Research article

Existence of axially symmetric solutions for a kind of planar Schrödinger-Poisson system

  • Received: 13 March 2021 Accepted: 10 May 2021 Published: 18 May 2021
  • MSC : 35J20, 35J62, 35Q55

  • In this paper, we study the following kind of Schrödinger-Poisson system in R2

    {Δu+V(x)u+ϕu=K(x)f(u),   xR2,Δϕ=u2,                                       xR2,

    where fC(R,R), V(x) and K(x) are both axially symmetric functions. By constructing a new variational framework and using some new analytic techniques, we obtain an axially symmetric solution for the above planar system. Our result improves and extends the existing works.

    Citation: Qiongfen Zhang, Kai Chen, Shuqin Liu, Jinmei Fan. Existence of axially symmetric solutions for a kind of planar Schrödinger-Poisson system[J]. AIMS Mathematics, 2021, 6(7): 7833-7844. doi: 10.3934/math.2021455

    Related Papers:

    [1] Francisco Pedroche, Regino Criado, Esther García, Miguel Romance, Victoria E. Sánchez . Comparing series of rankings with ties by using complex networks: An analysis of the Spanish stock market (IBEX-35 index). Networks and Heterogeneous Media, 2015, 10(1): 101-125. doi: 10.3934/nhm.2015.10.101
    [2] Hyeong-Ohk Bae, Seung Yeon Cho, Jane Yoo, Seok-Bae Yun . Effect of time delay on flocking dynamics. Networks and Heterogeneous Media, 2022, 17(5): 803-825. doi: 10.3934/nhm.2022027
    [3] Travis G. Draper, Fernando Guevara Vasquez, Justin Cheuk-Lum Tse, Toren E. Wallengren, Kenneth Zheng . Matrix valued inverse problems on graphs with application to mass-spring-damper systems. Networks and Heterogeneous Media, 2020, 15(1): 1-28. doi: 10.3934/nhm.2020001
    [4] Mirela Domijan, Markus Kirkilionis . Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3(2): 295-322. doi: 10.3934/nhm.2008.3.295
    [5] José Ignacio Alvarez-Hamelin, Luca Dall'Asta, Alain Barrat, Alessandro Vespignani . K-core decomposition of Internet graphs: hierarchies, self-similarity and measurement biases. Networks and Heterogeneous Media, 2008, 3(2): 371-393. doi: 10.3934/nhm.2008.3.371
    [6] Mahdi Jalili . EEG-based functional brain networks: Hemispheric differences in males and females. Networks and Heterogeneous Media, 2015, 10(1): 223-232. doi: 10.3934/nhm.2015.10.223
    [7] Manel Hmimida, Rushed Kanawati . Community detection in multiplex networks: A seed-centric approach. Networks and Heterogeneous Media, 2015, 10(1): 71-85. doi: 10.3934/nhm.2015.10.71
    [8] Wei-Ming Ni, Masaharu Taniguchi . Traveling fronts of pyramidal shapes in competition-diffusion systems. Networks and Heterogeneous Media, 2013, 8(1): 379-395. doi: 10.3934/nhm.2013.8.379
    [9] Nicola Bellomo, Raluca Eftimie, Guido Forni . What is the in-host dynamics of the SARS-CoV-2 virus? A challenge within a multiscale vision of living systems. Networks and Heterogeneous Media, 2024, 19(2): 655-681. doi: 10.3934/nhm.2024029
    [10] M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer . On algebraic graph theory and the dynamics of innovation networks. Networks and Heterogeneous Media, 2008, 3(2): 201-219. doi: 10.3934/nhm.2008.3.201
  • In this paper, we study the following kind of Schrödinger-Poisson system in R2

    {Δu+V(x)u+ϕu=K(x)f(u),   xR2,Δϕ=u2,                                       xR2,

    where fC(R,R), V(x) and K(x) are both axially symmetric functions. By constructing a new variational framework and using some new analytic techniques, we obtain an axially symmetric solution for the above planar system. Our result improves and extends the existing works.





    [1] S. Chen, X. Tang, On the planar Schrödinger-Poisson system with the axially symmetric potential, J. Differ. Equations, 268 (2020), 945–976. doi: 10.1016/j.jde.2019.08.036
    [2] R. Benguria, H. Brezis, E. Lieb, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Comm. Math. Phys., 79 (1981), 167–180. doi: 10.1007/BF01942059
    [3] A. Paredes, D. Olivieri, M. Humberto, From optics to dark matter: A review on nonlinear Schrödinger-Poisson systems, Physica D, 403 (2020), 132301. doi: 10.1016/j.physd.2019.132301
    [4] J. Chen, S. Chen, X. Tang, Ground state solutions for asymptotically periodic Schrödinger-Poisson systems in R2, Electron. J. Differ. Equations, 192 (2018), 1–18.
    [5] X. Tang, Non-Nehari manifold method for asymptotically periodic Schrödinger equation, Sci. China Math., 58 (2015), 715–728.
    [6] F. Bernini, D. Mugnai, On a logarithmic Hartree equation, Adv. Nonlinear Anal., 9 (2020), 850–865.
    [7] S. Cingolani, T. Weth, On the planar Schrödinger-Poisson system, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 33 (2016), 169–197. doi: 10.1016/j.anihpc.2014.09.008
    [8] M. Du, T. Weth, Ground states and high energy solutions of the planar Schrödinger-Poisson system, Nonlinearity, 30 (2017), 3492–3515. doi: 10.1088/1361-6544/aa7eac
    [9] S. Chen, J. Shi, X. Tang, Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity, Discrete Contin. Dyn. Syst., Ser. A, 39 (2019), 5867–5889. doi: 10.3934/dcds.2019257
    [10] S. Chen, X. Tang, Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system, Discrete Contin. Dyn. Syst., Ser. B, 24 (2019), 4685–4702.
    [11] L. Wen, S. Chen, V. D. Rădulescu, Axially symmetric solutions of Schrödinger-Poisson system with zero mass potential in R2, Appl. Math. Lett., 104 (2020), 106244. doi: 10.1016/j.aml.2020.106244
    [12] Z. Chen, W. Zou, Ground states for a system of Schrödinger equations with critical exponent, J. Func. Anal., 262 (2012), 3091–3107. doi: 10.1016/j.jfa.2012.01.001
    [13] S. Chen, X. Tang, Berestycki-Lions conditions on ground state solutions for a nonlinear Schrödinger equation with variable potentials, Adv. Nonlinear Anal., 9 (2020), 496–515.
    [14] J. Peng, S. Chen, X. Tang, Semiclassical solutions for linearly coupled Schrödinger equations without compactness, Complex Var. Elliptic Equations, 64 (2019), 548–556. doi: 10.1080/17476933.2018.1450395
    [15] X. Tang, New super-quadratic conditions for asymptotically periodic Schrödinger equations, Can. Math. Bull., 60 (2017), 422–435. doi: 10.4153/CMB-2016-090-2
    [16] X. Tang, X. Lin, J. Yu, Nontrivial solutions for Schrödinger equation with local super-quadratic conditions, J. Dyn. Differ. Equations, 31 (2019), 369–383. doi: 10.1007/s10884-018-9662-2
    [17] G. Che, H. Chen, Existence of multiple nontrivial solutions for a class of quasilinear Schrödinger equations on RN, Bull. Belg. Math. Soc. Simon Stevin, 25 (2018), 39–53.
    [18] X. Tang, Non-Nehari manifold method for asymptotically linear Schrödinger equation, J. Aust. Math. Soc., 98 (2015), 104–116. doi: 10.1017/S144678871400041X
    [19] B. Sirakov, Standing wave solutions of the nonlinear Schrödinger equations in RN, Ann. Mat. Pura Appl., 183 (2002), 73–83.
    [20] J. Fan, Y. Jiang, Q. Zhang, Semiclassical Solutions for a Kind of Coupled Schrödinger Equations, Adv. Math. Phys., 2020 (2020), 4378691.
    [21] X. Zhang, Existence and multiplicity of solutions for a class of elliptic boundary value problems, J. Math. Anal. Appl., 410 (2014), 213–226. doi: 10.1016/j.jmaa.2013.08.001
    [22] Q. Zhang, C. Gan, T. Xiao, Z. Jia, Some results of nontrivial solutions for Klein-Gordon-Maxwell systems with local super-quadratic conditions, J. Geom. Anal., 31 (2021), 5372–5394. doi: 10.1007/s12220-020-00483-2
    [23] L. Wang, X. Zhang, H. Fang, Multiplicity of solutions for a class of quasilinear elliptic systems in Orlicz-Sobolev spaces, Taiwan. J. Math., 21 (2017), 881–912.
    [24] Q. Zhang, C. Gan, T. Xiao, Z. Jia, An improved result for Klein-Gordon-Maxwell systems with steep potential well, Math. Methods Appl. Sci., 2020 (2020).
    [25] E. Lieb, M. Loss, Analysis, 2nd Ed., Graduate Studies in Mathematics, Vol. 14, American Mathematical Society, Providence, RI, 2001.
  • This article has been cited by:

    1. Francisco Pedroche, J. Alberto Conejero, Corrected Evolutive Kendall’s τ Coefficients for Incomplete Rankings with Ties: Application to Case of Spotify Lists, 2020, 8, 2227-7390, 1828, 10.3390/math8101828
    2. Francisco Pedroche, Miguel Romance, Regino Criado, A biplex approach to PageRank centrality: From classic to multiplex networks, 2016, 26, 1054-1500, 065301, 10.1063/1.4952955
    3. Carlos Garcia-Zorita, Ronald Rousseau, Sergio Marugan-Lazaro, Elias Sanz-Casado, Ranking dynamics and volatility, 2018, 12, 17511577, 567, 10.1016/j.joi.2018.04.005
    4. Esteban F. Tuesta, Karina V. Delgado, Adriano S. Barbieri, Cristina B. Alves, Guilherme L. Carvalho, Alan U. Sabino, Lucas A. M. L. Andre, Lucas C. Zanoti, Paula A. Toyota, 2017, Análise comparativa da competitividade do Campeonato Brasileiro de Futebol mediante redes complexas, 635, 10.5753/brasnam.2017.3253
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2237) PDF downloads(64) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog