Research article Special Issues

Fractional inequalities of the Hermite–Hadamard type for m-polynomial convex and harmonically convex functions

  • In this paper, it is our purpose to establish some new fractional inequalities of the Hermite–Hadamard type for the m-polynomial convex and harmonically convex functions. Our results involve the Caputo–Fabrizio and ζ-Riemann–Liouville fractional integral operators. They generalize, complement and extend existing results in the literature. By taking m2, we deduce loads of new and interesting inequalities. We expect that the thought laid out in this work will provoke advance examinations in this course.

    Citation: Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood. Fractional inequalities of the Hermite–Hadamard type for m-polynomial convex and harmonically convex functions[J]. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115

    Related Papers:

    [1] Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad . $ (m, n) $-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates. AIMS Mathematics, 2021, 6(5): 4677-4690. doi: 10.3934/math.2021275
    [2] Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306
    [3] Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly $ (\alpha, m) $-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661
    [4] Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially $ (\alpha, h-m) $-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521
    [5] Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096
    [6] Ahmet Ocak Akdemir, Saad Ihsan Butt, Muhammad Nadeem, Maria Alessandra Ragusa . Some new integral inequalities for a general variant of polynomial convex functions. AIMS Mathematics, 2022, 7(12): 20461-20489. doi: 10.3934/math.20221121
    [7] Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283
    [8] Serap Özcan, Saad Ihsan Butt, Sanja Tipurić-Spužević, Bandar Bin Mohsin . Construction of new fractional inequalities via generalized $ n $-fractional polynomial $ s $-type convexity. AIMS Mathematics, 2024, 9(9): 23924-23944. doi: 10.3934/math.20241163
    [9] Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Hassen Aydi, Manuel De la Sen . Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications. AIMS Mathematics, 2022, 7(3): 3418-3439. doi: 10.3934/math.2022190
    [10] Muhammad Uzair Awan, Muhammad Aslam Noor, Tingsong Du, Khalida Inayat Noor . On $\mathscr{M}$-convex functions. AIMS Mathematics, 2020, 5(3): 2376-2387. doi: 10.3934/math.2020157
  • In this paper, it is our purpose to establish some new fractional inequalities of the Hermite–Hadamard type for the m-polynomial convex and harmonically convex functions. Our results involve the Caputo–Fabrizio and ζ-Riemann–Liouville fractional integral operators. They generalize, complement and extend existing results in the literature. By taking m2, we deduce loads of new and interesting inequalities. We expect that the thought laid out in this work will provoke advance examinations in this course.


    The sets T and SR{0} are called convex and harmonically convex, respectively if

    {ςq+(1ς)zTfor allq,zTandς[0,1];qzςq+(1ς)zSfor allq,zSandς[0,1].

    Whenever used, we shall always consider T as a convex set and S as a harmonically convex set. Let mN. Recall that a function φ:TR is said to be m-polynomial convex [31] on T if

    φ(ςq+(1ς)z)1mmϑ=1[1(1ς)ϑ]φ(q)+1mmϑ=1[1ςϑ]φ(z)

    for all q,zS and ς[0,1]. For this class of functions, Toplu et al. established the following double inequality of the Hermite–Hadamard type.

    Theorem 1 ([31]). Let φ:TR be an m-polynomial convex function. If ξ,δT with ξ<δ, and φ is Lebesgue integrable on [ξ,δ], then the following Hermite–Hadamard type inequality holds:

    21mm+2m1φ(ξ+δ2)1δξδξφ(r)drφ(ξ)+φ(δ)mmϑ=1ϑϑ+1. (1.1)

    The inequality (1.1) boils down to the classical Hermite–Hadamard inequality for convex functions if we take m=1. Recently, Awan et al. [2] introduced the notion of m-polynomial harmonically convex functions as follows: a real valued function φ:SR+:=[0,) is m-harmonically convex if

    φ(qzςq+(1ς)z)1mmϑ=1[1(1ς)ϑ]φ(q)+1mmϑ=1[1ςϑ]φ(z) (1.2)

    for all q,zS and ς[0,1]. In the same paper, the authors established the following Hermite–Hadamard type inequality for this class of functions:

    Theorem 2 ([2]). Let φ:SR+ be an m-polynomial harmonically convex function. If ξ,δS with 0<ξ<δ, and φ is Lebesgue integrable on [ξ,δ], then the following Hermite–Hadamard type inequality holds:

    21mm+2m1φ(2ξδξ+δ)ξδδξδξφ(r)r2drφ(ξ)+φ(δ)mmϑ=1ϑϑ+1.

    In the sequel, we will denote the sets of all m-polynomial convex and m-polynomial harmonically convex functions from A into B by XPm(A,B) and HXPm(A,B), respectively. The classical Hermite–Hadamard inequality has generated load of generalizations and extensions to other class of convexity. There are dozens of articles in this direction. We invite the interested reader to see the following articles [3,4,5,6,8,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,32,33,34] and the references cited therein.

    Now, recall that the left- and right-sided ζ-Riemann–Liouville fractional integral operators ζJϵξ+ and ζJϵδ of order ϵ>0, for a real valued continuous function φ(r), are defined as ([21]):

    ζJϵξ+φ(r)=1ζΓζ(ϵ)rξ(rς)ϵζ1φ(ς)dς,r>ξ,

    and

    ζJϵδφ(r)=1ζΓζ(ϵ)δr(ςr)ϵζ1φ(ς)dς,r<δ,

    where ζ>0, and Γζ is the ζ-gamma function given by

    Γζ(r):=0ςr1eςζζdς,Re(r)>0,

    with the properties Γζ(r+ζ)=rΓζ(r) and Γζ(ζ)=1. If ζ=1, we simply write

    1Jϵξ+φ=Jϵξ+φand1Jϵδφ=Jϵδφ.

    The beta function B is defined by

    B(u,v)=10ςu1(1ς)v1dςforRe(u)>0,Re(v)>0. (1.3)

    Another fractional integral operators of interest is the Caputo–Fabrizio operators [1]: let L2(ξ,δ) be the space of square integrable functions on the interval (ξ,δ) and

    H1(ξ,δ):={g|gL2(ξ,δ)andgL2(ξ,δ)}.

    If φH1(ξ,δ), ξ<δ and μ[0,1], then the left- and right-sided Caputo–Fabrizio fractional integral operators cfIμξ and cfIμδ are defined by

    cfIμξφ(s)=1μB(μ)φ(s)+μB(μ)sξφ(r)dr (1.4)

    and

    cfIμδφ(s)=1μB(μ)φ(s)+μB(μ)δsφ(r)dr, (1.5)

    where B:[0,1](0,) is a normalization function satisfying B(0)=B(1)=1.

    Using these fractional integral operators in (1.4) and (1.5), Gürbüz et al. established the following fractional version of the Hermite–Hadamard inequality:

    Theorem 3 ([7]). Let φ:TR be a convex function on T. If ξ,δT with ξ<δ, and φ is Lebesgue integrable on [ξ,δ], then the following double inequality holds:

    φ(ξ+δ2)B(μ)μ(δξ)[cfIμξφ(s)+cfIμδφ(s)2(1μ)B(μ)φ(s)]φ(ξ)+φ(δ)2,

    where μ[0,1], s[ξ,δ] and B(μ)>0 is a normalization function.

    Since the classes of convexity introduced here are new, much work have not been done in this sense. This work is geared towards further development around inequalities for these classes. In view of this, we aim to achieve the following objectives:

    1. To establish new Hermite–Hadamard type inequalities for the class of m-polynomial convex functions involving the Caputo–Fabrizio integral operators. Our first result in this direction generalizes and extends Theorem 3.

    2. To obtain inequalities of the Hermite–Hadamard type for functions that are m-polynomial harmonically convex functions via the ζ-Riemann–Liouville fractional integral operators. This, in turn, also complement and generalize some existing results in the literature.

    Inequalities of the Hermite–Hadamard type, for m-polynomial convex functions, are hereby presented. The results, presented herein, involve the Caputo–Fabrizio operators.

    Theorem 4. Let φ:TR be a Lebesgue integrable function on [ξ,δ] with ξ<δ and ξ,δT. If φXPm(T,R), then

    21mm+2m1φ(ξ+δ2)B(μ)μ(δξ)[cfIμξφ(s)+cfIμδφ(s)2(1μ)B(μ)φ(s)]φ(ξ)+φ(δ)mmϑ=1ϑϑ+1,

    where μ(0,1], s[ξ,δ] and B(μ)>0 is a normalization function.

    Proof. Given that φXPm(T,R), it follows from (1.1) that

    mm+2m1φ(ξ+δ2)2δξδξφ(r)dr=2δξ[sξφ(r)dr+δsφ(r)dr]. (2.1)

    Multiplying both sides of (2.1) by μ(δξ)2B(μ) gives:

    μ(δξ)2B(μ)mm+2m1φ(ξ+δ2)μB(μ)[sξφ(r)dr+δsφ(r)dr]. (2.2)

    By adding 2(1μ)B(μ)φ(s) to both sides of (2.2), we get:

    2(1μ)B(μ)φ(s)+μ(δξ)2B(μ)mm+2m1φ(ξ+δ2)2(1μ)B(μ)φ(s)+μB(μ)[sξφ(r)dr+δsφ(r)dr]=[(1μ)B(μ)φ(s)+μB(μ)sξφ(r)dr]+[(1μ)B(μ)φ(s)+μB(μ)δsφ(r)dr]=cfIμξφ(s)+cfIμδφ(s).

    This implies that

    2(1μ)B(μ)φ(s)+μ(δξ)2B(μ)mm+2m1φ(ξ+δ2)cfIμξφ(s)+cfIμδφ(s). (2.3)

    On the other hand, we also get from (1.1) the following inequality:

    2δξδξφ(r)drφ(ξ)+φ(δ)mmϑ=12ϑϑ+1. (2.4)

    If we multiply (2.4) by μ(δξ)2B(μ) and then add 2(1μ)B(μ)φ(s) to the resulting inequality, we obtain:

    cfIμξφ(s)+cfIμδφ(s)μ(δξ)B(μ)φ(ξ)+φ(δ)mmϑ=1ϑϑ+1+2(1μ)B(μ)φ(s). (2.5)

    Hence, the desired result is obtained by combining (2.3) and (2.5).

    Remark 1. By taking m=1, Theorem 4 becomes Theorem 3.

    Theorem 5. Let φ,υ:TR be two functions such that φυ is Lebesgue integrable function on [ξ,δ] with ξ<δ and ξ,δT. If φXPm1(S,R), υXPm2(T,R), then

    B(μ)μ(δξ)[cfIμξφ(s)υ(s)+cfIμδφ(s)υ(s)2(1μ)B(μ)φ(s)υ(s)]10[Δ1(ς)φ(ξ)υ(ξ)+Δ2(ς)φ(ξ)υ(δ)+Δ3(ς)φ(δ)υ(ξ)+Δ4(ς)φ(δ)υ(δ)]dς,

    where μ(0,1], s[ξ,δ] and B(μ)>0 is a normalization function, and

    Δ1(ς):=1m11m2m1ϑ=1[1(1ς)ϑ]m2ϑ=1[1(1ς)ϑ];Δ2(ς):=1m11m2m1ϑ=1[1(1ς)ϑ]m2ϑ=1[1ςϑ];Δ3(ς):=1m11m2m1ϑ=1[1ςϑ]m2ϑ=1[1(1ς)ϑ];Δ4(ς):=1m11m2m1ϑ=1[1ςϑ]m2ϑ=1[1ςϑ].

    Proof. Let φXPm1(T,R) and υXPm2(T,R). Then for ς[0,1], we have:

    φ(ςξ+(1ς)δ)1m1m1ϑ=1[1(1ς)ϑ]φ(ξ)+1m1m1ϑ=1[1ςϑ]φ(δ) (2.6)

    and

    υ(ςξ+(1ς)δ)1m1m1ϑ=1[1(1ς)ϑ]υ(ξ)+1m1m1ϑ=1[1ςϑ]υ(δ). (2.7)

    Multiplying (2.6) and (2.7) gives:

    φ(ςξ+(1ς)δ)υ(ςξ+(1ς)δ)1m11m2m1ϑ=1[1(1ς)ϑ]m2ϑ=1[1(1ς)ϑ]φ(ξ)υ(ξ)+1m11m2m1ϑ=1[1(1ς)ϑ]m2ϑ=1[1ςϑ]φ(ξ)υ(δ)+1m11m2m1ϑ=1[1ςϑ]m2ϑ=1[1(1ς)ϑ]φ(δ)υ(ξ)+1m11m2m1ϑ=1[1ςϑ]m2ϑ=1[1ςϑ]φ(δ)w(δ):=Δ1(ς)φ(ξ)υ(ξ)+Δ2(ς)φ(ξ)υ(δ)+Δ3(ς)φ(δ)υ(ξ)+Δ4(ς)φ(δ)υ(δ).

    This implies that

    φ(ςξ+(1ς)δ)υ(ςξ+(1ς)δ)Δ1(ς)φ(ξ)υ(ξ)+Δ2(ς)φ(ξ)υ(δ)+Δ3(ς)φ(δ)υ(ξ)+Δ4(ς)φ(δ)υ(δ). (2.8)

    Integrating both sides of (2.8) with respect to ς over [0,1] results to:

    2δξδξφ(r)υ(r)dr210[Δ1(ς)φ(ξ)υ(ξ)+Δ2(ς)φ(ξ)υ(δ)+Δ3(ς)φ(δ)υ(ξ)+Δ4(ς)φ(δ)υ(δ)]dς:=N(ξ,δ).

    That is,

    2δξ[sξφ(r)υ(r)dr+δsφ(r)υ(r)dr]N(ξ,δ). (2.9)

    Now, multiplying (2.9) by μ(δξ)2B(μ) and then adding 2(1μ)B(μ)φ(s)υ(s) to the result to obtain:

    μB(μ)[sξφ(r)υ(r)dr+δsφ(r)υ(r)dr]+2(1μ)B(μ)φ(s)υ(s)μ(δξ)2B(μ)N(ξ,δ)+2(1μ)B(μ)φ(s)υ(s).

    Hence,

    cfIμξφ(s)υ(s)+cfIμδφ(s)υ(s)μ(δξ)2B(μ)N(ξ,δ)+2(1μ)B(μ)φ(s)υ(s),

    from which we get the intended inequality.

    Remark 2. Set m1=m2=1 in Theorem 5. Then we recover [7,Theorem 3] .

    In this subsection, we present some new Hermite–Hadamard type results involving the ζ-Riemann–Liouville fractional integral operators.

    Theorem 6. Let φ:SR+ be a Lebesgue integrable function on [ξ,δ] with 0<ξ<δ and ξ,δS. If φHXPm(S,R+) and ζ,ϵ>0, then

    1m+2m1φ(2ξδξ+δ)Γζ(ϵ+ζ)m(ξδδξ)ϵζ[ζJϵ1δ+(φ˜φ)(1ξ)+ζJϵ1ξ(φ˜φ)(1δ)]φ(ξ)+φ(δ)m2mϑ=1[2ϵϵ+ζϑϵζB(ϵζ,ϑ+1)],

    where ˜φ(r)=1r and B is the beta function defined by (1.3).

    Proof. Given that φHXPm(S,R+), we get the following relation:

    φ(qz12q+12z)1mmϑ=1[112ϑ]φ(q)+1mmϑ=1[112ϑ]φ(z).

    This implies that for all q,zS:

    φ(2qzq+z)1mmϑ=1[112ϑ](φ(q)+φ(z)). (2.10)

    Now, let q=ξδςξ+(1ς)δ and z=ξδςδ+(1ς)ξ. Then (2.10) becomes:

    φ(2ξδξ+δ)1mmϑ=1(112ϑ){φ(ξδςξ+(1ς)δ)+φ(ξδςδ+(1ς)ξ)}. (2.11)

    Multiplying both sides of (2.11) by ςϵζ1 and integrating with respect to ς over [0,1], we get:

    10ςϵζ1φ(2ξδξ+δ)dς1mmϑ=1(112ϑ)10ςϵζ1{φ(ξδςξ+(1ς)δ)+φ(ξδςδ+(1ς)ξ)}dς=1mmϑ=1(112ϑ)[10ςϵζ1φ(ξδςξ+(1ς)δ)dς+10ςϵζ1φ(ξδςδ+(1ς)ξ)dς]=1mmϑ=1(112ϑ)[(ξδδξ)ϵζ1ξ1δ(1ξr)ϵζ1φ(1r)dr+(ξδδξ)ϵζ1ξ1δ(r1δ)ϵζ1φ(1r)dr]=ζΓζ(ϵ)mmϑ=1(112ϑ)(ξδδξ)ϵζ[1ζΓζ(ϵ)1ξ1δ(1ξr)ϵζ1φ(1r)dr+1ζΓζ(ϵ)1ξ1δ(r1δ)ϵζ1φ(1r)dr]=ζΓζ(ϵ)mmϑ=1(112ϑ)(ξδδξ)ϵζ[ζJϵ1δ+(φ˜φ)(1ξ)+ζJϵ1ξ(φ˜φ)(1δ)],

    where ˜φ(r)=1r. This implies that

    1m+2m1φ(2ξδξ+δ)Γζ(ϵ+ζ)m(ξδδξ)ϵζ[ζJϵ1δ+(φ˜φ)(1ξ)+ζJϵ1ξ(φ˜φ)(1δ)]. (2.12)

    Next, substituting q=ξ and z=δ in (1.2) gives

    φ(ξδςξ+(1ς)δ)1mmϑ=1[1(1ς)ϑ]φ(ξ)+1mmϑ=1[1ςϑ]φ(δ). (2.13)

    Reversing the role of ξ and δ in (2.13) produces:

    φ(ξδςδ+(1ς)ξ)1mmϑ=1[1(1ς)ϑ]φ(δ)+1mmϑ=1[1ςϑ]φ(ξ). (2.14)

    If we now add (2.13) and (2.15), multiply the resulting inequality by ςϵζ1 and integrate with respect to ς[0,1], then we obtain:

    10ςϵζ1{φ(ξδςξ+(1ς)δ)+φ(ξδςδ+(1ς)ξ)}dςφ(ξ)+φ(δ)mmϑ=110[2ςϵζ1ςϵζ1(1ς)ϑςϵζ+ϑ1]dςφ(ξ)+φ(δ)mmϑ=1[2ζϵζϵ+ζϑB(ϵζ,ϑ+1)]. (2.15)

    From (2.15), we get:

    Γζ(ϵ+ζ)m(ξδδξ)ϵζ[ζJϵ1δ+(φ˜φ)(1ξ)+ζJϵ1ξ(φ˜φ)(1δ)]φ(ξ)+φ(δ)m2mϑ=1[2ϵϵ+ζϑϵζB(ϵζ,ϑ+1)]. (2.16)

    Combining (2.12) and (2.16), we get the desired result.

    Remark 3. If we take ϵ=ζ=1, then Theorem 6 reduces to Theorem 2 . If, on the other hand, we let m=1, then we get from Theorem 6 the following corollary:

    Corollary 1. Let φ:SR+ be a Lebesgue integrable function on [ξ,δ] with ξ<δ and ξ,δS. If φ is harmonically convex and ζ,ϵ>0, then

    φ(2ξδξ+δ)Γζ(ϵ+ζ)2(ξδδξ)ϵζ[ζJϵ1δ+(φ˜φ)(1ξ)+ζJϵ1ξ(φ˜φ)(1δ)]φ(ξ)+φ(δ)2.

    Theorem 7. Let φ,υ:SR+ be two functions such that φυ is Lebesgue integrable function on [ξ,δ] with 0<ξ<δ and ξ,δS. If φHXPm1(S,R+), υHXPm2(S,R+) and ζ,ϵ>0, then

    (ξδδξ)ϵζ[ζJϵ1δ+(φυ˜φ)(1ξ)+ζJϵ1ξ(φυ˜φ)(1δ)]D(ξ,δ)ζΓζ(ϵ)10ςϵζ1[Δ1(ς)+Δ4(ς)]dς+F(ξ,δ)ζΓζ(ϵ)10ςϵζ1[Δ2(ς)+Δ3(ς)]dς,

    where D(ξ,δ):=φ(ξ)υ(ξ)+φ(δ)υ(δ), F(ξ,δ):=φ(ξ)υ(δ)+φ(δ)υ(ξ), ˜φ is as defined in Theorem 6, and Δj(ς), j=¯1,4, as defined in Theorem 5.

    Proof. Given that φHXPm1(S,R+) and υHXPm2(S,R+), we get:

    φ(ξδςξ+(1ς)δ)1m1m1ϑ=1[1(1ς)ϑ]φ(ξ)+1m1m1ϑ=1[1ςϑ]φ(δ)

    and

    υ(ξδςξ+(1ς)δ)1m1m1ϑ=1[1(1ς)ϑ]υ(ξ)+1m1m1ϑ=1[1ςϑ]υ(δ).

    This implies:

    φ(ξδςξ+(1ς)δ)υ(ξδςξ+(1ς)δ)1m11m2m1ϑ=1[1(1ς)ϑ]m2ϑ=1[1(1ς)ϑ]φ(ξ)υ(ξ)+1m11m2m1ϑ=1[1(1ς)ϑ]m2ϑ=1[1ςϑ]φ(ξ)υ(δ)+1m11m2m1ϑ=1[1ςϑ]m2ϑ=1[1(1ς)ϑ]φ(δ)υ(ξ)+1m11m2m1ϑ=1[1ςϑ]m2ϑ=1[1ςϑ]φ(δ)υ(δ):=Δ1(ς)φ(ξ)υ(ξ)+Δ2(ς)φ(ξ)υ(δ)+Δ3(ς)φ(δ)υ(ξ)+Δ4(ς)φ(δ)υ(δ).

    This gives:

    φ(ξδςξ+(1ς)δ)υ(ξδςξ+(1ς)δ)Δ1(ς)φ(ξ)υ(ξ)+Δ2(ς)φ(ξ)υ(δ)+Δ3(ς)φ(δ)υ(ξ)+Δ4(ς)φ(δ)υ(δ). (2.17)

    Similarly, we also have

    φ(ξδςδ+(1ς)ξ)υ(ξδςδ+(1ς)ξ)Δ4(ς)φ(ξ)υ(ξ)+Δ3(ς)φ(ξ)υ(δ)+Δ2(ς)φ(δ)υ(ξ)+Δ1(ς)φ(δ)υ(δ). (2.18)

    Adding (2.17) and (2.18), we get

    φ(ξδςξ+(1ς)δ)υ(ξδςξ+(1ς)δ)+φ(ξδςδ+(1ς)ξ)υ(ξδςδ+(1ς)ξ)(φ(ξ)υ(ξ)+φ(δ)υ(δ))[Δ1(ς)+Δ4(ς)]+(φ(ξ)υ(δ)+φ(δ)υ(ξ))[Δ2(ς)+Δ3(ς)]. (2.19)

    Now, multiplying both sides of (2.19) by ςϵζ1 and integrating with respect to ς over [0,1], gives:

    ζΓζ(ϵ)(ξδδξ)ϵζ[ζJϵ1δ+(φυ˜φ)(1ξ)+ζJϵ1ξ(φυ˜φ)(1δ)]=10ςϵζ1φ(ξδςξ+(1ς)δ)υ(ξδςξ+(1ς)δ)dς+10ςϵζ1φ(ξδςδ+(1ς)ξ)υ(ξδςδ+(1ς)ξ)dς(φ(ξ)υ(ξ)+φ(δ)υ(δ))10ςϵζ1[Δ1(ς)+Δ4(ς)]dς+(φ(ξ)υ(δ)+φ(δ)υ(ξ))10ςϵζ1[Δ2(ς)+Δ3(ς)]dς:=D(ξ,δ)10ςϵζ1[Δ1(ς)+Δ4(ς)]dς+F(ξ,δ)10ςϵζ1[Δ2(ς)+Δ3(ς)].

    Hence, this completes the proof.

    Corollary 2. Let φ,υ:SR+ be two functions such that φυ is Lebesgue integrable function on [ξ,δ] with 0<ξ<δ and ξ,δS. If φ and υ are harmonically convex and ζ,ϵ>0, then

    (ξδδξ)ϵζ[ζJϵ1δ+(φυ˜φ)(1ξ)+ζJϵ1ξ(φυ˜φ)(1δ)]D(ξ,δ)Γζ(ϵ)[1ϵ+2ϵ+2ζ2ϵ+ζ]+F(ξ,δ)Γζ(ϵ)[2ϵ+ζ2ϵ+2ζ].

    Proof. Let m1=m2=1. Then, Δ1(ς)=ς2, Δ2(ς)=Δ3(ς)=ςς2 and Δ4(ς)=12ς+ς2. The intended result follows by using Theorem 7.

    Theorem 8. Let φ,υ:SR+ be two functions such that φυ is Lebesgue integrable function on [ξ,δ] with 0<ξ<δ and ξ,δS. If φHXPm1(S,R+), υHXPm2(S,R+) and ζ,ϵ>0, then

    m1m2(m1+2m11)(m2+2m21)φ(2ξδξ+δ)υ(2ξδξ+δ)Γζ(ϵ+ζ)(ξδδξ)ϵζ[ζJϵ1δ+(φυ˜φ)(1ξ)+ζJϵ1ξ(φυ˜φ)(1δ)]+ϵζ10ςϵζ1{[Λm1(ς)˜Λm2(ς)+˜Λm1(ς)Λm2(ς)]D(ξ,δ)+[Λm1(ς)Λm2(ς)+˜Λm1(ς)˜Λm2(ς)]F(ξ,δ)}dς,

    where ˜φ is defined in Theorem 6, Λm(ς)=1mmϑ=1[1(1ς)ϑ] and ˜Λm(ς)=1mmϑ=1[1ςϑ].

    Proof. We start by noticing that:

    ˜Λm(12)=Λm(12):=Em:=m+2m1m.

    Now, let ς[0,1]. Hence, from (2.11), one gets:

    φ(2ξδξ+δ)Em1{φ(ξδςξ+(1ς)δ)+φ(ξδςδ+(1ς)ξ)}

    and

    υ(2ξδξ+δ)Em1{υ(ξδςξ+(1ς)δ)+υ(ξδςδ+(1ς)ξ)}.

    Now,

    φ(2ξδξ+δ)υ(2ξδξ+δ)Em1Em2[φ(ξδςξ+(1ς)δ)υ(ξδςξ+(1ς)δ)+φ(ξδςδ+(1ς)ξ)υ(ξδςδ+(1ς)ξ)]+Em1Em2[φ(ξδςξ+(1ς)δ)υ(ξδςδ+(1ς)ξ)+φ(ξδςδ+(1ς)ξ)υ(ξδςξ+(1ς)δ)]Em1Em2[φ(ξδςξ+(1ς)δ)υ(ξδςξ+(1ς)δ)+φ(ξδςδ+(1ς)ξ)υ(ξδςδ+(1ς)ξ)]+Em1Em2{[Λm1(ς)φ(ξ)+˜Λm1(ς)φ(δ)][Λm2(ς)υ(δ)+˜Λm2(ς)υ(ξ)]+[Λm1(ς)φ(δ)+˜Λm1(ς)φ(ξ)][Λm2(ς)υ(ξ)+˜Λm2(ς)υ(δ)]}=Em1Em2[φ(ξδςξ+(1ς)δ)υ(ξδςξ+(1ς)δ)+φ(ξδςδ+(1ς)ξ)υ(ξδςδ+(1ς)ξ)]+Em1Em2{[Λm1(ς)˜Λm2(ς)+˜Λm1(ς)Λm2(ς)][φ(ξ)υ(ξ)+φ(δ)υ(δ)]+[Λm1(ς)Λm2(ς)+˜Λm1(ς)˜Λm2(ς)][φ(ξ)υ(δ)+φ(δ)υ(ξ)]}=Em1Em2[φ(ξδςξ+(1ς)δ)υ(ξδςξ+(1ς)δ)+φ(ξδςδ+(1ς)ξ)υ(ξδςδ+(1ς)ξ)]+Em1Em2{[Λm1(ς)˜Λm2(ς)+˜Λm1(ς)Λm2(ς)]D(ξ,δ)+[Λm1(ς)Λm2(ς)+˜Λm1(ς)˜Λm2(ς)]F(ξ,δ)}.

    This implies that

    φ(2ξδξ+δ)υ(2ξδξ+δ)Em1Em2[φ(ξδςξ+(1ς)δ)υ(ξδςξ+(1ς)δ)+φ(ξδςδ+(1ς)ξ)υ(ξδςδ+(1ς)ξ)]+Em1Em2{[Λm1(ς)˜Λm2(ς)+˜Λm1(ς)Λm2(ς)]D(ξ,δ)+[Λm1(ς)Λm2(ς)+˜Λm1(ς)˜Λm2(ς)]F(ξ,δ)}. (2.20)

    Multiplying both sides of (2.20) by ςϵζ1 and integrating with respect to ς over [0,1] to get:

    ζϵφ(2ξδξ+δ)υ(2ξδξ+δ)=10ςϵζ1φ(2ξδξ+δ)υ(2ξδξ+δ)dςEm1Em210ςϵζ1[φ(ξδςξ+(1ς)δ)υ(ξδςξ+(1ς)δ)+φ(ξδςδ+(1ς)ξ)υ(ξδςδ+(1ς)ξ)]dς+Em1Em210ςϵζ1{[Λm1(ς)˜Λm2(ς)+˜Λm1(ς)Λm2(ς)]D(ξ,δ)+[Λm1(ς)Λm2(ς)+˜Λm1(ς)˜Λm2(ς)]F(ξ,δ)}dς=Em1Em2{ζΓζ(ϵ)(ξδδξ)ϵζ[ζJϵ1δ+(φυ˜φ)(1ξ)+ζJϵ1ξ(φυ˜φ)(1δ)]}+Em1Em210ςϵζ1{[Λm1(ς)˜Λm2(ς)+˜Λm1(ς)Λm2(ς)]D(ξ,δ)+[Λm1(ς)Λm2(ς)+˜Λm1(ς)˜Λm2(ς)]F(ξ,δ)}dς.

    The required result follows.

    Corollary 3. Let φ,υ:SR+ be two functions such that φυ is Lebesgue integrable function on [ξ,δ] with 0<ξ<δ and ξ,δS. If φ and υ are harmonically convex and ζ,ϵ>0, then

    φ(2ξδξ+δ)υ(2ξδξ+δ)Γζ(ϵ+ζ)4(ξδδξ)ϵζ[ζJϵ1δ+(φυ˜φ)(1ξ)+ζJϵ1ξ(φυ˜φ)(1δ)]+12[ϵϵ+ζϵϵ+2ζ]D(ξ,δ)+14[1+2ϵϵ+2ζ2ϵϵ+ζ]F(ξ,δ).

    Proof. Let m1=m2=1. Then, Λm1(ς)=Λm2(ς)=ς and ˜Λm1(ς)=˜Λm2(ς)=1ς. The intended result follows by using Theorem 8.

    Utilizing the Caputo–Fabrizio and generalized Riemann–Liouville fractional integral operators, we proved some inequalities of the Hermite–Hadamard kinds for m-polynomial convex and harmonically convex functions. Our results generalize, extend and complement results in [7,9,31].

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11-27. doi: 10.1016/S0034-4877(17)30059-9
    [2] M. U. Awan, N. Akhtar, S. Iftikhar, M. A. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
    [3] Y. M. Chu, M. Adil Khan, T. U. Khan, T. Ali, Generalizations of Hermite-Hadamard type inequalities for MT-convex functions, J. Nonlinear Sci. Appl., 9 (2016), 4305-4316. doi: 10.22436/jnsa.009.06.72
    [4] M. Adil Khan, Y. M. Chu, T. U. Khan, J. Khan, Some new inequalities of Hermite-Hadamard type for s-convex functions with applications, Open Math., 15 (2017), 1414-1430. doi: 10.1515/math-2017-0121
    [5] M. R. Delavar, M. De La Sen, Some generalizations of Hermite-Hadamard type inequalities, SpringerPlus, 5 (2016), 1-9.
    [6] A. Guessab, G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Theory, 115 (2002), 260-288. doi: 10.1006/jath.2001.3658
    [7] M. Gürbüz, A. O. Akdemir, S. Rashid, E. Set, Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities, J. Inequal. Appl., 2020 (2020), 1-10. doi: 10.1186/s13660-019-2265-6
    [8] İ. İşcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935-942.
    [9] İ. İşcan, S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237-244.
    [10] A. Iqbal, M. Adil Khan, S. Ullah, Y. M. Chu, Some new Hermite-Hadamard type inequalities associated with conformable fractional integrals and their applications, J. Funct. Space., 2020 (2020), 1-18.
    [11] A. Iqbal, M. Adil Khan, N. Mohammad, E. R. Nwaeze, Revisiting the Hermite-Hadamard fractional integral inequality via a Green function, AIMS Math., 5 (2020), 6087-6107. doi: 10.3934/math.2020391
    [12] A. Iqbal, M. Adil Khan, M. Suleman, Y. M. Chu, The right Riemann-Liouville fractional Hermite-Hadamard type inequalities derived from Green's function, AIP Adv., 10 (2020), 1-10.
    [13] M. Adil Khan, Y. Khurshid, T. Ali, Hermite-Hadamard Inequality for fractional integrals via η-convex functions, Acta Math. Univ. Comenianae., 86 (2017), 153-164.
    [14] M. Adil Khan, T. Ali, T. U. Khan, Hermite-Hadamard Type Inequalities with Applications, Fasciculi Mathematici, 59 (2017), 57-74. doi: 10.1515/fascmath-2017-0017
    [15] M. Adil Khan, N. Mohammad, E. R. Nwaeze, Y. M. Chu, Quantum Hermite-Hadamard inequality by means of a green function, Adv. Diff. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
    [16] T. U. Khan, M. Adil Khan, Hermite-Hadamard inequality for new generalized conformable fractional operators, AIMS Math., 6 (2020), 23-38.
    [17] P. O. Mohammed, I. Brevik, A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry, 12 (2020), 1-11.
    [18] P. O. Mohammed, M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020), 1-15.
    [19] P. O. Mohammed, New integral inequalities for preinvex functions via generalized beta function, J. Interdiscip. Math., 22 (2019), 539-549. doi: 10.1080/09720502.2019.1643552
    [20] A. Fernandez, P. O. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Meth. Appl. Sci., (2020), 1-18.
    [21] S. Mubeen, G. M. Habibullah, k-Fractional Integrals and Aplication, Int. J. Contemp. Math. Sci., 7 (2012), 89-94.
    [22] E. R. Nwaeze, Inequalities of the Hermite-Hadamard type for Quasi-convex functions via the (k,s)-Riemann-Liouville fractional integrals, Fractional Differ. Calc., 8 (2018), 327-336.
    [23] E. R. Nwaeze, D. F. M. Torres, Novel results on the Hermite-Hadamard kind inequality for η-convex functions by means of the (k,r)-fractional integral operators. In: S. S. Dragomir, P. Agarwal, M. Jleli, B, Samet (eds.) Advances in Mathematical Inequalities and Applications (AMIA), Trends in Mathematics, Birkhäuser, Singapore, 2018,311-321.
    [24] E. R. Nwaeze, M. Adil Khan, Y. M. Chu, Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex interval-valued functions, Adv. Diff. Equ., 2020 (2020), 1-17. doi: 10.1186/s13662-019-2438-0
    [25] G. Rahman, K. S. Nisar, S. Rashid, T. Abdeljawad, Certain Gruss-type inequalities via tempered fractional integrals concerning another function, J. Inequal. Appl., 2020 (2020), 1-18. doi: 10.1186/s13660-019-2265-6
    [26] J. Sun, B. Y. Xi, F. Qi, Some new inequalities of the Hermite-Hadamard type for extended s-convex functions, J. Comput. Anal. Appl., 26 (2019), 985-996.
    [27] S. Salahshour, A. Ahmadian, C. S. Chan, Successive approximation method for Caputo q-fractional IVPs, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 153-158. doi: 10.1016/j.cnsns.2014.12.014
    [28] M. R. B. Shahriyar, F. Ismail, S. Aghabeigi, A. Ahmadian, S. Salahshour, An eigenvalue-eigenvector method for solving a system of fractional differential equations with uncertainty, Math. Probl. Eng., 2013 (2013), 1-10.
    [29] A. Ahmadian, S. Salahshour, M. Ali-Akbari, F. Ismail, D. Baleanu, A novel approach to approximate fractional derivative with uncertain conditions, Chaos, Solitons Fractals, 104 (2017), 68-76. doi: 10.1016/j.chaos.2017.07.026
    [30] A. Ahmadian, C. S. Chan, S. Salahshour, V. Vembarasan, FTFBE: A numerical approximation for fuzzy time-fractional Bloch equation, IEEE international conference on fuzzy systems, 2014,418-423.
    [31] T. Toplu, M. Kadakal, İ. İşcan, On n-Polynomial convexity and some related inequalities, AIMS Math., 5 (2020), 1304-1318.
    [32] S. S. Zhou, S. Rashid, M. A. Noor, F. Safdar, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, AIMS Math., 5 (2020), 6874-6901. doi: 10.3934/math.2020441
    [33] S. S. Zhou, S. Rashid, F. Jarad, H. Kalsoom, New estimates considering the generalized proportional Hadamard fractional integral operators, Adv. Diff. Equ., 2020 (2020), 1-15. doi: 10.1186/s13662-019-2438-0
    [34] S. S. Zhou, S. Rashid, S. S. Dragomir, M. A. Latif, Some New inequalities involving k-fractional integral for certain classes of functions and their applications, J. Funct. Space., 2020 (2020), 1-14.
  • This article has been cited by:

    1. Muhammad Aslam, Muhammad Farman, Hijaz Ahmad, Tuan Nguyen Gia, Aqeel Ahmad, Sameh Askar, Fractal fractional derivative on chemistry kinetics hires problem, 2021, 7, 2473-6988, 1155, 10.3934/math.2022068
    2. Jiraporn Reunsumrit, Miguel J. Vivas-Cortez, Muhammad Aamir Ali, Thanin Sitthiwirattham, On Generalization of Different Integral Inequalities for Harmonically Convex Functions, 2022, 14, 2073-8994, 302, 10.3390/sym14020302
    3. Artion Kashuri, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Tariq, Ahmed A. Hamoud, Homan Emadifar, Faraidun K. Hamasalh, Nedal M. Mohammed, Masoumeh Khademi, Guotao Wang, Integral Inequalities of Integer and Fractional Orders for n –Polynomial Harmonically t g s –Convex Functions and Their Applications, 2022, 2022, 2314-4785, 1, 10.1155/2022/2493944
    4. Muhammad Aslam, Muhammad Farman, Hijaz Ahmad, Tuan Nguyen Gia, Aqeel Ahmad, Sameh Askar, Fractal fractional derivative on chemistry kinetics hires problem, 2021, 7, 2473-6988, 1155, 10.3934/math2022068
    5. Muhammad Tariq, Omar Mutab Alsalami, Asif Ali Shaikh, Kamsing Nonlaopon, Sotiris K. Ntouyas, New Fractional Integral Inequalities Pertaining to Caputo–Fabrizio and Generalized Riemann–Liouville Fractional Integral Operators, 2022, 11, 2075-1680, 618, 10.3390/axioms11110618
    6. Aqeel Ahmad Mughal, Hassan Almusawa, Absar Ul Haq, Imran Abbas Baloch, Ahmet Ocak Akdemir, Properties and Bounds of Jensen-Type Functionals via Harmonic Convex Functions, 2021, 2021, 2314-4785, 1, 10.1155/2021/5561611
    7. Muhammad Tariq, Soubhagya Kumar Sahoo, Jamshed Nasir, Hassen Aydi, Habes Alsamir, Some Ostrowski type inequalities via n-polynomial exponentially s-convex functions and their applications, 2021, 6, 2473-6988, 13272, 10.3934/math.2021768
    8. LEI XU, SHUHONG YU, TINGSONG DU, PROPERTIES AND INTEGRAL INEQUALITIES ARISING FROM THE GENERALIZED n-POLYNOMIAL CONVEXITY IN THE FRAME OF FRACTAL SPACE, 2022, 30, 0218-348X, 10.1142/S0218348X22500840
    9. Attazar Bakht, Matloob Anwar, Hermite-Hadamard and Ostrowski type inequalities via α-exponential type convex functions with applications, 2024, 9, 2473-6988, 9519, 10.3934/math.2024465
    10. Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon, Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator, 2023, 8, 2473-6988, 25572, 10.3934/math.20231306
    11. Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Some New Fractional Hadamard and Pachpatte-Type Inequalities with Applications via Generalized Preinvexity, 2023, 15, 2073-8994, 1033, 10.3390/sym15051033
    12. Attazar Bakht, Matloob Anwar, Ostrowski and Hermite-Hadamard type inequalities via (αs) exponential type convex functions with applications, 2024, 9, 2473-6988, 28130, 10.3934/math.20241364
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3467) PDF downloads(323) Cited by(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog