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Abstract: In this paper, we study the following kind of Schrödinger-Poisson system in R2{
−∆u + V(x)u + φu = K(x) f (u), x ∈ R2,

∆φ = u2, x ∈ R2,

where f ∈ C(R,R), V(x) and K(x) are both axially symmetric functions. By constructing a new
variational framework and using some new analytic techniques, we obtain an axially symmetric
solution for the above planar system. Our result improves and extends the existing works.
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1. Introduction

We consider the following planar Schrödinger-Poisson system:{
−∆u + V(x)u + φu = K(x) f (u), x ∈ R2,

∆φ = u2, x ∈ R2,
(1.1)

where K, V and f satisfy the following basic assumptions:

(V1) V ∈ C(R2, (0,∞)), V(x) = V(x1, x2) = V(|x1|, |x2|), ∀ x ∈ R2 and lim inf |x|→∞ V(x) > 0;

(K1) K ∈ C(R2, (0,∞)), K(x) = K(x1, x2) = K(|x1|, |x2|), ∀ x ∈ R2 and lim inf |x|→∞ K(x) > 0;

(F1) f (u) = o(|u|) as u→ 0;

(F2) f ∈ C(R,R), there exists c0 > 0 and p > 2 such that | f (u)| ≤ c0(1 + |u|p−1), ∀ u ∈ R.
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It is pointed out that (V1) and (K1) imply that V(x) and K(x) are both axially symmetric functions.
As shown in [1], axially symmetric functions are widely existing in real world, but axially symmetric
functions are less used in the existing works because of the lack of compact embedding from the
subspace of H1(RN) to Ls(RN) for N ≥ 2, where the elements of the subspace are axially symmetric
functions. In recent years, the following nonlinear Schrödinger-Poisson equations have gained more
attentions: {

−∆u + V(x)u + µφu = f (x, u), x ∈ RN ,

∆φ = u2, x ∈ RN ,
(1.2)

where µ ∈ R\{0}, V ∈ C(RN , (0,∞)) and f ∈ C(RN × R,R). It is easy to see that system (1.1) is a
special form of system (1.2).

From [2], we know that system (1.2) comes from semiconductor theory and quantum mechanics
theory. Recently, the N = 2 problem has attracted a lot of attention in relation to optical propagation
in certain media. Paredes, Olivieri and Michinel [3] gave a detail review on nonlinear Schrödinger-
Poisson systems. They mainly reviewed two kinds of Schrödinger-Poisson systems: nonlinear optics
in thermo-optical media and the 1+2D Schrödinger-Poisson model; ultralight axion dark matter and
3D Schrödinger-Poisson systems. Specially, they presented families of stationary solutions, discussed
the implications of the simulation of propagation dynamics and discussed some numerical methods to
solve the system of time-dependent partial differential equations. In the physical aspects, the solution
φ of ∆φ = u2 in system (1.2) can be solved by φ = ΓN ∗ u2, where

ΓN(x) =

 ln|x|
2π , N = 2,
|x|2−N

N(2−N)ωN
, N ≥ 3,

is the fundamental solutions of the Laplacian, ∗ is the convolution in RN and ωN is the volume of the
unit N-ball. With this formal inversion, an integro-differential equation is obtained as follows

− ∆u + V(x)u + µ(ΓN ∗ u2)u = f (x, u), x ∈ RN . (1.3)

When N = 2 and µ , 0, there are only a few works dealing with system (1.2) or (1.3). Chen,
Chen and Tang [4] investigated system (1.2) in the periodic and asymptotically periodic cases using
the non-Nehari manifold method derived from [5]. Bernini and Mugnai [6] have rewritten a nonlinear
planar Schrödinger-Poisson system as a nonlinear Hartree equation and obtained an existence result of
radially symmetric solutions when V(x) is a positive constant and µ = 1. If f (x, u) = f (u) and µ > 0,
the authors in [7,8] dealt with periodic case and constructed a variational setting for (1.3). Recently, the
author in [9] improved and extended the main results obtained in [8] with V(x) = 1 and more general
nonlinearity f (u). Very recently, Chen and Tang [10] dealt with axially symmetric potential instead of
the periodic case and developed a natural constraint function space for system (1.2). More recently,
Chen and Tang [1] considered the case that the nonlinearity is sub-cubic growth at infinity. As pointed
out in [1] that this case is more difficult and the methods used in [10] is no longer available since it is
not sure whether {un} are bounded in H1(RN). Motivated by [1], Wen, Chen and Rădulescu [11] studied
system (1.1) with V(x) = 0 and K(x) is a axially symmetric function and obtained a main result.

When µ = 0, system (1.2) reduces to Schrödinger equations. Many researchers investigated
Schrödinger equations and obtained many existence results of nontrivial solutions, see [12–20] and
references therein. It is pointed out that critical point theory is very important for studying
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Schrödinger equations and other kinds of elliptic systems [21–24]. However, most of the existing
works of Schrödinger equations or Schrödinger-Poisson equations are dealt with one of the following
two cases: i) infx∈RN V(x) > 0; ii) V(x) and K(x) vanish at infinity. There is a question: what will
happen if infx∈R2 V(x) > 0 and lim inf |x|→∞ K(x) > 0 in system (1.1). Moreover, the methods handling
the case N = 3 are no longer available for N = 2 since the integral Γ2 = ln |x|

2π is sign-changing and
unbounded, which causes the functional associated with system (1.1) is not well-defined on H1(R2)
even if V ∈ L∞(R2) and infx∈R2 V(x) > 0. As far as we known, there seems no related works in the
case of infx∈R2 V(x) > 0 and lim inf |x|→∞ K(x) > 0. In this paper, motivated by the aforementioned
works, we will give a positive answer and obtain an axially symmetric solution for system (1.1) by
establishing a new variational setting and using some new analytic tricks.

To present our result, the following assumptions are needed.

(V2) V ∈ C1(R2,R), t 7→ t2[2V(tx) − ∇V(tx)(tx)] is nondecreasing on (0,∞) for all x ∈ R2;

(K2) K ∈ C1(R2,R), ∇K(x) · x ≤ 0, t 7→ 4K(tx)−∇K(tx)(tx) is nonincreasing on (0,∞) for all x ∈ R2;

(F3) the function f (u)u−F(u)
u3 is nondecreasing on both (−∞, 0) and (0,∞), where and in the sequel,

F(u) =
∫ u

0
f (s)ds.

The main result is as follows.
Theorem 1.1. Suppose that V, K and f satisfy (V1), (V2), (K1), (K2) and (F1)–(F3). Then (1.1)
possesses an axially symmetric solution ū satisfying

Φ(ū) = inf
u∈M

Φ(u) = inf max
u∈E\{0} t>0

Φ(t2ut) with M := {u ∈ E\{0} : I(u) := 2〈Φ′(u), u〉 − P(u) = 0},

where ut = ut(x) = u(tx), the definitions of Φ, E and P will be given in the next section.
In the next section, we will construct a variational setting and give some preliminaries. In Section 3,

we give the proof of Theorem 1.1. Throughout this paper, ‖ · ‖H1 and ‖ · ‖s denote the norms of H1(R2)
and Ls(R2) for 1 ≤ s ≤ ∞, respectively. Ci are different positive constants in different places.

2. Variational setting and preliminaries

The following bilinear forms are given as

(u, v) 7→ A1(u, v) =
1

2π

∫
R2

∫
R2

ln(2 + |x − y|)u(x)v(y)dxdy,

(u, v) 7→ A2(u, v) =
1

2π

∫
R2

∫
R2

ln
(
1 +

2
|x − y|

)
u(x)v(y)dxdy,

and
(u, v) 7→ A0(u, v) = A1(u, v) − A2(u, v) =

1
2π

∫
R2

∫
R2

ln(|x − y|)u(x)v(y)dxdy,

where u, v : R2 → R are measurable functions. Since u, v are measurable functions, A1(u, v), A2(u, v)
and A0(u, v) are well defined in Lebesgue sense. From the Hardy-Littlewood-Sobolev inequality [25]
and 0 ≤ ln(1 + t) ≤ t for t ≥ 0, we have

|A2(u, v)| ≤
1
π

∫
R2

∫
R2

1
|x − y|

|u(x)v(y)|dxdy ≤ C1‖u‖4/3‖v‖4/3, (2.1)
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where C1 is a positive constant. In order to obtain the existence of ground state solution for system
(1.1), we develop a new variational framework for system (1.1). The working function space is

E := X ∩ H1
as =

{
u ∈ H1

as(R
2) :

∫
R2

[V(x) + ln(2 + |x|)]u2(x)dx < ∞
}
,

where

X =

{
u ∈ H1(R2) :

∫
R2

[V(x) + ln(2 + |x|)]u2(x)dx < ∞
}
,

and
H1

as = {u ∈ H1(R2) : u(x) := u(x1, x2) = u(|x1|, |x2|), ∀ x ∈ R2}.

Under (V1) and (K1), it is easy to see that the space E is a suitable constraint to study system (1.1).
The norm of E is given by

‖u‖E := (‖u‖2 + ‖u‖2∗)
1
2 , (2.2)

where
‖u‖2 =

∫
R2

[|∇u|2 + V(x)u2(x)]dx, ∀ u ∈ X,

‖u‖2∗ =

∫
R2

ln(2 + |x|)u2(x)dx, ∀ u ∈ X.

The energy functional of system (1.1) on E is given by

Φ(u) =
1
2

∫
R2

[|∇u|2 + V(x)u2(x)]dx +
1
4

A0(u2, u2) −
∫
R2

K(x)F(u)dx. (2.3)

From (F1), (F2) and [1, (2.9)], we have Φ ∈ C1(X,R) and the embedding X ↪→ Ls(R2) is compact for
s ∈ [2,∞), moreover,

〈Φ′(u), v〉 =

∫
R2

(∇u∇v + V(x)uv)dx + A0(u2, uv) −
∫
R2

K(x) f (u)vdx.

Now, the Pohožaev functional associated to (1.1) is defined as follows:

P(u) :=
1
2

∫
R2

[∇V(x)x + 2V(x)]u2(x)dx −
∫
R2

F(u)∇K(x) · xdx

−2
∫
R2

K(x)F(u)dx + A0(u2, u2) +
1

8π
‖u‖42.

Similar to [1], any solution u of (1.1) satisfies P(u) = 0. The following constraint is defined as:

M = {u ∈ E\{0} : I(u) = 2〈Φ′(u), u〉 − P(u) = 0},

where

I(u) = 2〈Φ′(u), u〉 − P(u)

= 2‖∇u‖22 −
1

8π
‖u‖42 − 2

∫
R2

[ f (u)u − F(u)]K(x)dx +

∫
R2

F(u)∇K(x) · xdx
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+
1
2

∫
R2

[2V(x) − ∇V(x) · x]u2(x)dx + A0(u2, u2), ∀ u ∈ E. (2.4)

Similar to [1, 11], the following lemmas are obtained.
Lemma 2.1. Assume that (V1), (K1), (F1) and (F2) hold. If u is a critical point of Φ restricted to E,
then u is a critical point of Φ on X.
Lemma 2.2. Assume that (V1) and (V2) hold. Then

A1(u2, v2) ≥
1

8π
‖u‖22‖v‖

2
∗, ∀ u, v ∈ E,

and there exists a constant γ > 0 such that

γ‖u‖2H1 ≤ 2‖∇u‖22 +
1
2

∫
R2

[2V(x) − ∇V(x) · x]u2dx + A1(u2, u2), ∀ u, v ∈ E.

Lemma 2.3. Assume that (V1), (V2), (K1), (K2), (F1)–(F3) hold. Then for all t > 0, u ∈ R and x ∈ R2,

g(t, x, u) :=
1
t2 F(t2u)K(t−1x) +

1 − t4

2
[ f (u)u − F(u)]K(x)

−
1 − t4

4
F(u)∇K(x) · x − F(u)K(x) ≥ 0. (2.5)

Lemma 2.4. Assume that (V2) holds. Then

α(t, x) := (1 + t4)V(x) +
1 − t4

2
∇V(x) · x − 2t2V(t−1x) ≥ 0, ∀ x ∈ R2, t > 0. (2.6)

3. Proof of Theorem 1.1

In this section, we first establish an energy estimate inequality related to Φ(u), Φ(t2ut) and I(u),
where

Φ(t2ut) =
t4

2
‖∇u‖22 +

1
2

∫
R2

t2V(t−1x)u2dx +
t4

4
A0(u2, u2)

−
t4 ln t

8π
‖u‖42 −

∫
R2

1
t2 F(t2u)K(t−1x)dx, ∀ u ∈ E, t > 0. (3.1)

Lemma 3.1. Assume that (V1), (V2), (K1), (K2) and (F1)–(F3) hold. Then

Φ(u) ≥ Φ(t2ut) +
1 − t4

4
I(u) +

1 − t4 + 4t4 ln t
32π

‖u‖42, ∀ t > 0, u ∈ E, (3.2)

and
Φ(u) ≥

1
4

I(u) +
1

32π
‖u‖42, ∀ u ∈ E. (3.3)

Proof. From (2.3), (2.5), (2.6) and (3.1), we have

Φ(u) − Φ(t2ut) =
1 − t4

2
‖∇u‖22 +

1 − t4

4
A0(u2, u2) +

1
2

∫
R2

[V(x) − t2V(t−1x)]u2dx
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+
t4 ln t

8π
‖u‖42 +

∫
R2

1
t2 F(t2u)K(t−1x)dx −

∫
R2

F(u)K(x)dx

=
1 − t4

4
I(u) +

1
4

∫
R2

[
(1 + t4)V(x) +

1 − t4

2
∇V(x) · x − 2t2V(t−1x)

]
u2dx

+
1 − t4 + 4t4 ln t

32π
‖u‖42 +

∫
R2

{
1
t2 F(t2u)K(t−1x) +

1 − t4

2
[ f (u)u − F(u)]K(x)

−
1 − t4

4
F(u)∇K(x) · x − F(u)K(x)

}
dx

≥
1 − t4

4
I(u) +

1 − t4 + 4t4 ln t
32π

‖u‖42, ∀ t > 0, u ∈ E. (3.4)

Now, we prove that K is bounded in R2. From (K1), we know that K ∈ C(R2, (0,∞)), then K is bounded
in bounded domain. Now we need to prove that K is also bounded at infinity. From (K2), we have

t 7→ K(t−1x) is nondecreasing for t > 0. (3.5)

For every fixed x ∈ R2, if letting t → 0, then |t−1x| → ∞ and if letting t → ∞, then |t−1x| → 0. Hence,
from (K1) and (3.5), we have K(∞) = limt→0 K(t−1x) ≤ limt→∞ K(t−1x) = K(0) < ∞, which implies
that K is also bounded at infinity. Hence, K is bounded in R2, that is

K ∈ L∞(R2). (3.6)

From (V2) and (2.6), we have

(1 + t4)V(x) +
1 − t4

2
∇V(x) · x ≥ 2t2V(t−1x) ≥ 0, ∀ t > 0, x ∈ R2. (3.7)

Let t → 0 in (3.7), we obtain
2V(x) + ∇V(x) · x ≥ 0, ∀ x ∈ R2. (3.8)

From (K1), (K2), (2.3), (2.4), (3.8) and (2.5) when t → 0 with the boundedness of K(x), we get

Φ(u) −
1
4

I(u) =
1

32π
‖u‖42 +

1
8

∫
R2

[2V(x) + ∇V(x) · x]u2dx

+
1
2

∫
R2

[ f (u)u − 3F(u)]K(x)dx −
1
4

∫
R2

F(u)∇K(x) · xdx

≥
1

32π
‖u‖42, ∀ u ∈ E. (3.9)

It follows from (3.4) and (3.9) that Lemma 3.1 holds. �

From (3.2) and the fact that 1 + 4t4 ln t − t4 ≥ 0 for t > 0, the following corollary is obtained.
Corollary 3.2. Assume that (V1), (V2), (K1), (K2) and (F1)–(F3) hold. Then Φ(u) = maxt>0 Φ(t2ut)
for all u ∈M .
Lemma 3.3. Assume that (V1), (V2), (K1), (K2) and (F1)–(F3) hold. Then for any u ∈ E\{0}, there
exists a constant tu > 0 such that t2

uutu ∈M .
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Proof. Fix u ∈ E\{0} and define ξ(t) := Φ(t2ut) on (0,∞). From (2.4) and (3.1), one has

ξ′(t) = 0 ⇔ 2t3‖∇u‖22 + t3A0(u2, u2) +
t
2

∫
R2

[2V(t−1x) − ∇V(t−1x) · t−1x]u2dx

−
4t3 ln t + t3

8π
‖u‖42 +

1
t3

∫
R2

F(t2u)∇K(t−1x) · (t−1x)dx

−
2
t3

∫
R2

[ f (t2u)t2u − F(t2u)]K(t−1x)dx = 0

⇔ I(t2ut) = 0⇔ t2ut ∈M , ∀ t > 0.

From (F1)–(F3), we have

β(t, u) :=
1 − t4

2
f (u)u +

t4 − 3
2

F(u) +
1
t2 F(t2u). (3.10)

By (3.10), we obtain

lim
t→0

β(t, u) =
1
2

[ f (u)u − 3F(u)] ≥ 0. (3.11)

From (3.11), we get
F(u)
u3 is nondecreasing on (−∞, 0) ∪ (0,+∞). (3.12)

From (3.12), we have

F(t2u)
t6 =

F(t2u)
(t2u)3 · u

3 ≤
F(u)
u3 · u

3 = F(u), for 0 < t < 1, (3.13)

and

F(t2u)
t6 =

F(t2u)
(t2u)3 · u

3 ≥
F(u)
u3 · u

3 = F(u), for t > 1. (3.14)

From (F3), we have

f (t2u)t2u − F(t2u)
(t2u)3 · u3 ≤

f (u)u − F(u)
u3 · u3 = f (u)u − F(u), for 0 < t < 1, (3.15)

and

f (t2u)t2u − F(t2u)
(t2u)3 · u3 ≥

f (u)u − F(u)
u3 · u3 = f (u)u − F(u), for t > 1. (3.16)

By (V2), we have
2V(x) − ∇V(x)x ≥ 0, ∀ x ∈ R2, (3.17)

t−2[2V(t−1x) − ∇V(t−1x)t−1x] ≥ 2V(x) − ∇V(x)x, ∀ 0 < t < 1, x ∈ R2, (3.18)

and
t−2[2V(t−1x) − ∇V(t−1x)t−1x] ≤ 2V(x) − ∇V(x)x, ∀ t > 1, x ∈ R2. (3.19)

By (K2), we obtain
− 2K(x) ≤ ∇K(x)x ≤ 2K(x), ∀ x ∈ R2. (3.20)
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It follows from (K1), (K2), (3.5), (3.6), (3.13), (3.15), (3.17), (3.18) and (3.20) that

ξ′(t)
t3 = 2‖∇u‖22 + A0(u2, u2) +

1
2

∫
R2

t−2[2V(t−1x) − ∇V(t−1x)t−1x] −
4 ln t + 1

8π
‖u‖42

+
1
t6

∫
R2

F(t2u)∇K(t−1x) · (t−1x)dx −
2
t6

∫
R2

[ f (t2u)t2u − F(t2u)]K(t−1x)dx

≥ 2‖∇u‖22 + A0(u2, u2) −
4 ln t + 1

8π
‖u‖42 − 2

∫
R2

F(u)K(x)dx − 2
∫
R2

[ f (u)u − F(u)]K(x)dx

= 2‖∇u‖22 + A0(u2, u2) −
4 ln t + 1

8π
‖u‖42 − 2

∫
R2

K(x) f (u)udx

≥ 2‖∇u‖22 + A0(u2, u2) −
4 ln t + 1

8π
‖u‖42 − 2‖K‖∞

∫
R2

f (u)udx, ∀ 0 < t < 1. (3.21)

From (K1), (K2), (3.5), (3.6), (3.11), (3.14), (3.16), (3.17), (3.19) and (3.20), we have

ξ′(t)
t3 = 2‖∇u‖22 + A0(u2, u2) +

1
2

∫
R2

t−2[2V(t−1x) − ∇V(t−1x)t−1x] −
4 ln t + 1

8π
‖u‖42

+
1
t6

∫
R2

F(t2u)∇K(t−1x) · (t−1x)dx −
2
t6

∫
R2

[ f (t2u)t2u − F(t2u)]K(t−1x)dx

≤ 2‖∇u‖22 + A0(u2, u2) −
4 ln t + 1

8π
‖u‖42 +

1
2

∫
R2

[2V(x) − ∇V(x)x]u2dx

+2
∫
R2

F(u)K(t−1x)dx − 2
∫
R2

[ f (u)u − F(u)]K(x)dx

≤ 2‖∇u‖22 + A0(u2, u2) +
1
2

∫
R2

[2V(x) − ∇V(x)x]u2dx

−
4 ln t + 1

8π
‖u‖42 + 2‖K‖∞

∫
R2

F(u)dx, ∀ t > 1. (3.22)

Then, from (3.21) and (3.22), for t ∈ (0, 1) small enough, one has ξ′(t) > 0 and for t > 1 large enough,
ξ′(t) < 0. Hence, there exists tu > 0 such that ξ′(tu) = 0 and t2

uutu ∈M . �

From Corollary 3.2 and Lemma 3.3, we get the following lemma.
Lemma 3.4. Assume that (V1), (V2), (K1), (K2) and (F1)–(F3) hold. Then

inf
u∈M

Φ(u) := c = inf
u∈E\{0}

max
t>0

Φ(t2ut). (3.23)

Lemma 3.5. Assume that (V1), (V2), (K1), (K2) and (F1)–(F3) hold. Then c = infu∈M Φ(u) > 0.

Proof. By a standard argument, by (F1), (F2) and I(u) = 0 for u ∈M , one can easily show that there
exists σ > 0 such that ‖u‖H1 ≥ σ, ∀ u ∈M . Let {un} ⊂M be such that Φ(un) → c. We consider two
cases:

Case 1. infn∈N ‖un‖2 := σ1 > 0. From (3.3), we get

c + o(1) = Φ(un) ≥ Φ(t2
n(un)tn) ≥

1
32π
‖un‖

4
2 ≥

1
32π

σ4
1.
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Case 2. infn∈N ‖un‖2 := 0. Since ‖u‖H1 ≥ σ for all u ∈M , passing to a subsequence, one obtains

‖un‖2 → 0, ‖∇un‖2 ≥
σ

2
. (3.24)

From (2.1) and the Gagliardo-Nirenberg inequality, we get

0 ≤ A2(u2
n, u

2
n) ≤ C1‖un‖

4
8/3 ≤ C2‖un‖

3
2‖∇un‖2, ‖un‖

p
p ≤ C3‖un‖

2
2‖∇un‖

p−2
2 . (3.25)

From (3.24), we have
| ln(‖∇un‖2)|
‖∇un‖

2
2

≤ C4. (3.26)

From (F1) and (F2), there exists a positive constant C5 such that

|F(t2
nun)| ≤ |t2

nun|
2 + C5|t2

nun|
p, ∀ tn > 0, un ∈ R. (3.27)

Let tn = ‖∇un‖
−1/2
2 . Since I(un) = 0 and the boundedness of K, from (3.1), (3.24), (3.25), (3.26), (3.27)

and Corollary 3.2, we have

c + o(1) = Φ(un) ≥ Φ(t2
n(un)tn)

=
t4
n

2
‖∇un‖

2
2 +

t4
n

4
[A1(u2

n, u
2
n) − A2(u2

n, u
2
n)] −

t4
n ln tn

8π
‖un‖

4
2

+
t2
n

2

∫
R2

V(t−1
n x)u2

ndx −
1
t2
n

∫
R2

K(t−1
n x)F(t2

nun)dx

≥
t4
n

2
‖∇un‖

2
2 −

t4
n

4
A2(u2

n, u
2
n) −

t4
n ln tn

8π
‖un‖

4
2 −
‖K‖∞

t2
n

∫
R2

[|t2
nun|

2 + C5|t2
nun|

p]dx

≥
t4
n

2
‖∇un‖

2
2 −

C2t4
n

4
‖un‖

3
2‖∇un‖2 −

t4
n ln tn

8π
‖un‖

4
2

−t2
n‖K‖∞‖un‖

2
2 −C6‖K‖∞t2p−2

n ‖un‖
2
2‖∇un‖

p−2
2

=
1
2
−

C2‖un‖
3
2

4‖∇un‖2
+

ln(‖∇un‖2)
16π‖∇un‖

2
2

‖un‖
4
2 −
‖K‖∞‖un‖

2
2

‖∇un‖2
−

C6‖K‖∞‖un‖
2
2

‖∇un‖2

=
1
2

+ o(1).

It follows from the above two cases that c = infu∈M Φ(u) > 0. �

Lemma 3.6. Assume that (V1), (V2), (K1), (K2) and (F1)–(F3) hold. Then c is achieved. Moreover,
if ū ∈M and Φ(ū) = c, then ū is a critical point of Φ in E.

Proof. Let {un} ⊂M be such that Φ(un)→ c. From (3.9) and I(un) = 0, it yields

c + o(1) = Φ(un) −
1
4

I(un) ≥
1

32π
‖un‖

4
2. (3.28)

From (3.28), we know that {‖un‖2} is bounded. It is needed to prove that {‖∇un‖2} is bounded too.
Arguing by indirectly, assume that ‖∇un‖2 → ∞ as n → ∞. Let tn = (2

√
c/‖∇un‖2)1/2, then tn → 0
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as n → ∞. Hence, t4
n ln tn → 0 as n → ∞. From (K1), (F1), (F2), (2.1), (3.1), (3.25), (3.27), the

boundedness of K and Corollary 3.2, we have

c + o(1) = Φ(un) ≥ Φ(t2
n(un)tn)

=
t4
n

2
‖∇un‖

2
2 +

t4
n

4
[A1(u2

n, u
2
n) − A2(u2

n, u
2
n)] −

t4
n ln tn

8π
‖un‖

4
2

+
t2
n

2

∫
R2

V(t−1
n x)u2

ndx −
1
t2
n

∫
R2

K(t−1
n x)F(t2

nun)dx

≥
t4
n

2
‖∇un‖

2
2 −

t4
n

4
A2(u2

n, u
2
n) −
‖K‖∞

t2
n

∫
R2

F(t2
nun)dx + o(1)

≥
t4
n

2
‖∇un‖

2
2 −

t4
n

4
A2(u2

n, u
2
n) −
‖K‖∞

t2
n

∫
R2

[|t2
nun|

2 + C5|t2
nun|

p]dx + o(1)

≥
t4

2
‖∇un‖

2
2 −

C2t4
n

4
‖un‖

3
2‖∇un‖2 − t2

n‖K‖∞‖un‖
2
2

−C6‖K‖∞t2p−2
n ‖un‖

2
2‖∇un‖

p−2
2 + o(1)

= 2c −
C2c‖un‖

3
2

‖∇un‖2
−

C3(2
√

c)p−1‖K‖∞‖un‖
2
2

‖∇un‖2
+ o(1)

= 2c + o(1), (3.29)

a contradiction, hence, we have that {‖∇un‖2} is bounded too, so {un} is bounded in H1(R2). Thanks to
(K1), (F1), (F2), (2.1) and (2.2), we know that {‖un‖} and A1(u2

n, u
2
n) are both bounded. From [1, Lemma

3.5], one has
lim sup

n→∞
‖un‖2 > 0, (3.30)

which together with Lemma 2.2 shows that {‖un‖∗} is bounded. Then {un} is bounded in E. Passing to
a subsequence, one may assume that un ⇀ ū in E, un → ū in Ls(R2) for s ∈ [2,∞), un → ū a.e. on R2.
By a standard argument, we have

I(ū) ≤ lim inf
n→∞

I(un) = 0. (3.31)

It follows from (3.30) and (3.31) that ū , 0. From Lemma 3.3, there exists t̄ > 0 such that t̄2ūt̄ ∈ M
and Φ(t̄2ūt̄) ≥ c. Hence, by (2.2), (2.4), (3.30), Fatou’s Lemma, Lebesgue’s dominated convergence
theorem and the fact 1 + 4t4 ln t − t4 ≥ 0 for t > 0, we obtain

c = lim
n→∞

[
Φ(un) −

1
4

I(un)
]

= lim
n→∞

{
1

32π
‖un‖

2
4 +

1
8

∫
R2

[2V(x) + ∇V(x) · x]u2
ndx

+
1
2

∫
R2
{[ f (un)un − 3F(un)]K(x) − F(un)∇K(x) · x}dx

}
≥

1
32π
‖ū‖24 +

1
8

∫
R2

[2V(x) + ∇V(x) · x]ū2dx

+
1
2

∫
R2

[ f (ū)ū − 3F(ū)]K(x)dx −
1
4

∫
R2

F(ū)∇K(x) · xdx
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= Φ(ū) −
1
4

I(ū) ≥ Φ(t̄2ūt̄) −
t̄4

4
I(ū) ≥ c −

t̄4

4
I(ū) ≥ c. (3.32)

From (3.32), we have I(ū) = 0 and Φ(ū) = c. Similar to [1, Lemma 4.11], we can obtain that ū is a
critical point of Φ in E.

From Lemmas 2.1, 3.4 and 3.6, it is easy to get Theorem 1.1. The proof is complete. �

4. Conclusions

This paper studies a kind of Schrödinger-Poisson system in R2. By constructing a new variational
framework and using some new analytic techniques, we obtain an axially symmetric solution. Specially
speaking, we first establish an energy estimate inequality related to Φ(u), Φ(t2ut) and I(u), which is
useful in the proof of the main result. Secondly, we prove that for any u ∈ E\{0}, there exists a
constant tu > 0 such that t2

uutu ∈ M , and then prove infu∈M Φ(u) := c = infu∈E\{0}maxt>0 Φ(t2ut) and
c = infu∈M Φ(u) > 0. Finally, we prove that c is achieved. Moreover, if ū ∈M and Φ(ū) = c, then ū is
a critical point of Φ in E. Our result improves and extends some existing works.
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