Jk(x(tk)),k=1,2,…,m,x(0)=x0,x0∈R, | (1.4) |
where f∈C([0,T]×R2,R). The existence results of (1.4) are established based on the Banach contraction principle and Schaefer's fixed point theorem. In 2017, Benchohra et al. [33] established the existence, uniqueness, and UH stability of solutions for the nonlinear FDEs in Caputo-Hadamard sense with impulse of the form:
{CHDαt+kx(t)=f(t,x(t),CHDαt+kx(t)),t∈(tk,tk+1],k=0,1,2,…,m,Δx(tk)=Jk(x(tk)),k=1,2,…,m,ax(0)+bx(T)=c,a,b,c∈R, | (1.5) |
where CHDαt+k denotes the Caputo-Hadamard fractional derivative of order α∈(0,1], f∈C([0,T]×R2,R), and a+b≠0. The existence results are proved by using the Banach contraction principle and Schaefer's fixed point theorem. In 2021, Ali et al. [34] discussed the IVPs of pantograph implicit FDEs with impulsive conditions. The existence results are derived by applying the Banach contraction principle and Schaefer's fixed point theorem. In addition, they studied the UH results of the following problem:
{CDαt+kx(t)=f(t,x(t),x(λt),CDαt+kx(t)),t∈[0,T],t≠tk,k=1,2,…,m,Δx(tk)=Jk(x(tk)),k=1,2,…,m,x(0)=x0,x0∈R,λ∈(0,1), | (1.6) |
where f∈C([0,T]×R3,R). For modern researches on impulsive FDEs about the existence, uniqueness and stability, see [35,36,37,38,39,40,41,42,43,44,45,46] and the references cited therein.
Recently, in [47,48], the authors formulate the proportional fractional operators of a function f with respect to another function ψ and provide its properties. For α>0, ρ∈(0,1], ψ∈C1([a,b]), ψ′>0, the proportional fractional integral (PFI) of order α of the function f∈L1([a,b]) with respect to another function ψ is defined by
ρIα,ψaf(t)=1ραΓ(α)∫taeρ−1ρ(ψ(t)−ψ(s))(ψ(t)−ψ(s))α−1f(s)ψ′(s)ds, | (1.7) |
where Γ(⋅) is the (Euler's) gamma function defined by Γ(α)=∫∞0sα−1e−sds, s>0. The Riemann-Liouville proportional fractional derivative (PFD) of order α of the function f∈Cn([a,b]) with respect to another function ψ is defined by
ρDα,ψaf(t)=ρDn,ψρaIn−α,ψf(t)=ρDn,ψtρn−αΓ(n−α)∫taeρ−1ρ(ψ(t)−ψ(s))(ψ(t)−ψ(s))n−α−1f(s)ψ′(s)ds, | (1.8) |
where n=[α]+1, [α] is the integer part of α, ρDn,ψ=ρDψ⋅ρDψ⋯ρDψ⏟ntimes, and ρDψf(t)=(1−ρ)f(t)+ρf′(t))/ψ′(t). The Caputo PFD type is defined by
CρDα,ψaf(t)=ρIn−α,ψaρDn,ψf(t)=1ρn−αΓ(n−α)∫taeρ−1ρ(ψ(t)−ψ(s))(ψ(t)−ψ(s))n−α−1ρDn,ψf(s)ψ′(s)ds. | (1.9) |
The relation of PFI and PFD of Caputo type which will be used in this manuscript as
ρIα,ψaCρDα,ψaf(t)=f(t)−n−1∑k=0ρDk,ψf(a)ρkk!(ψ(t)−ψ(a))keρ−1ρ(ψ(t)−ψ(a)). | (1.10) |
Morover, for α, β>0 and ρ∈(0,1], we have the following property:
(ρIα,ψaeρ−1ρψ(s)(ψ(s)−ψ(a))β−1)(t)=Γ(β)ραΓ(β+α)eρ−1ρψ(t)(ψ(t)−ψ(a))β+α−1. | (1.11) |
Clearly, if we set ρ=1 in (1.7)–(1.9), then we have the Riemann-Liouville fractional operators [2] with ψ(t)=t, the Hadamard fractional operators [2] with ψ(t)=logt, the Katugampola fractional operators [49] with ψ(t)=tμ/μ, μ>0, the conformable fractional operators [50] with ψ(t)=(t−a)μ/μ, μ>0, and the generalized conformable fractional operators [51] with ψ(t)=tμ+ϕ/(μ+ϕ), respectively. The previous modern works on proportional fractional operators of a function with respect to another function, see [52,53,54,55,56]. To the best of the author's knowledge, there are some manuscripts that have established either impulsive fractional boundary value problems [57,58] and few papers focused on impulsive Caputo proportional fractional boundary value problems with respect to another function via proportional delay term.
Motivated by the aforesaid utilization of implicit impulsive pantograph differential equations above and a series of papers were presented, we investigate the qualitative properties (existence, uniqueness and UH stability) of the solutions for the following nonlinear impulsive boundary value pantograph problem under Caputo PFD operator of the form.
{CρkDαk,ψkt+kx(t)=f(t,x(t),x(λt),CρkDαk,ψkt+kx(t)),t≠tk,k=1,2,…,m,Δx(tk)=Jk(x(tk)),k=1,2,…,m,ηx(0)+βx(T)=m∑i=0δiρiIγi,ψitix(ξi), | (1.12) |
where CρkDαk,ψkt+k denotes the Caputo PFD of order αk with respect to certain continuously differentiable and increasing function ψk with ψ′(t)>0 and αk∈(0,1], t∈Jk=(tk,tk+1]⊆J=[0,T]={a}∪(⋃m0Jk), k=0,1,…,m, 0=t0<t1<⋅<tm<tm+1=T, ρk∈(0,1], λ∈(0,1), f∈C(J×R3,R), φk∈C(R,R), k=1,2,…,m, ρiIγi,ψiti denotes the PFI of order γi>0 with respect to certain continuously differentiable and increasing function ψi, i=0,1,…,m. The given constants η, β, δi∈R, ξi∈(ti,ti+1], i=0,1,…,m. Δx(tk)=x(t+k)−x(t−k), x(t+k)=limϵ→0+x(tk+ϵ), x(t−k)=x(tk) represent the right and left hand limits of x(t) at t=tk, respectively. Notice that, the significance of this discussion on the manuscript is that the problem (1.12) generates many types, including mixed types of impulsive FDEs with boundary conditions, see [29,30,31,32,33,34] and references cited therein.
The outline of this paper is as follows: In Section 2, we give some basic concepts, notations, definitions and lemmas that will be used in this manuscript. Further, an auxiliary result useful to convert the impulsive problem (1.12) into an equivalent integral equation is constructed in Section 2. In Section 3, showing the existence results, the uniqueness criteria is verified by Banach's fixed point theorem, and the existence criteria is proved by Schaefer's fixed point theorem. Besides, we investigate the different types of Ulam's stability results for the problem (1.12) in Section 4. Finally, illustrative examples are built in Section 5 to clarify the positiveness of our theoretical results.
Throughout this manuscript, let PC(J,R):={x:J→R:x(t) is continuous everywhere except for some tk at which x(t+k) and x(t−k)=x(tk), k=1,2,…,m} the space of piecewise continuous functions. Obviously, (PC(J,R),‖x‖) is a Banach space equipped with the norm ‖x‖:=supt∈J|x(t)|. In the following, we set the functional equation Fx(t)=f(t,x(t),x(λt),Fx(t)), and represents the PFI operator defined in (1.7) of a nonlinear function Fx by a subscript notation by
ρIα,ψaFx(t)=1ραΓ(α)∫taeρ−1ρ(ψ(t)−ψ(s))(ψ(t)−ψ(s))α−1Fx(s)ψ′(s)ds=1ραΓ(α)∫taeρ−1ρ(ψ(t)−ψ(s))(ψ(t)−ψ(s))α−1f(s,x(s),x(λs),Fx(s))ψ′(s)ds. |
Next, let us begin by determining what we propose by a solution of (1.12).
Definition 2.1. A function x∈PC(J,R)∩(∪mk=0AC(Jk,R)) is said to be a solution of (1.12) if x satisfies CρkDαk,ψkt+kx(t)=f(t,x(t),x(λt),CρkDαk,ψkt+kx(t)), on Jk with Δx(tk)=Jk(x(tk)) for k=1,2,…,m under ηx(0)+βx(T)=∑mi=0δiρiIγi,ψitix(ξi+1), for i=0,1,…,m.
Conveniently, for nonnegative a<b, we define the following symbol:
Ψa(ta,tb)=ψa(tb)−ψa(ta). | (2.1) |
Proposition 2.1. [48] Let Re(α)≥0 and Re(β)>0. Then, for any ρ∈(0,1] and n=[Re(α)]+1, we have
(i) (ρDα,ψaeρ−1ρψ(s)(ψ(s)−ψ(a))β−1)(t)=ραΓ(β)Γ(β−α)eρ−1ρψ(t)(ψ(t)−ψ(a))β−α−1,Re(α)≥0.
(ii) (CρDα,ψaeρ−1ρψ(s)(ψ(s)−ψ(a))β−1)(t)=ραΓ(β)Γ(β−α)eρ−1ρψ(t)(ψ(t)−ψ(a))β−α−1,Re(β)>n.
For k=0,1,…,n−1, we have
(CρDα,ψaeρ−1ρψ(s)(ψ(s)−ψ(a))k)(t)=0and(CρDα,ψaeρ−1ρψ(s))(t)=0. |
Corollary 2.1. [57] Let 0<Re(β)<Re(α) and m−1<Re(β)≤m. Then we have
CρDβ,ψaaIα,ρ,ψf(t)=ρIα−β,ψaf(t). |
Next, we provide an essential Lemma 2.1 that is used to prove the main results of (1.12).
Lemma 2.1. Let 0<αk≤1, 0<ρk≤1, Fx∈AC(J×R3,R) for any x∈C(J,R) and Λ≠0. Then the following problem:
{CρkDαk,ψktkx(t)=Fx(t),t≠tk,k=0,1,2,…,m,Δx(tk)=Jk(x(tk)),k=1,2,…,m,ηx(0)+βx(T)=m∑i=0δiρiIγi,ψitix(ξi), | (2.2) |
is equivalent to the following integral equation:
x(t)=ρkIαk,ψktkFx(t)+eρk−1ρkΨk(tk,t){1Λk∏i=1eρi−1−1ρi−1Ψi−1(ti−1,ti)[m∑i=0δiρiIαi+γi,ψitiFx(ξi)−βρmIαm,ψmtmFx(T)−βeρm−1ρmΨm(tm,T)m∑i=1((ρi−1Iαi−1,ψi−1ti−1Fx(ti)+Ji(x(ti)))m−1∏j=ieρj−1ρjΨj(tj,tj+1))+m∑i=0δiΨγii(ti,ξi)ργiiΓ(γi+1)eρi−1ρiΨi(ti,ξi)i∑j=1((ρj−1Iαj−1,ψj−1tj−1Fx(tj)+Jj(x(tj)))i−1∏l=jeρl−1ρlΨl(tl,tl+1))]+k∑i=1((ρi−1Iαi−1,ψi−1ti−1Fx(ti)+Ji(x(ti)))k−1∏j=ieρj−1ρjΨj(tj,tj+1))},t∈Jk, | (2.3) |
where
Λ:=η+βm+1∏i=1eρi−1−1ρi−1Ψi−1(ti−1,ti)−m∑i=0δiΨγii(ti,ξi)ργiiΓ(γi+1)eρi−1ρiΨi(ti,ξi)i∏j=1eρj−1−1ρj−1Ψj−1(tj−1,tj). | (2.4) |
Proof. Firstly, for t∈J0=[t0,t1], we convert (2.2) into integral equation by taking the PFI operator ρ0Iα0,ψ0t0 to both sides of (2.2) and also applying (1.10), we have
x(t)=ρ0Iα0,ψ0t0Fx(t)+c0eρ0−1ρ0(ψ0(t)−ψ0(t0)), |
where c0=x(t+0). For t∈J1=(t1,t2], by taking ρ1Iα1,ψ1t1 to both sides of (2.2) and again using (1.10), we obtain
x(t)=x(t+1)eρ1−1ρ1(ψ1(t)−ψ1(t1))+ρ1Iα1,ψ1t1Fx(t). |
From an impulsive condition, x(t+1)=x(t−1)+J1(x(t1)), we get
x(t)=[x(t−1)+J1(x(t1))]eρ1−1ρ1(ψ1(t)−ψ1(t1))+ρ1Iα1,ψ1t1Fx(t)=ρ1Iα1,ψ1t1Fx(t)+{c0eρ0−1ρ0(ψ0(t1)−ψ0(t0))+[ρ0Iα0,ψ0t0Fx(t1)+J1(x(t1))]}eρ1−1ρ1(ψ1(t)−ψ1(t1)). |
For t∈J2=(t2,t3], by using the operator ρ2Iα2,ψ2t2 to both sides of (2.2), we have
x(t)=ρ2Iα2,ψ2t2Fx(t)+x(t+2)eρ2−1ρ2(ψ2(t)−ψ2(t2)). |
In view of the impulsive condition x(t+2)=x(t−2)+J2(x(t2)), we obtain
x(t)=x(t+2)eρ2−1ρ2(ψ2(t)−ψ2(t2))+ρ2Iα2,ψ2t2Fx(t)=ρ2Iα2,ψ2t2Fx(t)+{c0eρ0−1ρ0(ψ0(t1)−ψ0(t0))eρ1−1ρ1(ψ1(t2)−ψ1(t1))+[ρ0Iα0,ψ0t0Fx(t1)+J1(x(t1))]eρ1−1ρ1(ψ1(t2)−ψ1(t1))+[ρ1Iα1,ψ1t1Fx(t2)+J2(x(t2))]}eρ2−1ρ2(ψ2(t)−ψ2(t2)). |
By a similar ways repeating the same process, for t∈Jk=(tk,tk+1], k=0,1,2,…,m, we have
x(t)=ρkIαk,ψktkFx(t)+eρk−1ρk(ψk(t)−ψk(tk)){c0k∏i=1eρi−1−1ρi−1(ψi−1(ti)−ψi−1(ti−1))+k∑i=1((ρi−1Iαi−1,ψi−1ti−1Fx(ti)+Ji(x(ti)))k−1∏j=ieρj−1ρj(ψj(tj+1)−ψj(tj)))}. | (2.5) |
Applying the conditions ηx(0)+βx(T)=∑mi=0δiρiIγi,ψitix(ξi) with the symbol (2.1), we obtain
ηx(0)+βx(T)=ηc0+βρmIαm,ψmtmFx(T)+c0βm+1∏i=1eρi−1−1ρi−1Ψi−1(ti−1,ti)+βeρm−1ρmΨm(tm,T)m∑i=1((ρi−1Iαi−1,ψi−1ti−1Fx(ti)+Ji(x(ti)))m−1∏j=ieρj−1ρjΨj(tj,tj+1)), | (2.6) |
m∑i=0δiρiIγi,ψitix(ξi)=m∑i=0δiρiIαi+γi,ψitiFx(ξi)+m∑i=0δiΨγii(ti,ξi)ργiiΓ(γi+1)eρi−1ρiΨi(ti,ξi){c0i∏j=1eρj−1−1ρj−1Ψj−1(tj−1,tj)+i∑j=1((ρj−1Iαj−1,ψj−1tj−1Fx(tj)+Jj(x(tj)))i−1∏l=jeρl−1ρlΨl(tl,tl+1))}. | (2.7) |
By solving (2.6) and (2.7), we get that\newpage
c0=1Λ[m∑i=0δiρiIαi+γi,ψitiFx(ξi)−βρmIαm,ψmtmFx(T)−βeρm−1ρmΨm(tm,T)m∑i=1((ρi−1Iαi−1,ψi−1ti−1Fx(ti)+Ji(x(ti)))m−1∏j=ieρj−1ρjΨj(tj,tj+1))+m∑i=0δiΨγii(ti,ξi)ργiiΓ(γi+1)eρi−1ρiΨi(ti,ξi)i∑j=1((ρj−1Iαj−1,ψj−1tj−1Fx(tj)+Jj(x(tj)))i−1∏l=jeρl−1ρlΨl(tl,tl+1))]. |
Substituting the value of c0 in (2.5), yields the solution (2.3).
Conversely, suppose that x satisfies (2.3), taking the Caputo PFD CρkDαk,ψktk into both sides of the Volterra integral equation (2.3) and using Proposition 1 with Corollary 1, we get that
CρkDαk,ψktkx(t)=CρkDαk,ψktkρkIαk,ψktkFx(t)+CρkDαk,ψktkeρk−1ρkΨk(tk,t){1Λk∏i=1eρi−1−1ρi−1Ψi−1(ti−1,ti)[m∑i=0δiρiIαi+γi,ψitiFx(ξi)−βρmIαm,ψmtmFx(T)−βeρm−1ρmΨm(tm,T)m∑i=1((ρi−1Iαi−1,ψi−1ti−1Fx(ti)+Ji(x(ti)))m−1∏j=ieρj−1ρjΨj(tj,tj+1))+m∑i=0δiΨγii(ti,ξi)ργiiΓ(γi+1)eρi−1ρiΨi(ti,ξi)i∑j=1((ρj−1Iαj−1,ψj−1tj−1Fx(tj)+Jj(x(tj)))i−1∏l=jeρl−1ρlΨl(tl,tl+1))]+k∑i=1((ρi−1Iαi−1,ψi−1ti−1Fx(ti)+Ji(x(ti)))k−1∏j=ieρj−1ρjΨj(tj,tj+1))}=Fx(t),t∈Jk. |
Next, we show that x satisfies the boundary conditions. Applying the operator ρiIγi,ψiti to both sides of (2.3) with (1.11), for i=0,1,…,m, we obtain
m∑i=0δiρiIγi,ψitix(ξi)=m∑i=0δiρiIαi+γi,ψitiFx(ξi)+m∑i=0δieρi−1ρiΨi(ti,ξi)Ψγii(ti,ξi)ργiΓ(γi+1){1Λm∏i=1eρi−1−1ρi−1Ψi−1(ti−1,ti)×[m∑i=0δiρiIαi+γi,ψitiFx(ξi)−βρmIαm,ψmtmFx(T)−βeρm−1ρmΨm(tm,T)m∑i=1((ρi−1Iαi−1,ψi−1ti−1Fx(ti)+Ji(x(ti)))m−1∏j=ieρj−1ρjΨj(tj,tj+1))+m∑i=0δiΨγii(ti,ξi)ργiiΓ(γi+1)eρi−1ρiΨi(ti,ξi)i∑j=1((ρj−1Iαj−1,ψj−1tj−1Fx(tj)+Jj(x(tj)))i−1∏l=jeρl−1ρlΨl(tl,tl+1))]+m∑i=1((ρi−1Iαi−1,ψi−1ti−1Fx(ti)+Ji(x(ti)))m−1∏j=ieρj−1ρjΨj(tj,tj+1))},βx(T)=βρmIαm,ψmtmFx(T)+βeρm−1ρmΨm(tm,T){1Λm∏i=1eρi−1−1ρi−1Ψi−1(ti−1,ti)×[m∑i=0δiρiIαi+γi,ψitiFx(ξi)−βρmIαm,ψmtmFx(T)−βeρm−1ρmΨm(tm,T)m∑i=1((ρi−1Iαi−1,ψi−1ti−1Fx(ti)+Ji(x(ti)))m−1∏j=ieρj−1ρjΨj(tj,tj+1))+m∑i=0δiΨγii(ti,ξi)ργiiΓ(γi+1)eρi−1ρiΨi(ti,ξi)i∑j=1((ρj−1Iαj−1,ψj−1tj−1Fx(tj)+Jj(x(tj)))i−1∏l=jeρl−1ρlΨl(tl,tl+1))]+m∑i=1((ρi−1Iαi−1,ψi−1ti−1Fx(ti)+Ji(x(ti)))m−1∏j=ieρj−1ρjΨj(tj,tj+1))},ηx(0)=ηΛ[m∑i=0δiρiIαi+γi,ψitiFx(ξi)−βρmIαm,ψmtmFx(T)−βeρm−1ρmΨm(tm,T)m∑i=1((ρi−1Iαi−1,ψi−1ti−1Fx(ti)+Ji(x(ti)))m−1∏j=ieρj−1ρjΨj(tj,tj+1))+m∑i=0δiΨγii(ti,ξi)ργiiΓ(γi+1)eρi−1ρiΨi(ti,ξi)i∑j=1((ρj−1Iαj−1,ψj−1tj−1Fx(tj)+Jj(x(tj)))i−1∏l=jeρl−1ρlΨl(tl,tl+1))], |
where Λ is given by (2.4). Therefore,
ηx(0)+βx(T)=m∑i=0δiρiIγi,ψitix(ξi). |
The proof is finished.
In this section, we prove the existence and uniqueness results for the problem (1.12) via Banach's and Schaefer's fixed point theorems. Firstly, we convert the problem (1.12) into a fixed point equation x=Qx, we define an operator Q:PC(J,R)→PC(J,R) according to Lemma 1 as follow:
(Qx)(t)=ρkIαk,ψktkFx(t)+eρk−1ρkΨk(tk,t){1Λk∏i=1eρi−1−1ρi−1Ψi−1(ti−1,ti)[m∑i=0δiρiIαi+γi,ψitiFx(ξi)−βρmIαm,ψmtmFx(T)−βeρm−1ρmΨm(tm,T)m∑i=1((ρi−1Iαi−1,ψi−1ti−1Fx(ti)+Ji(x(ti)))m−1∏j=ieρj−1ρjΨj(tj,tj+1))+m∑i=0δiΨγii(ti,ξi)ργiiΓ(γi+1)eρi−1ρiΨi(ti,ξi)i∑j=1((ρj−1Iαj−1,ψj−1tj−1Fx(tj)+Jj(x(tj)))i−1∏l=jeρl−1ρlΨl(tl,tl+1))]+k∑i=1((ρi−1Iαi−1,ψi−1ti−1Fx(ti)+Ji(x(ti)))k−1∏j=ieρj−1ρjΨj(tj,tj+1))}. | (3.1) |
Clearly, the problem (1.12) has a solution if and only if the operator Q has fixed points. For the sake of convenience, we assume the following notations of constants:
Ω1=(1+|β||Λ|)m+1∑i=1Ψαi−1i−1(ti−1,ti)ραi−1i−1Γ(αi−1+1)+1|Λ|(m∑i=0|δi|Ψαi+γii(ti,ξi)ραi+γiiΓ(αi+γi+1)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)i∑j=1Ψαj−1j−1(tj−1,tj)ραj−1j−1Γ(αj−1+1)), | (3.2) |
Ω2=m(1+|β||Λ|)+1|Λ|m∑i=0i|δi|Ψγii(ti,ξi)ργiiΓ(γi+1). | (3.3) |
In the forthcoming first theorem, we will prove the uniqueness of solution for the problem (1.12) by applying Banach's fixed point theorem.
Lemma 3.1. (Banach's fixed point theorem [59]) Let D be a non-empty closed subset of a Banach space E. Then any contraction mapping Q from D into itself has a unique fixed point.
Theorem 3.1. Assume that ψk∈C(J,R) with ψ′k(t)>0 for t∈J, k=0,1,2,…,m, f:J×R3→R and φk:R→R, k=1,2,…,m are continuous functions, which satisfy the following assumptions:
(A1) There exist constants L1>0 and 0<L2<1 such that, for every t∈J and xi, yi, zi∈R, i=1,2,
|f(t,x1,y1,z1)−f(t,x2,y2,z2)|≤L1(|x1−x2|+|y1−y2|)+L2|z1−z2|. |
(A2) There exists a constant M1>0, for any x,y∈R, such that
|Jk(x)−Jk(y)|≤M1|x−y|,k=1,2,…,m. |
Then the problem (1.12) has a unique solution on J provided that
2L1Ω11−L2+M1Ω2<1. | (3.4) |
Proof. Suppose that K1 and K2 are nonnegative constants such that K1=supt∈J|F0(t)|<+∞, where F0(t)=f(t,0,0,0) and K2=max{Jk(0):k=1,2,…,m}. Define a bounded, closed and convex subset Br1 of PC(J,R), where Br1={x∈PC(J,R):‖x‖≤r1}, r1 is chosen such that
r1≥K1Ω11−L2+K2Ω21−(2L1Ω11−L2+M1Ω2). |
We split the proof into two steps:
Step I. We show that QBr1⊂Br1.
For any x∈Br1, we have
|(Qx)(t)|≤ρkIαk,ψktk|Fx(t)|+eρk−1ρkΨk(tk,t){1|Λ|k∏i=1eρi−1−1ρi−1Ψi−1(ti−1,ti)[m∑i=0|δi|ρiIαi+γi,ψiti|Fx(ξi)|+|β|ρmIαm,ψmtm|Fx(T)|+|β|eρm−1ρmΨm(tm,T)m∑i=1((ρi−1Iαi−1,ψi−1ti−1|Fx(ti)|+|Ji(x(ti))|)m−1∏j=ieρj−1ρjΨj(tj,tj+1))+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)eρi−1ρiΨi(ti,ξi)i∑j=1((ρj−1Iαj−1,ψj−1tj−1|Fx(tj)|+|Jj(x(tj))|)i−1∏l=jeρl−1ρlΨl(tl,tl+1))]+k∑i=1((ρi−1Iαi−1,ψi−1ti−1|Fx(ti)|+|Ji(x(ti))|)k−1∏j=ieρj−1ρjΨj(tj,tj+1))}. | (3.5) |
By using (A1) and (A2), we have
|Fx(t)|≤|Fx(t)−F0(t)|+|F0(t)|≤|f(t,x(t),x(λt),Fx(t))−f(t,0,0,0)|+|f(t,0,0,0)|≤L1(|x(t)|+|x(λt)|)+L2|Fx(t)|+K1≤2L1r1+K11−L2, | (3.6) |
|Jk(x)|≤|Jk(x)−Jk(0)|+|Jk(0)|≤M1r1+K2,k=1,2,…,m. | (3.7) |
Then substituting (3.6) and (3.7) into (3.5) with using (1.7), one has
|(Qx)(t)|≤2L1r1+K11−L2ρmIαm,ψmtm(1)(T)+eρm−1ρmΨm(tm,T){1|Λ|m∏i=1eρi−1−1ρi−1Ψi−1(ti−1,ti)×[2L1r1+K11−L2m∑i=0|δi|ρiIαi+γi,ψiti(1)(ξi)+2L1r1+K11−L2|β|ρmIαm,ψmtm(1)(T)+|β|eρm−1ρmΨm(tm,T)m∑i=1((2L1r1+K11−L2ρi−1Iαi−1,ψi−1ti−1(1)(ti)+M1r1+K2)m−1∏j=ieρj−1ρjΨj(tj,tj+1))+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)eρi−1ρiΨi(ti,ξi)i∑j=1((2L1r1+K11−L2ρj−1Iαj−1,ψj−1tj−1(1)(tj)+M1r1+K2)×i−1∏l=jeρl−1ρlΨl(tl,tl+1))]+k∑i=1((2L1r1+K11−L2ρi−1Iαi−1,ψi−1ti−1(1)(ti)+M1r1+K2)k−1∏j=ieρj−1ρjΨj(tj,tj+1))}≤2L1r1+K11−L2⋅1ραmmΓ(αm)∫Ttmeρm−1ρmΨm(s,T)Ψαm−1m(s,T)ψ′m(s)ds+eρm−1ρmΨm(tm,T){1|Λ|m∏i=1eρi−1−1ρi−1Ψi−1(ti−1,ti)[2L1r1+K11−L2m∑i=0|δi|ραi+γiiΓ(αi+γi)×∫ξitieρi−1ρiΨi(s,ξi)Ψαi+γi−1i(s,ξi)ψ′i(s)ds+2L1r1+K11−L2⋅|β|ραmmΓ(αm)×∫Ttmeρm−1ρmΨm(s,T)Ψαm−1m(s,T)ψ′m(s)ds+|β|eρm−1ρmΨm(tm,T)m∑i=1((2L1r1+K11−L2⋅1ραi−1i−1Γ(αi−1)×∫titi−1eρi−1−1ρi−1Ψi−1(s,ti)Ψαi−1−1i−1(s,ti)ψ′i−1(s)ds+M1r1+K2)m−1∏j=ieρj−1ρjΨj(tj,tj+1))+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)eρi−1ρiΨi(ti,ξi)i∑j=1((2L1r1+K11−L2⋅1ραj−1j−1Γ(αj−1)×∫tjtj−1eρj−1−1ρj−1Ψj−1(s,tj)Ψαj−1−1j−1(s,tj)ψ′j−1(s)ds+M1r1+K2)i−1∏l=jeρl−1ρlΨl(tl,tl+1))]+k∑i=1((2L1r1+K11−L2⋅1ραi−1i−1Γ(αi−1)∫titi−1eρi−1−1ρi−1Ψi−1(s,ti)Ψαi−1−1i−1(s,ti)ψ′i−1(s)ds+M1r1+K2)k−1∏j=ieρj−1ρjΨj(tj,tj+1))}. |
By using 0<eρl−1ρlΨl(s,u)≤1 for 0≤s≤u≤T, l=0,1,…,m, we get
|(Qx)(t)|≤2L1r1+K11−L2⋅1ραmmΓ(αm)∫TtmΨαm−1m(s,T)ψ′m(s)ds+1|Λ|[2L1r1+K11−L2m∑i=0|δi|ραi+γiiΓ(αi+γi)∫ξitiΨαi+γi−1i(s,ξi)ψ′i(s)ds+2L1r1+K11−L2⋅|β|ραmmΓ(αm)∫TtmΨαm−1m(s,T)ψ′m(s)ds+|β|m∑i=1(2L1r1+K11−L2⋅1ραi−1i−1Γ(αi−1)∫titi−1Ψαi−1−1i−1(s,ti)ψ′i−1(s)ds+M1r1+K2)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)i∑j=1(2L1r1+K11−L2⋅1ραj−1j−1Γ(αj−1)∫tjtj−1Ψαj−1−1j−1(s,tj)ψ′j−1(s)ds+M1r1+K2)]+m∑i=1(2L1r1+K11−L2⋅1ραi−1i−1Γ(αi−1)∫titi−1Ψαi−1−1i−1(s,ti)ψ′i−1(s)ds+M1r1+K2)2L1r1+K11−L2⋅Ψαmm(tm,T)ραmmΓ(αm+1)+1|Λ|[2L1r1+K11−L2m∑i=0|δi|Ψαi+γii(ti,ξi)ραi+γiiΓ(αi+γi+1)+2L1r1+K11−L2⋅|β|Ψαmm(tm,T)ραmmΓ(αm+1)+|β|m∑i=1(2L1r1+K11−L2⋅Ψαi−1i−1(ti−1,ti)ραi−1i−1Γ(αi−1+1)+M1r1+K2)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)i∑j=1(2L1r1+K11−L2⋅Ψαj−1j−1(tj−1,tj)ραj−1j−1Γ(αj−1+1)+M1r1+K2)]+m∑i=1(2L1r1+K11−L2⋅Ψαi−1i−1(ti−1,ti)ραi−1i−1Γ(αi−1+1)+M1r1+K2) |
=r1{2L11−L2[(1+|β||Λ|)m+1∑i=1Ψαi−1i−1(ti−1,ti)ραi−1i−1Γ(αi−1+1)+1|Λ|(m∑i=0|δi|Ψαi+γii(ti,ξi)ραi+γiiΓ(αi+γi+1)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)i∑j=1Ψαj−1j−1(tj−1,tj)ραj−1j−1Γ(αj−1+1))]+M1[m(1+|β||Λ|)+1|Λ|m∑i=0i|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)]}+K11−L2[(1+|β||Λ|)m+1∑i=1Ψαi−1i−1(ti−1,ti)ραi−1i−1Γ(αi−1+1)+1|Λ|(m∑i=0|δi|Ψαi+γii(ti,ξi)ραi+γiiΓ(αi+γi+1)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)i∑j=1Ψαj−1j−1(tj−1,tj)ραj−1j−1Γ(αj−1+1))]+K2[m(1+|β||Λ|)+1|Λ|m∑i=0i|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)]=r1{2L1Ω11−L2+M1Ω2}+K1Ω11−L2+K2Ω2≤r1, |
which implies that QBr1⊂Br1.
Step II. We prove that Q is a contraction.
Let x, y∈Br1. Then, for each t∈J, we consider
|(Qx)(t)−(Qy)(t)|≤ρkIαk,ψktk|Fx(t)−Fy(t)|+eρk−1ρkΨk(tk,t){1|Λ|k∏i=1eρi−1−1ρi−1Ψi−1(ti−1,ti)×[m∑i=0|δi|ρiIαi+γi,ψiti|Fx(ξi)−Fy(ξi)|+|β|ρmIαm,ψmtm|Fx(T)−Fy(T)|+|β|eρm−1ρmΨm(tm,T)m∑i=1((ρi−1Iαi−1,ψi−1ti−1|Fx(ti)−Fy(ti)|+|Ji(x(ti))−Ji(y(ti))|)×m−1∏j=ieρj−1ρjΨj(tj,tj+1))+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)eρi−1ρiΨi(ti,ξi)i∑j=1((ρj−1Iαj−1,ψj−1tj−1|Fx(tj)−Fy(tj)|+|Jj(x(tj))−Jj(y(tj))|)i−1∏l=jeρl−1ρlΨl(tl,tl+1))]+k∑i=1((ρi−1Iαi−1,ψi−1ti−1|Fx(ti)−Fy(ti)||+|Ji(x(ti))−Ji(y(ti))|)k−1∏j=ieρj−1ρjΨj(tj,tj+1))}. | (3.8) |
From (A1) and (A2) with the fact of 0<eρl−1ρlΨl(s,u)≤1 for 0≤s≤u≤T, l=0,1,…,m, we compute (3.8) as follow:
|(Qx)(t)−(Qy)(t)|≤ρmIαm,ψmtm|Fx(t)−Fy(t)|+1|Λ|[m∑i=0|δi|ρiIαi+γi,ψiti|Fx(ξi)−Fy(ξi)|+|β|ρmIαm,ψmtm|Fx(T)−Fy(T)|+|β|m∑i=1(ρi−1Iαi−1,ψi−1ti−1|Fx(ti)−Fy(ti)|+|Ji(x(ti))−Ji(y(ti))|)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)i∑j=1(ρj−1Iαj−1,ψj−1tj−1|Fx(tj)−Fy(tj)|+|Jj(x(tj))−Jj(y(tj))|)]+k∑i=1(ρi−1Iαi−1,ψi−1ti−1|Fx(ti)−Fy(ti)||+|Ji(x(ti))−Ji(y(ti))|)≤2L11−L2⋅1ραmmΓ(αm)∫Ttmeρm−1ρmΨm(s,T)Ψαm−1m(s,T)ψ′m(s)ds‖x−y‖+1|Λ|[2L11−L2m∑i=0|δi|ραi+γiiΓ(αi+γi)∫ξitieρi−1ρiΨi(s,ξi)Ψαi+γi−1i(s,ξi)ψ′i(s)ds‖x−y‖+2L11−L2⋅|β|ραmmΓ(αm)∫Ttmeρm−1ρmΨm(s,T)Ψαm−1m(s,T)ψ′m(s)ds‖x−y‖+|β|m∑i=1(2L11−L2⋅1ραi−1i−1Γ(αi−1)∫titi−1eρi−1−1ρi−1Ψi−1(s,ti)Ψαi−1−1i−1(s,ti)ψ′i−1(s)ds‖x−y‖+M1‖x−y‖)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)i∑j=1(2L11−L2⋅1ραj−1j−1Γ(αj−1)∫tjtj−1eρj−1−1ρj−1Ψj−1(s,tj)Ψαj−1−1j−1(s,tj)ψ′j−1(s)ds‖x−y‖+M1‖x−y‖)]+m∑i=1(2L11−L2⋅1ραi−1i−1Γ(αi−1)∫titi−1eρi−1−1ρi−1Ψi−1(s,ti)Ψαi−1−1i−1(s,ti)ψ′i−1(s)ds‖x−y‖+M1‖x−y‖)≤2L11−L2⋅Ψαmm(tm,T)ραmmΓ(αm+1)‖x−y‖+1|Λ|[2L11−L2m∑i=0|δi|Ψαi+γii(ti,ξi)ραi+γiiΓ(αi+γi+1)‖x−y‖+2L11−L2⋅|β|Ψαmm(tm,T)ραmmΓ(αm+1)‖x−y‖+|β|m∑i=1(2L11−L2⋅Ψαi−1i−1(ti−1,ti)ραi−1i−1Γ(αi−1+1)‖x−y‖+M1‖x−y‖)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)i∑j=1(2L11−L2⋅Ψαj−1j−1(tj−1,tj)ραj−1j−1Γ(αj−1+1)‖x−y‖+M1‖x−y‖)]+m∑i=1(2L11−L2⋅Ψαi−1i−1(ti−1,ti)ραi−1i−1Γ(αi−1+1)‖x−y‖+M1‖x−y‖)=(2L1Ω11−L2+M1Ω2)‖x−y‖, |
which implies that
‖Qx−Qy‖≤(2L1Ω11−L2+M1Ω2)‖x−y‖. |
Since [2L1Ω1/(1−L2)+M1Ω2]<1, by the conclusion of Banach's fixed point theorem (Lemma 2), Q is a contraction. Hence, Q has a unique fixed point that is the unique solution of the problem (1.12) on J. The proof is done.
The next result is based on the Schaefer's fixed point theorem.
Lemma 3.2. (Schaefer's fixed point theorem [59]) Let E be a Banach space and T : E→E be a completely continuous operator. If the set D={x∈E:x=σTx,0<σ<1} is bounded, then T has a fixed point in E.
Theorem 3.2. Let ψk∈C(J,R) with ψ′k(t)>0 for t∈J, k=0,1,2,…,m. Assume that f:J×R3→R and Jk:R→R are continuous functions, k=1,2,…,m satisfying the following assumptions:
(A3) There exist nonnegative continuous functions q1, q2, q3∈C(J,R+) such that, for every t∈J and x, y, z∈R,
|f(t,x,y,z)|≤g1(t)+g2(t)(|x|+|y|)+g3(t)|z|, |
with g∗1=supt∈J{g1(t)}, g∗2=supt∈J{g2(t)} and g∗3=supt∈J{g3(t)}<1.
(A4) There exist positive constants N1, N2 for any x∈R, such that
|Jk(x)|≤N1|x|+N2,k=1,2,…,m. |
Then the problem (1.12) has at least one solution on J.
Proof. We will utilize Schaefer's fixed point theorem to show that the operator Q defined as in (3.1) has at least one fixed point. The procedure of the proof is divided into the following four steps.
Step I. We show that Q is continuous.
Let xn∈PC(J,R) be a sequence such that xn→x∈PC(J,R). Then, for every t∈J, we obtain
|(Qxn)(t)−(Qx)(t)|≤ρkIαk,ψktk|Fxn(t)−Fx(t)|+eρk−1ρkΨk(tk,t){1|Λ|k∏i=1eρi−1−1ρi−1Ψi−1(ti−1,ti)×[m∑i=0|δi|ρiIαi+γi,ψiti|Fxn(ξi)−Fx(ξi)|+|β|ρmIαm,ψmtm|Fxn(T)−Fx(T)|+|β|eρm−1ρmΨm(tm,T)m∑i=1((ρi−1Iαi−1,ψi−1ti−1|Fxn(ti)−Fx(ti)|+|Ji(xn(ti))−Ji(x(ti))|)m−1∏j=ieρj−1ρjΨj(tj,tj+1))+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)eρi−1ρiΨi(ti,ξi)i∑j=1((ρj−1Iαj−1,ψj−1tj−1|Fxn(tj)−Fx(tj)|+|Jj(xn(tj))−Jj(x(tj))|)×i−1∏l=jeρl−1ρlΨl(tl,tl+1))]+k∑i=1((ρi−1Iαi−1,ψi−1ti−1|Fxn(ti)−Fx(ti)|+|Ji(xn(ti))−Ji(x(ti))|)k−1∏j=ieρj−1ρjΨj(tj,tj+1))}. |
By using 0<eρl−1ρlΨl(s,u)≤1 for 0≤s≤u≤T, l=0,1,…,m, we have
|(Qxn)(t)−(Qx)(t)|≤1ραmmΓ(αm)∫Ttmeρm−1ρmΨm(s,T)Ψαm−1m(s,T)|Fxn(s)−Fx(s)|ψ′m(s)ds+1|Λ|[m∑i=0|δi|ραi+γiiΓ(αi+γi)∫ξitieρi−1ρiΨi(s,ξi)Ψαi+γi−1i(s,ξi)|Fxn(s)−Fx(s)|ψ′i(s)ds+|β|ραmmΓ(αm)∫Ttmeρm−1ρmΨm(s,T)Ψαm−1m(s,T)|Fxn(s)−Fx(s)|ψ′m(s)ds+|β|m∑i=1(1ραi−1i−1Γ(αi−1)∫titi−1eρi−1−1ρi−1Ψi−1(s,ti)Ψαi−1−1i−1(s,ti)|Fxn(s)−Fx(s)|ψ′i−1(s)ds+|Ji(xn(ti))−Ji(x(ti))|)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)i∑j=1(1ραj−1j−1Γ(αj−1)∫tjtj−1eρj−1−1ρj−1Ψj−1(s,tj)×Ψαj−1−1j−1(s,tj)|Fxn(s)−Fx(s)|ψ′j−1(s)ds+|Jj(xn(tj))−Jj(x(tj))|)]+m∑i=1(1ραi−1i−1Γ(αi−1)∫titi−1eρi−1−1ρi−1Ψi−1(s,ti)Ψαi−1−1i−1(s,ti)|Fxn(s)−Fx(s)|ψ′i−1(s)ds+|Ji(xn(ti))−Ji(x(ti))|)≤‖Fxn−Fx‖ραmmΓ(αm)∫TtmΨαm−1m(s,T)ψ′m(s)ds+1|Λ|[m∑i=0|δi|‖Fxn−Fx‖ραi+γiiΓ(αi+γi)∫ξitiΨαi+γi−1i(s,ξi)ψ′i(s)ds+|β|‖Fxn−Fx‖ραmmΓ(αm)∫TtmΨαm−1m(s,T)ψ′m(s)ds+|β|m∑i=1(‖Fxn−Fx‖ραi−1i−1Γ(αi−1)∫titi−1Ψαi−1−1i−1(s,ti)ψ′i−1(s)ds+M1‖xn−x‖)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)i∑j=1(‖Fxn−Fx‖ραj−1j−1Γ(αj−1)∫tjtj−1Ψαj−1−1j−1(s,tj)ψ′j−1(s)ds+M1‖xn−x‖)]+m∑i=1(‖Fxn−Fx‖ραi−1i−1Γ(αi−1)∫titi−1Ψαi−1−1i−1(s,ti)ψ′i−1(s)ds+M1‖xn−x‖)=[(1+|β||Λ|)m+1∑i=1Ψαi−1i−1(ti−1,ti)ραi−1i−1Γ(αi−1+1)+1|Λ|(m∑i=0|δi|Ψαi+γii(ti,ξi)ραi+γiiΓ(αi+γi+1)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)×i∑j=1Ψαj−1j−1(tj−1,tj)ραj−1j−1Γ(αj−1+1))]‖Fxn−Fx‖+[m(1+|β||Λ|)+1|Λ|m∑i=0i|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)]M1‖xn−x‖=Ω1‖Fxn−Fx‖+Ω2M1‖xn−x‖. |
By using the continuity of f, we obtain that ‖Fxn−Fx‖→0 and ‖xn−x‖→0, as n→∞. Hence, ‖Qxn−Qx‖→0, which yields that Q is also continuous.
Step II. We show that Q maps a bounded set into a bounded set in PC(J,R).
Define a ball Br2={x∈PC(J,R):‖x‖≤r2}. From (A3) and (A4), we have
|Fx(t)|≤|f(t,x(t),x(λt),Fx(t))|≤g1(t)+g2(x(t)+x(λt))+g3(t)|Fx(t)|≤g∗1+2g∗2r21−g∗3, | (3.9) |
|Jk(x)|≤N1r2+N2. | (3.10) |
Then, substituting (3.9) and (3.10) into (3.5) in Theorem 3.1 and applying 0<eρl−1ρlΨl(s,u)≤1 for 0≤s≤u≤T, l=0,1,…,m, we obtain
|(Qx)(t)|≤g∗1+2g∗2r21−g∗3ρmIαm,ψmtm(1)(T)+1|Λ|[g∗1+2g∗2r21−g∗3m∑i=0|δi|ρiIαi+γi,ψiti(1)(ξi)+g∗1+2g∗2r21−g∗3|β|ρmIαm,ψmtm(1)(T)+|β|m∑i=1(g∗1+2g∗2r21−g∗3ρi−1Iαi−1,ψi−1ti−1(1)(ti)+N1r2+N2)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)i∑j=1(g∗1+2g∗2r21−g∗3ρj−1Iαj−1,ψj−1tj−1(1)(tj)+N1r2+N2)]+m∑i=1(g∗1+2g∗2r21−g∗3ρi−1Iαi−1,ψi−1ti−1(1)(ti)+N1r2+N2)≤g∗1+2g∗2r21−g∗3⋅1ραmmΓ(αm)∫TtmΨαm−1m(s,T)ψ′m(s)ds+1|Λ|[g∗1+2g∗2r21−g∗3m∑i=0|δi|ραi+γiiΓ(αi+γi)×∫ξitiΨαi+γi−1i(s,ξi)ψ′i(s)ds+g∗1+2g∗2r21−g∗3⋅|β|ραmmΓ(αm)∫TtmΨαm−1m(s,T)ψ′m(s)ds+|β|m∑i=1(g∗1+2g∗2r21−g∗3⋅1ραi−1i−1Γ(αi−1)∫titi−1Ψαi−1−1i−1(s,ti)ψ′i−1(s)ds+N1r2+N2)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)i∑j=1(g∗1+2g∗2r21−g∗3⋅1ραj−1j−1Γ(αj−1)∫tjtj−1Ψαj−1−1j−1(s,tj)ψ′j−1(s)ds+N1r2+N2)]+m∑i=1(g∗1+2g∗2r21−g∗3⋅1ραi−1i−1Γ(αi−1)∫titi−1Ψαi−1−1i−1(s,ti)ψ′i−1(s)ds+N1r2+N2)=[(1+|β||Λ|)m+1∑i=1Ψαi−1i−1(ti−1,ti)ραi−1i−1Γ(αi−1+1)+1|Λ|(m∑i=0|δi|Ψαi+γii(ti,ξi)ραi+γiiΓ(αi+γi+1)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)×i∑j=1Ψαj−1j−1(tj−1,tj)ραj−1j−1Γ(αj−1+1))]g∗1+2g∗2r21−g∗3+[m(1+|β||Λ|)+1|Λ|m∑i=0i|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)](N1r2+N2). |
It follows that
‖Qx‖≤Ω1g∗1+2g∗2r21−g∗3+Ω2(N1r2+N2):=H1, |
which implies that ‖Qx‖≤H1. Then the set QBr2 is uniformly bounded.
Step III. We show that Q maps bounded sets into equicontinuous sets of PC(J,R).
Let τ1, τ2∈Jk for some k∈{0,1,2,…,m} with τ1<τ2. Then, for any x∈Br2, where Br2 is as defined as in Step II, by using the property of f is bounded on the compact set J×Br2, we have
|(Qx)(τ2)−(Qx)(τ1)|≤1ραkkΓ(αk)∫τ2τ1eρk−1ρkΨk(tk,τ2)Ψαk−1k(s,τ2)|Fx(s)|ψ′k(s)ds+1ραkkΓ(αk)∫τ1tk|eρk−1ρkΨk(tk,τ2)Ψαk−1k(s,τ2)−eρk−1ρkΨk(tk,τ1)Ψαk−1k(s,τ1)||Fx(s)|ψ′k(s)ds+|eρk−1ρkΨk(tk,τ2)−eρk−1ρkΨk(tk,τ1)|{1|Λ|[m∑i=0|δi|ρiIαi+γi,ψiti|Fx(ξi)|+|β|ρmIαm,ψmtm|Fx(T)|+|β|m∑i=1(ρi−1Iαi−1,ψi−1ti−1|Fx(ti)|+|Ji(x(ti))|)+m∑i=0δiΨγii(ti,ξi)ργiiΓ(γi+1)i∑j=1(ρj−1Iαj−1,ψj−1tj−1|Fx(tj)|+|Jj(x(tj))|)]+m∑i=1(ρi−1Iαi−1,ψi−1ti−1|Fx(ti)|+|Ji(x(ti))|)}≤1ραkkΓ(αk+1)(2Ψαkk(τ1,τ2)+|Ψαkk(tk,τ2)−Ψαkk(tk,τ1)|)g∗1+2g∗2r21−g∗3+|eρk−1ρkΨk(tk,τ2)−eρk−1ρkΨk(tk,τ1)|{1|Λ|[m∑i=0|δi|Ψαi+γii(ti,ξi)ραi+γiiΓ(αi+γi+1)⋅g∗1+2g∗2r21−g∗3+|β|Ψαmm(tm,T)ραmmΓ(αm+1)⋅g∗1+2g∗2r21−g∗3+|β|m∑i=1(Ψαi−1i−1(ti−1,ti)ραi−1i−1Γ(αi−1+1)⋅g∗1+2g∗2r21−g∗3+N1r2+N2)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)i∑j=1(Ψαj−1j−1(tj−1,tj)ραj−1j−1Γ(αj−1+1)⋅g∗1+2g∗2r21−g∗3+N1r2+N2)]+m∑i=1(Ψαi−1i−1(ti−1,ti)ραi−1i−1Γ(αi−1+1)⋅g∗1+2g∗2r21−g∗3+N1r2+N2)}. |
Then
|(Qx)(τ2)−(Qx)(τ1)|≤1ραkkΓ(αk+1)(2Ψαkk(τ1,τ2)+|Ψαkk(tk,τ2)−Ψαkk(tk,τ1)|)g∗1+2g∗2r21−g∗3+|eρk−1ρkΨk(tk,τ2)−eρk−1ρkΨk(tk,τ1)|{g∗1+2g∗2r21−g∗3[m∑i=1Ψαi−1i−1(ti−1,ti)ραi−1i−1Γ(αi−1+1)+|β||Λ|m+1∑i=1Ψαi−1i−1(ti−1,ti)ραi−1i−1Γ(αi−1+1)+1|Λ|(m∑i=0|δi|Ψαi+γii(ti,ξi)ραi+γiiΓ(αi+γi+1)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)i∑j=1Ψαj−1j−1(tj−1,tj)ραj−1j−1Γ(αj−1+1))]+Ω2(N1r2+N2)}. | (3.11) |
From (3.11), we get Ψαkk(τ1,τ2)→0, |Ψαkk(tk,τ2)−Ψαkk(tk,τ1)|→0 and |eρk−1ρkΨk(tk,τ2)−eρk−1ρkΨk(tk,τ1)|→0 as τ2→τ1. This inequality is independent of unknown variable x∈Br2 and tends to zero as τ2→τ1, which implies that ‖(Qx)(τ2)−(Qx)(τ1)‖→0 as τ2→τ1. Hence by the Arzelá-Ascoli theorem, we can conclude that Q:PC(J,R)→PC(J,R) is completely continuous.
Step IV. We show that the set D={x∈PC(J,R):x=ϱQx} is bounded (a priori bounds).
Let x∈D, then x=ϱQx for some 0<ϱ<1. From (A3) and (A4), for each t∈J, we obtain the produce by using the similar process in Step II,
|x(t)|=|ϱ(Qx)(t)|≤(1+|β||Λ|)m+1∑i=1Ψαi−1i−1(ti−1,ti)ραi−1i−1Γ(αi−1+1)+1|Λ|(m∑i=0|δi|Ψαi+γii(ti,ξi)ραi+γiiΓ(αi+γi+1)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)×i∑j=1Ψαj−1j−1(tj−1,tj)ραj−1j−1Γ(αj−1+1))]g∗1+2g∗2r21−g∗3+[m(1+|β||Λ|)+1|Λ|m∑i=0i|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)](N1r2+N2). |
Then, ‖x‖≤Ω1(g∗1+2g∗2r2)/(1−g∗3)+Ω2(N1r2+N2):=H1<∞. This implies that the set D is bounded.
From all the assumptions of Theorem 3.2, we summarize that there exists a positive constant H1 such that ‖x‖≤H1<∞. By applying Schaefer's fixed point theorem (Lemma 3), Q has at least one fixed point which is a solution of the problem (1.12).
In this section, we examine the different type of Ulam's stability of the problem (1.12).
First of all, we provide Ulam's stability concepts for the problem (1.12).
Definition 4.1. If for every ϵ>0 there is a constant Cf>0 such that, for any solution z∈PC(J,R) of
{|CρkDαk,ψkt+kz(t)−f(t,z(t),z(λt),CρkDαk,ψkt+kz(t))|≤ϵ,|z(t+k)−z(t−k)−Jk(z(tk))|≤ϵ, | (4.1) |
there is a unique solution x∈PC(J,R) of the problem (1.12) that satisfies
|z(t)−x(t)|≤Cfϵ,t∈J, |
then the problem (1.12) is UH stable.
Definition 4.2. If for ϵ>0 and set of positive real numbers R+ there exists ϕ∈C(R+,R+), with ϕ(0)=0 such that, for any solution z∈PC(J,R) of
{|CρkDαk,ψkt+kz(t)−f(t,z(t),z(λt),CρkDαk,ψkt+kz(t))|≤ϕ(t),|z(t+k)−z(t−k)−Jk(z(tk))|≤υ, | (4.2) |
there exist ϵ>0 and a unique solution x∈PC(J,R) of the problem (1.12) that satisfies
|z(t)−x(t)|≤ϕ(ϵ),t∈J, |
then the problem (1.12) is generalized UH stable.
Definition 4.3. If for ϵ>0 there is a real number Cf>0 such that, for any solution z∈PC(J,R) of
{|CρkDαk,ψkt+kz(t)−f(t,z(t),z(λt),CρkDαk,ψkt+kz(t))|≤ϵϕ(t),|z(t+k)−z(t−k)−Jk(z(tk))|≤ϵυ, | (4.3) |
there is a unique solution x∈PC(J,R) of the problem (1.12) that satisfies
|z(t)−x(t)|≤Cfϵ(υ+ϕ(t)),t∈J, |
then the problem (1.12) is UHR stable with respect to (υ,ϕ).
Definition 4.4. If there exists a real number Cf>0 such that, for any solution z∈PC(J,R) of (4.2), there is a unique solution x∈PC(J,R) of the problem (1.12) that satisfies
|z(t)−x(t)|≤Cf,ωϕ(υ+ϕ(t)),t∈J, |
then the problem (1.12) is generalized UHR stable with respect to (υ,ϕ).
Remark 4.1. It is clear that:
(i) Definition 2 ⟹ Definition 3;
(ii) Definition 4 ⟹ Definition 5;
(iii) Definition 4 for υ+ϕ(t)=1 ⟹ Definition 2.
Remark 4.2. The function z∈PC(J,R) is called a solution for (4.1) if there exists a function w∈PC(J,R) together with a sequence wk, k=1,2,…,m (which depends on z) such that
(a1) |w(t)|≤ϵ, |wk|≤ϵ, t∈J;
(a2) CρkDαk,ψkt+kz(t)=f(t,z(t),z(λt),CρkDαk,ψkt+kz(t))+w(t), t∈J;
(a3) z(t+k)−z(t−k)=Jk(z(tk))+wk, t∈J.
Remark 4.3. The function z∈PC(J,R) is called a solution for (4.2) if there exists a function w∈PC(J,R) together with a sequence wk, k=1,2,…,m (which depends on z) such that
(b1) |w(t)|≤ϕ(t), |wk|≤υ, t∈J;
(b2) CρkDαk,ψkt+kz(t)=f(t,z(t),z(λt),CρkDαk,ψkt+kz(t))+w(t), t∈J;
(b3) z(t+k)−z(t−k)=Jk(z(tk))+wk, t∈J.
Remark 4.4. The function z∈PC(J,R) is called a solution for (4.3) if there exists a function w∈PC(J,R) together with a sequence wk, k=1,2,…,m (which depends on z) such that
(c1) |w(t)|≤ϵϕ(t), |wk|≤ϵυ, t∈J;
(c2) CρkDαk,ψkt+kz(t)=f(t,z(t),z(λt),CρkDαk,ψkt+kz(t))+w(t), t∈J;
(c3) z(t+k)−z(t−k)=Jk(z(tk))+wk, t∈J.
Firstly, we construct the results related to UH stability of impulsive problem (1.12).
Theorem 4.1. Assume that f:J×R3→R, Jk:R→R are continuous. If (A1), (A2) and (3.4) are fulfilled, then the problem (1.12) is UH stable.
Proof. Assume that z is a solution of (4.1). By using (a2) and (a3) in Remark 2, we obtain
{CρkDαk,ψkt+kz(t)=f(t,z(t),z(λt),CρkDαk,ψkt+kz(t))+w(t),z(t+k)−z(t−k)=Jk(z(tk))+wk,ηz(0)+βz(T)=m∑i=0δiρiIγi,ψitix(ξi). | (4.4) |
From Lemma 2.1, the solution of (4.4) can be written as
z(t)=ρkIαk,ψktkFx(t)+eρk−1ρkΨk(tk,t){1Λk∏i=1eρi−1−1ρi−1Ψi−1(ti−1,ti)[m∑i=0δiρiIαi+γi,ψitiFx(ξi)−βρmIαm,ψmtmFx(T)−βeρm−1ρmΨm(tm,T)m∑i=1((ρi−1Iαi−1,ψi−1ti−1Fx(ti)+Ji(x(ti)))m−1∏j=ieρj−1ρjΨj(tj,tj+1))+m∑i=0δiΨγii(ti,ξi)ργiiΓ(γi+1)eρi−1ρiΨi(ti,ξi)i∑j=1((ρj−1Iαj−1,ψj−1tj−1Fx(tj)+Jj(x(tj)))i−1∏l=jeρl−1ρlΨl(tl,tl+1))]+k∑i=1((ρi−1Iαi−1,ψi−1ti−1Fx(ti)+Ji(x(ti)))k−1∏j=ieρj−1ρjΨj(tj,tj+1))}+ρkIαk,ψktkw(t)+eρk−1ρkΨk(tk,t){1Λk∏i=1eρi−1−1ρi−1Ψi−1(ti−1,ti)[m∑i=0δiρiIαi+γi,ψitiw(ξi)−βρmIαm,ψmtmw(T)−βeρm−1ρmΨm(tm,T)m∑i=1((ρi−1Iαi−1,ψi−1ti−1w(ti)+wi)m−1∏j=ieρj−1ρjΨj(tj,tj+1))+m∑i=0δiΨγii(ti,ξi)ργiiΓ(γi+1)eρi−1ρiΨi(ti,ξi)i∑j=1((ρj−1Iαj−1,ψj−1tj−1w(tj)+wi)i−1∏l=jeρl−1ρlΨl(tl,tl+1))]+k∑i=1((ρi−1Iαi−1,ψi−1ti−1w(ti)+wi)k−1∏j=ieρj−1ρjΨj(tj,tj+1))},t∈Jk,k=0,1,2,…,m. |
By using (a1) in Remark 4.2 with (A1) and (A2) and the fact of 0<eρl−1ρl(ψl(u)−ψl(s))≤1 for 0≤s≤u≤T, l=0,1,…,m, we estimate
|z(t)−x(t)|≤ρmIαm,ψmtm|Fz(t)−Fx(t)|+1|Λ|[m∑i=0|δi|ρiIαi+γi,ψiti|Fz(ξi)−Fx(ξi)|+|β|ρmIαm,ψmtm|Fz(T)−Fx(T)|+|β|m∑i=1(ρi−1Iαi−1,ψi−1ti−1|Fz(ti)−Fx(ti)|+|Ji(z(ti))−Ji(x(ti))|)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)i∑j=1(ρj−1Iαj−1,ψj−1tj−1|Fz(tj)−Fx(tj)|+|Jj(z(tj))−Jj(x(tj))|)]+m∑i=1(ρi−1Iαi−1,ψi−1ti−1|Fz(ti)−Fx(ti)|+|Ji(z(ti))−Ji(x(ti))|)+ρmIαm,ψmtm|w(t)|+1|Λ|[m∑i=0|δi|ρiIαi+γi,ψiti|w(ξi)|+|β|ρmIαm,ψmtm|w(T)|+|β|m∑i=1(ρi−1Iαi−1,ψi−1ti−1|w(ti)|+|wi|)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)i∑j=1(ρj−1Iαj−1,ψj−1tj−1|w(tj)|+|wi|)]+m∑i=1(ρi−1Iαi−1,ψi−1ti−1|w(ti)|+|wi|)≤2L11−L2⋅Ψαmm(tm,T)ραmmΓ(αm+1)|z(t)−x(t)|+1|Λ|[2L11−L2m∑i=0|δi|Ψαi+γii(ti,ξi)ραi+γiiΓ(αi+γi+1)|z(t)−x(t)|+2L11−L2⋅|β|Ψαmm(tm,T)ραmmΓ(αm+1)|z(t)−x(t)|+|β|m∑i=1(2L11−L2⋅Ψαi−1i−1(ti−1,ti)ραi−1i−1Γ(αi−1+1)|z(t)−x(t)|+M1|z(t)−x(t)|)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)i∑j=1(2L11−L2⋅Ψαj−1j−1(tj−1,tj)ραj−1j−1Γ(αj−1+1)|z(t)−x(t)|+M1|z(t)−x(t)|)]+m∑i=1(2L11−L2⋅Ψαi−1i−1(ti−1,ti)ραi−1i−1Γ(αi−1+1)|z(t)−x(t)|+M1|z(t)−x(t)|)+ϵΨαmm(tm,T)ραmmΓ(αm+1)+ϵ|Λ|[m∑i=0|δi|Ψαi+γii(ti,ξi)ραi+γiiΓ(αi+γi+1)+|β|Ψαmm(tm,T)ραmmΓ(αm+1)+|β|m∑i=1(Ψαi−1i−1(ti−1,ti)ραi−1i−1Γ(αi−1+1)+1)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)i∑j=1(Ψαj−1j−1(tj−1,tj)ραj−1j−1Γ(αj−1+1)+1)]+ϵm∑i=1(Ψαi−1i−1(ti−1,ti)ραi−1i−1Γ(αi−1+1)+1)=(2L1Ω11−L2+M1Ω2)|z(t)−x(t)|+(Ω1+Ω2)ϵ. |
This further implies that |z(t)−x(t)|≤Cfϵ, where
Cf:=Ω1+Ω21−(2L1Ω11−L2+M1Ω2). |
Hence, the problem (1.12) is UH stable.
Corollary 4.1. In Theorem 4.1, if we set ϕ(ϵ)=Cfϵ such that ϕ(0)=0, then (1.12) is generalized UH stable.
Before the proof of the next result, we give the following assumption:
(A5) There exist a nondecreasing function ϕ∈C(J,R) and constants κϕ>0, ϵ>0 such that
ρIα,ψaϕ(t)≤κϕϕ(t). |
Theorem 4.2. Assume that f:J×R3→R, Jk:R→R are continuous functions. If (A1), (A2), (A5) and (3.4) are fulfilled, then (1.12) is UHR stable with respect to (υ,ϕ), where ϕ is a nondecreasing function and υ≥0.
Proof. Let z be any solution of (4.3) and let x be a unique solution of (1.12). Then, for t∈Jk, we have
|z(t)−x(t)|≤ρmIαm,ψmtm|Fz(t)−Fx(t)|+1|Λ|[m∑i=0|δi|ρiIαi+γi,ψiti|Fz(ξi)−Fx(ξi)|+|β|ρmIαm,ψmtm|Fz(T)−Fx(T)|+|β|m∑i=1(ρi−1Iαi−1,ψi−1ti−1|Fz(ti)−Fx(ti)|+|Ji(z(ti))−Ji(x(ti))|)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)i∑j=1(ρj−1Iαj−1,ψj−1tj−1|Fz(tj)−Fx(tj)|+|Jj(z(tj))−Jj(x(tj))|)]+m∑i=1(ρi−1Iαi−1,ψi−1ti−1|Fz(ti)−Fx(ti)|+|Ji(z(ti))−Ji(x(ti))|)+ρmIαm,ψmtm|w(t)|+1|Λ|[m∑i=0|δi|ρiIαi+γi,ψiti|w(ξi)|+|β|ρmIαm,ψmtm|w(T)|+|β|m∑i=1(ρi−1Iαi−1,ψi−1ti−1|w(ti)|+|wi|)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)i∑j=1(ρj−1Iαj−1,ψj−1tj−1|w(tj)|+|wi|)]+m∑i=1(ρi−1Iαi−1,ψi−1ti−1|w(ti)|+|wi|). |
By using (c1) in Remark 4.4 with (A1), (A2), (A5) and the fact of 0<eρl−1ρl(ψl(u)−ψl(s))≤1 for 0≤s≤u≤T, l=0,1,…,m, we estimate that
|z(t)−x(t)|≤(2L11−L2[(1+|β||Λ|)m+1∑i=1Ψαi−1i−1(ti−1,ti)ραi−1i−1Γ(αi−1+1)+1|Λ|(m∑i=0|δi|Ψαi+γii(ti,ξi)ραi+γiiΓ(αi+γi+1)+m∑i=0|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)i∑j=1Ψαj−1j−1(tj−1,tj)ραj−1j−1Γ(αj−1+1))]+M1[m(1+|β||Λ|)+1|Λ|m∑i=0i|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)])|z(t)−x(t)|([1+1|Λ|(|β|+m∑i=0|δi|)+m(1+|β||Λ|)+1|Λ|m∑i=0i|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)]κϕϕ(t)+[m(1+|β||Λ|)+1|Λ|m∑i=0i|δi|Ψγii(ti,ξi)ργiiΓ(γi+1)]υ)ϵ=(2L1Ω11−L2+M1Ω2)|z(t)−x(t)|+([1+1|Λ|(|β|+m∑i=0|δi|)+Ω2]κϕϕ(t)+Ω2υ)ϵ≤(2L1Ω11−L2+M1Ω2)|z(t)−x(t)|+([1+1|Λ|(|β|+m∑i=0|δi|)+Ω2]κϕ+Ω2)ϵ(υ+ϕ(t)). |
This further implies that |z(t)−x(t)|≤Cf,κϕϵ(υ+ϕ(t)), where
Cf,κϕ=[1+1|Λ|(|β|+m∑i=0|δi|)+Ω2]κϕ+Ω21−(2L1Ω11−L2+M1Ω2). |
Hence, the problem (1.12) is UHR stable.
Corollary 4.2. In Theorem 4.2, if we set ϵ=1, then (1.12) is generalized UHR stable.
This section provides three numerical problems, which indicate the exactitude and applicability of the main results.
Example 5.1. Consider the following an impulsive pantograph fractional boundary value problem:
{C2k+110Dk+13k+2,exp(t2k+3)t+kx(t)=f(t,x(t),x(√32t),C2k+110Dk+13k+2,exp(t2k+3)t+kx(t)),t≠tk,Δx(tk)=Jk(x(tk)),k=1,2,4x(0)+12x(32)=2∑i=0(i+32i+8)2i+110Ii+33i+2,exp(t2i+3)tix(2i+14). | (5.1) |
By giving αk=(k+1)/(3k+2), ψk(t)=exp(t2k+3), tk=k/2, ρk=(2k+1)/10, k=0,1,2, λ=√3/2, m=2, T=3/2, η=4, β=1/2, δi=(i+3)/(2i+8), γi=(i+3)/(3i+2), ξi=(2i+1)/4, i=0,1,2. From the given all data, we can find that Λ≈3.962094671≠0, Ω1≈11.27074721 and Ω2≈2.532952962. For the theoretical confirmation, we will consider the various functions as below:
(i) To demonstrate the application of Theorem 3.1, let us take the following nonlinear functions:
f(t,x,y,z)=e5+2costt+3+1(3+sin2πt)2+1(|x|3+|x|+|y|3+|y|)+4t(3t+5)2+5⋅|z|2+|z|, | (5.2) |
Jk(x(tk))=1(2k+3)2sinx(tk)+2tk,k=1,2. | (5.3) |
By (A1) and (A2), for any xi, yi, zi∈R, i=1,2 and t∈J, we have |f(t,x1,y1,z1)−f(t,x2,y2,z2)|≤(1/30)(|x1−x2|+|y1−y2|)+(1/10)|z1−z2| and |Jk(x)−Jk(y)|≤(1/25)|x(tk)−y(tk)|, for k=1,2. The conditions (A1) and (A2) are satisfied with L1=1/30, L2=1/10 and M1=1/25. Hence,
2L1Ω11−L2+M1Ω2≈0.9361882824<1. |
Then, all the conditions of Theorem 3.1 are satisfied, which implies that the numerical problem (5.1), where the functions f and Jk are given by (5.2) and (5.3), has a unique solution on [0,3/2].
Furthermore, we also compute the constant
Cf=Ω1+Ω21−(2L1Ω11−L2+M1Ω2)≈51.80636573>0. |
Hence, by Theorem 4.1, the numerical problem (5.1) is UH stable on [0,3/2]. In addition, if we set ϕ(ϵ)=Cfϵ with ϕ(0)=0, then, by Corollary 2, the numerical problem (5.1) is generalized UH stable on [0,3/2]. By setting ϕ(t)=eρk−1ρkψk(t)(ψk(t)−ψk(tk))52 with υ=1, we have
2k+110Ik+13k+2,et2k+3tkϕ(t)≤Γ(72)e2k−92k+1et2k+3(et2k+3−et2k+3k)17k+126k+4(2k+110)αkΓ(23k+166k+4)ϕ(t). |
By using (A5), we get
κϕ=Γ(72)e2k−92k+1et2k+3(et2k+3−et2k+3k)17k+126k+4(2k+110)αkΓ(23k+166k+4)>0,∀t∈[0,3/2]. |
We have
Cf,κϕ=[1+1|Λ|(|β|+m∑i=0|δi|)+Ω2]κϕ+Ω21−(2L1Ω11−L2+M1Ω2)≈39.80812832>0. |
Therefore, by all assumptions in Theorem 4.2, the numerical problem (5.1) is UHR stable on [0,3/2]. Additionally, if we set ϕ(ϵ)=Cfϵ with ϕ(0)=0, then, by Corollary 2, the numerical problem (5.1) is generalized UHR stable with respect to (υ,ϕ).
(ii) To demonstrate the application of Theorem 3.2, we consider the following nonlinear functions:
f(t,x,y,z)=ln(3t2+4)3t+1+3+tan2πt3t2+2(cos(π−|x|)+sin(|y|))+3t3+62t+5⋅|z|3+|z|, | (5.4) |
Jk(x(tk))=(3k−2)2sinx(tk)cosx(tk)+2+3tk+2,k=1,2. | (5.5) |
By (A3) and (A4), for any x, y, z∈R and t∈J, we have
|f(t,x,y,z)|≤ln(3t2+4)3t+1+3+tan2πt3t2+2(|x|+|y|)+t3+12t+5|z|,|Jk(x)|≤4|x|+5,k=1,2. |
The (A3) and (A4) are satisfied with g1=(ln(3t2+4))/(3t+1), g2=(3+tan2πt)/(3t2+2), g3=(t3+1)/(2t+5), N1=4 and N2=5. Hence, all the conditions of Theorem 3.2 are satisfied, which implies that the numerical problem (5.1) has at least one solution on [0,3/2], where f and Jk are given by (5.4) and (5.5).
(iii) We consider the linear impulsive fractional boundary value problem:
{C2k+110Dk+13k+2,exp(t2k+3)t+kx(t)=0,t∈[0,32]∖{12,1},Δx(tk)=32k−2,k=1,2,4x(0)+12x(32)=2∑i=0(i+32i+8)2k+110Ii+33i+2,exp(t2i+3)tix(2i+14). | (5.6) |
Here, f(t,x,y,z)=0 and Jk(x(tk))=(3k/2)−2, k=1,2. Clearly, all conditions of Theorem 3.1 are satisfied. Then, the numerical problem (5.6) has a unique solution on [0,3/2]. By setting Fx(t)=0, J0(x(t0))=−2 and J1(x(t1))=−1/2 in (2.3), it is easy to compute that
x(t)={0.2523917481e−9et2/3+9,t∈[0,12],−0.4999830704e−2.333333333e√t+4.732268288,t∈(12,1],0.9000957055e−1et2/5+2.718281828,t∈(1,32]. | (5.7) |
Thanks of (5.7), we present the numerical solution of (5.6) by using MATLAB program (see Figure 1).
We discussed the important role of qualitative theory, which is a favorable trend to study the existence and stability analysis of solutions for the impulsive boundary value problems with general boundary conditions involving the Caputo proportional fractional derivative type of a function with respect to another function (1.12). Firstly, the uniqueness result for the problem (1.12) was investigated by applying Banach's contraction principle. Afterward, the existence result was established by applying fixed point theory of Schaefer's type. Furthermore, by the application of qualitative theory and nonlinear functional analysis techniques, we examined results concerning different kinds of UH stability concepts. The concerned results have been guaranteed by numerical examples to demonstrate the application of our main results. This paper has flourished the literature of qualitative theory on nonlinear impulsive fractional initial/boundary value problems concerning a certain function in future works.
S. Pleumpreedaporn and Ch. Pleumpreedaporn would like to thank for partially support this work through Rambhai Barni Rajabhat University. W. Sudsutad would like to thanks Ramkhamhaeng University for support this work. J. Kongson and C. Thaiprayoon would like to thank the Center of Excellence in Mathematics (CEM) and Burapha University for support this work. J. Alzabut is thankful to Prince Sultan University and OSTİM Technical University for their endless support.
The authors declare no conflicts of interest.
[1] | I. Podlubny, Fractional differential equation, Mathematics in Science and Engineering, Vol. 198, New York: Academic Press, 1999. |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[3] | R. Caponetto, G. Dongola, L. Fortuna, I. Petras, Fractional order systems: Modeling and control applications, Singapore: World Scientific, 2010. |
[4] | F. Mainardi, Fractional calculus and waves in linear viscoelasticity, London: Imperiall College Press, 2010. |
[5] | D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: Models and numerical methods, Singapore: World Scientific, 2012. |
[6] |
J. R. Ockendon, A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. Roy. Soc. Lond. A, 322 (1971), 447–468. https://doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078
![]() |
[7] |
A. Iserles, On the generalized pantograph functional-differential equation, Eur. J. Appl. Math., 1 (1993), 1–38. https://doi.org/10.1017/S0956792500000966 doi: 10.1017/S0956792500000966
![]() |
[8] | A. Iserles, Y. K. Liu, On pantograph integro-differential equations, J. Integral Equ. Appl., 6 (1994), 213–237. |
[9] |
G. Derfel, A. Iserles, The pantograph equation in the complex plane, J. Math. Anal. Appl., 213 (1997), 117–132. https://doi.org/10.1006/jmaa.1997.5483 doi: 10.1006/jmaa.1997.5483
![]() |
[10] |
M. Z. Liu, D. S. Li, Properties of analytic solution and numerical solution of multi-pantograph equation, Appl. Math. Comput., 155 (2004), 853–871. https://doi.org/10.1016/j.amc.2003.07.017 doi: 10.1016/j.amc.2003.07.017
![]() |
[11] |
D. Li, M. Z. Liu, Runge-Kutta methods for the multi-pantograph delay equation, Appl. Math. Comput., 163 (2005), 383–395. https://doi.org/10.1016/j.amc.2004.02.013 doi: 10.1016/j.amc.2004.02.013
![]() |
[12] |
M. Sezer, S. Yalçinbaş, N. Şahin, Approximate solution of multi-pantograph equation with variable coefficients, J. Comput. Appl. Math., 214 (2008), 406–416. https://doi.org/10.1016/j.cam.2007.03.024 doi: 10.1016/j.cam.2007.03.024
![]() |
[13] | L. Bogachev, G. Derfel, S. Molchanov, J. Ochendon, On bounded solutions of the balanced generalized pantograph equation, In: P. L. Chow, B. S. Mordukhovich, G. Yin, Topics in stochastic analysis and nonparametric estimation, New York: Springer, 2008. https://doi.org/10.1007/978-0-387-75111-5_3 |
[14] |
Z. H. Yu, Variational iteration method for solving the multi-pantograph delay equation, Phys. Lett. A, 372 (2008), 6475–6479. https://doi.org/10.1016/j.physleta.2008.09.013 doi: 10.1016/j.physleta.2008.09.013
![]() |
[15] | S. K. Vanani, J. S. Hafshejani, F. Soleymani, M. Khan, On the numerical solution of generalized pantograph equation, World Appl. Sci. J., 13 (2011), 2531–2535. |
[16] |
E. Tohidi, A. H. Bhrawy, K. Erfani, A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation, Appl. Math. Model., 37 (2013), 4283–4294. https://doi.org/10.1016/j.apm.2012.09.032 doi: 10.1016/j.apm.2012.09.032
![]() |
[17] |
C. M. Pappalardo, M. C. De Simone, D. Guida, Multibody modeling and nonlinear control of the pantograph/catenary system, Arch. Appl. Mech., 89 (2019), 1589–1626. https://doi.org/10.1007/s00419-019-01530-3 doi: 10.1007/s00419-019-01530-3
![]() |
[18] |
M. Chamekh, T. M. Elzaki, N. Brik, Semi-analytical solution for some proportional delay differential equations, SN Appl. Sci., 1 (2019), 1–6. https://doi.org/10.1007/s42452-018-0130-8 doi: 10.1007/s42452-018-0130-8
![]() |
[19] |
D. F. Li, C. J. Zhang, Long time numerical behaviors of fractional pantograph equations, Math. Comput. Simulat., 172 (2020), 244–257. https://doi.org/10.1016/j.matcom.2019.12.004 doi: 10.1016/j.matcom.2019.12.004
![]() |
[20] |
K. Balachandran, S. Kiruthika, J. J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci., 33 (2013), 712–720. https://doi.org/10.1016/S0252-9602(13)60032-6 doi: 10.1016/S0252-9602(13)60032-6
![]() |
[21] | V. Lakshmikantham, D. D. Bainov, P. S. Semeonov, Theory of impulsive differential equations, Singapore: Worlds Scientific, 1989. |
[22] | A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, Singapore: World Scientific, 1995. https://doi.org/10.1142/2892 |
[23] | M. Benchohra, J. Henderson, S. Ntouyas, Impulsive differential equations and inclusions, New York: Hindawi Publishing Corporation, 2006. |
[24] |
J. R. Wang, Y. Zhou, M. Fečkan, On recent developments in the theory of boundary value problems for impulsive fractional differential equations, Comput. Math. Appl., 64 (2012), 3008–3020. https://doi.org/10.1016/j.camwa.2011.12.064 doi: 10.1016/j.camwa.2011.12.064
![]() |
[25] | S. M. Ulam, A collection of mathematical problems, New York: Interscience Publishers, 1960. |
[26] |
D. H. Hyers, On the stability of the linear functional equations, Proc. Natl. Acad. Sci., 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
![]() |
[27] |
T. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. https://doi.org/10.1090/s0002-9939-1978-0507327-1 doi: 10.1090/s0002-9939-1978-0507327-1
![]() |
[28] | S. M. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, New York: Springer, 2011. https://doi.org/10.1007/978-1-4419-9637-4 |
[29] | M. Benchohra, B. A. Slimani, Existence and uniqueness of solutions to impulsive fractional diferential equations, Electron. J. Differ. Equ., 2009 (2009), 1–11. |
[30] | M. Benchohra, D. Seba, Impulsive fractional differential equations in Banach spaces, Electron. J. Qual. Theory Differ. Equ., 2009 (2009), 1–14. |
[31] |
J. R. Wang, Y. Zhou, W. Wei, Study in fractional differential equations by means of topological degree methods, Numer. Funct. Anal. Optimiz., 33 (2012), 216–238. https://doi.org/10.1080/01630563.2011.631069 doi: 10.1080/01630563.2011.631069
![]() |
[32] | M. Benchohra, J. E. Lazreg, Existence results for nonlinear implicit fractional differential equations with impulse, Commun. Appl. Anal., 19 (2015), 413–426. |
[33] |
M. Benchohra, S. Bouriah, J. R. Graef, Boundary value problems for nonlinear implicit Caputo-Hadamard-type fractional differential equations with impulses, Mediterr. J. Math., 14 (2017), 1–21. https://doi.org/10.1007/s00009-017-1012-9 doi: 10.1007/s00009-017-1012-9
![]() |
[34] |
A. Ali, I. Mahariq, K. Shah, T. Abdeljawad, B. Al-Sheikh, Stability analysis of initial value problem of pantograph-type implicit fractional differential equations with impulsive conditions, Adv. Difference Equ., 2021 (2021), 1–17. https://doi.org/10.1186/s13662-021-03218-x doi: 10.1186/s13662-021-03218-x
![]() |
[35] | Y. K. Chang, A. Anguraj, P. Karthikeyan, Existence results for initial value problems with integral condition for impulsive fractional differential equations, J. Fract. Calc. Appl., 2 (2012), 1–10. |
[36] |
K. Shah, A. Ali, S. Bushnaq, Hyers-Ulam stability analysis to implicit Cauchy problem of fractional differential equations with impulsive conditions, Math. Method. Appl. Sci., 41 (2018), 8329–8343. https://doi.org/10.1002/mma.5292 doi: 10.1002/mma.5292
![]() |
[37] |
J. Tariboon, S. K. Ntouyas, B. Sutthasin, Impulsive fractional quantum Hahn difference boundary value problems, Adv. Difference Equ., 2019 (2019), 1–18. https://doi.org/10.1186/s13662-019-2156-7 doi: 10.1186/s13662-019-2156-7
![]() |
[38] |
I. Ahmed, P. Kumam, J. Abubakar, P. Borisut, K. Sitthithakerngkiet, Solutions for impulsive fractional pantograph differential equation via generalized anti-periodic boundary condition, Adv. Difference Equ., 2020 (2020), 1–15. https://doi.org/10.1186/s13662-020-02887-4 doi: 10.1186/s13662-020-02887-4
![]() |
[39] |
A. I. N. Malti, M. Benchohra, J. R. Graef, J. E. Lazreg, Impulsive boundary value problems for nonlinear implicit Caputo-exponential type fractional differential equations, Electron. J. Qual. Theory Differ. Equ., 2020 (2020), 1–17. https://doi.org/10.14232/ejqtde.2020.1.78 doi: 10.14232/ejqtde.2020.1.78
![]() |
[40] |
M. S. Abdo, T. Abdeljawad, K. Shah, F. Jarad, Study of impulsive problems under Mittag-Leffler power law, Heliyon, 6 (2020), 1–8. https://doi.org/10.1016/j.heliyon.2020.e05109 doi: 10.1016/j.heliyon.2020.e05109
![]() |
[41] |
M. I. Abbas, On the initial value problems for the Caputo-Fabrizio impulsive fractional differential equations, Asian-Eur. J. Math., 14 (2021), 2150073. https://doi.org/10.1142/s179355712150073x doi: 10.1142/s179355712150073x
![]() |
[42] |
A. Salim, M. Benchohra, E. Karapinar, J. E. Lazreg, Existence and Ulam stability for impulsive generalized Hilfer-type fractional differential equations, Adv. Difference Equ., 2020 (2020), 1–21. https://doi.org/10.1186/s13662-020-03063-4 doi: 10.1186/s13662-020-03063-4
![]() |
[43] |
A. Salim, M. Benchohra, J. E. Lazreg, G. N'Guérékata, Boundary value problem for nonlinear implicit generalized Hilfer-type fractional differential equations with impulses, Abstr. Appl. Anal., 2021 (2021), 1–17. https://doi.org/10.1155/2021/5592010 doi: 10.1155/2021/5592010
![]() |
[44] |
H. Khan, A. Khan, T. Abdeljawad, A. Alkhazzan, Existence results in Banach space for a nonlinear impulsive system, Adv. Difference Equ., 2019 (2019), 1–16. https://doi.org/10.1186/s13662-019-1965-z doi: 10.1186/s13662-019-1965-z
![]() |
[45] |
A. Ali, K. Shah, T. Abdeljawad, H. Khan, A. Khan, Study of fractional order pantograph type impulsive antiperiodic boundary value problem, Adv. Difference Equ., 2020 (2020), 1–32. https://doi.org/10.1186/s13662-020-03032-x doi: 10.1186/s13662-020-03032-x
![]() |
[46] |
H. Khan, Z. A. Khan, H. Tajadodi, A. Khan, Existence and data-dependence theorems for fractional impulsive integro-differential system, Adv. Difference Equ., 2020 (2020), 1–11. https://doi.org/10.1186/s13662-020-02823-6 doi: 10.1186/s13662-020-02823-6
![]() |
[47] |
F. Jarad, M. A. Alqudah, T. Abdeljawad, On more general forms of proportional fractional operators, Open Math., 18 (2020), 167–176. https://doi.org/10.1515/math-2020-0014 doi: 10.1515/math-2020-0014
![]() |
[48] |
F. Jarad, T. Abdeljawad, S. Rashid, Z. Hammouch, More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Adv. Difference Equ., 2020 (2020), 1–16. https://doi.org/10.1186/s13662-020-02767-x doi: 10.1186/s13662-020-02767-x
![]() |
[49] | U. N. Katugampola, New fractional integral unifying six existing fractional integrals, arXiv Preprint, 2016. Available from: https://arXiv.org/abs/1612.08596. |
[50] |
F. Jarad, E. Uğurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Difference Equ., 2017 (2017), 1–16. https://doi.org/10.1186/s13662-017-1306-z doi: 10.1186/s13662-017-1306-z
![]() |
[51] |
T. U. Khan, M. Adil Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378–389. https://doi.org/10.1016/j.cam.2018.07.018 doi: 10.1016/j.cam.2018.07.018
![]() |
[52] |
M. I. Abbas, M. A. Ragusa, On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function, Symmetry, 13 (2021), 1–16. https://doi.org/10.3390/sym13020264 doi: 10.3390/sym13020264
![]() |
[53] |
S. S. Zhou, S. Rashid, A. Rauf, F. Jarad, Y. S. Hamed, K. M. Abualnaja, Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function, AIMS Math., 6 (2021), 8001–8029. https://doi.org/10.3934/math.2021465 doi: 10.3934/math.2021465
![]() |
[54] |
S. Rashid, F. Jarad, Z. Hammouch, Some new bounds analogous to generalized proportional fractional integral operator with respect to another function, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 3703–3718. https://doi.org/10.3934/dcdss.2021020 doi: 10.3934/dcdss.2021020
![]() |
[55] |
T. Abdeljawad, S. Rashid, A. A. El-Deeb, Z. Hammouch, Y. M. Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, Adv. Difference Equ., 2020 (2020), 1–16. https://doi.org/10.1186/s13662-020-02935-z doi: 10.1186/s13662-020-02935-z
![]() |
[56] |
G. Rahman, T. Abdeljawad, F. Jarad, K. S. Nisar, Bounds of generalized proportional fractional integrals in general form via convex functions and their applications, Mathematics, 8 (2020), 1–19. https://doi.org/10.3390/math8010113 doi: 10.3390/math8010113
![]() |
[57] |
C. Tearnbucha, W. Sudsutad, Stability analysis of boundary value problems for Caputo proportional fractional derivative of a function with respect to another function via impulsive Langevin equation, AIMS Math., 6 (2021), 6647–6686. https://doi.org/10.3934/math.2021391 doi: 10.3934/math.2021391
![]() |
[58] |
M. I. Abbas, Non-instantaneous impulsive fractional integro-differential equations with proportional fractional derivatives with respect to another function, Math. Method. Appl. Sci., 44 (2021), 10432–10447. https://doi.org/10.1002/mma.7419 doi: 10.1002/mma.7419
![]() |
[59] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8 |
1. | Yankai Li, Dongping Li, Fangqi Chen, Xiangjing Liu, New Multiplicity Results for a Boundary Value Problem Involving a ψ-Caputo Fractional Derivative of a Function with Respect to Another Function, 2024, 8, 2504-3110, 305, 10.3390/fractalfract8060305 | |
2. | Aphirak Aphithana, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Measure of non-compactness for nonlocal boundary value problems via $ (k, \psi) $-Riemann-Liouville derivative on unbounded domain, 2023, 8, 2473-6988, 20018, 10.3934/math.20231020 | |
3. | Dongping Li, Yankai Li, Xiaozhou Feng, Changtong Li, Yuzhen Wang, Jie Gao, Ground state solutions for the fractional impulsive differential system with ψ‐Caputo fractional derivative and ψ–Riemann–Liouville fractional integral, 2024, 47, 0170-4214, 8434, 10.1002/mma.10023 | |
4. | Devaraj Vivek, Sabu Sunmitha, Elsayed Mohamed Elsayed, P-type iterative learning control for impulsive pantograph equations with Hilfer fractional derivative, 2025, 0, 2577-8838, 0, 10.3934/mfc.2025020 |