Since the supposed Hermite-Hadamard inequality for a convex function was discussed, its expansions, refinements, and variations, which are called Hermite-Hadamard type inequalities, have been widely explored. The main objective of this article is to acquire new Hermite-Hadamard type inequalities employing the Riemann-Liouville fractional operator for functions whose third derivatives of absolute values are convex and quasi-convex in nature. Some special cases of the newly presented results are discussed as well. As applications, several estimates concerning Bessel functions and special means of real numbers are illustrated.
Citation: Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Hassen Aydi, Manuel De la Sen. Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications[J]. AIMS Mathematics, 2022, 7(3): 3418-3439. doi: 10.3934/math.2022190
[1] | Sevda Sezer, Zeynep Eken . The Hermite-Hadamard type inequalities for quasi $ p $-convex functions. AIMS Mathematics, 2023, 8(5): 10435-10452. doi: 10.3934/math.2023529 |
[2] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[3] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[4] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
[5] | Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li . On Hermite-Hadamard type inequalities for $ n $-polynomial convex stochastic processes. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371 |
[6] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[7] | Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989 |
[8] | Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258 |
[9] | Tareq Saeed, Muhammad Adil Khan, Hidayat Ullah . Refinements of Jensen's inequality and applications. AIMS Mathematics, 2022, 7(4): 5328-5346. doi: 10.3934/math.2022297 |
[10] | Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043 |
Since the supposed Hermite-Hadamard inequality for a convex function was discussed, its expansions, refinements, and variations, which are called Hermite-Hadamard type inequalities, have been widely explored. The main objective of this article is to acquire new Hermite-Hadamard type inequalities employing the Riemann-Liouville fractional operator for functions whose third derivatives of absolute values are convex and quasi-convex in nature. Some special cases of the newly presented results are discussed as well. As applications, several estimates concerning Bessel functions and special means of real numbers are illustrated.
The idea of convexity is all around recognized in the theory of inequality, which is widely used in mathematical analysis, probability theory, operations research, finance, decision making, and numerical analysis. They are not only strictly related to continuity and differentiability but also play significant roles in inequalities. The study of integral inequality is an interesting area for research in mathematical analysis [1,2]. The fundamental integral inequalities can be instrumental in cultivating the subjective properties of convexity. The existence of massive literature surrounding integral inequalities for convex functions [3,4,5,6,7] depicts the importance of this topic. The most beautiful fact about convex function is that, it has a very elegant representation based on an inequality presented when the functional value of a linear combination of two points in its domain does not exceed the linear combination of the functional values at those two points.
A few researchers have studied the concept of convex functions in different directions with the help of some innovative ideas in the field of mathematical analysis, for example (see [8,9,10]). In recent times, many generalization have been introduced in the framework of convexity such as s-convex function [11], quasi-convex function [12], strongly-convex function [13], m-convex function [14], and (α,m)-convex function [15].
Now, we recall the notion of the convexity.
Definition 1.1. A mapping Φ:[σ1,σ2]⊂ℜ→ℜ is said to be convex, if
Φ(μx+(1−μ)y)≤μΦ(u)+(1−μ)Φ(y) | (1.1) |
holds for all x,y∈[σ1,σ2], and μ∈[0,1].
Now we recall the basic definition, so is said to be quasi-convex function.
Definition 1.2. [12] A mapping Φ:[σ1,σ2]⊂ℜ→ℜ is called to be quasi-convex on [σ1,σ2], if
Φ(μx+(1−μ)y)≤max{Φ(x),Φ(y)} | (1.2) |
holds for any x,y∈[σ1,σ2], μ∈[0,1].
It is essential to note that, any convexity is a quasi-convexity but the reverse is not true in general case. In the following example, we describe the reverse case:
Example 1.1. [16] A mapping Φ:[−2,2]→ℜ, defined by
Φ(u)={1 for u∈[−2,−1],u2 for u ∈(−1,2], |
is not convex on interval [−2,2] but it is easy to note that the function is quasi-convex on [−2,2].
It is noted that Φ is quasi-convex if and only if all the level sets of Φ, are intervals (convex sets of the line).
It's a fact that the convexity theory may be the most key and significant theory in the speculation of mathematical inequalities, it has many applications in pure and applied mathematics, statistics, economics, and many more. Lately, the theories, expansions, varieties, and refinements for convexity have attracted the attention of several researchers. Numerous fundamental inequalities so far are created by various analysts in due time, the Hermite-Hadamard integral inequality plays an exceptionally indispensable in the field of pure and applied Mathematics.
The Hermite-Hadamard (H-H) inequality emphasizes that, if a mapping Φ:J⊂ℜ→ℜ is convex in J for σ1,σ2∈J and σ1<σ2, then
Φ(σ1+σ22)≤1σ2−σ1∫σ2σ1Φ(μ)dμ≤Φ(σ1)+Φ(σ2)2. | (1.3) |
Fractional calculus owes its starting point to whether or not the importance of a derivative to an integer order could be generalized to a fractional order which is not an integer. Following this unique conversation between L'Hopital and Leibniz, the concept of fractional calculus grabbed the eye of some extraordinary researchers like Euler, Laplace, Fourier, Lacroix, Abel, Riemann, and Liouville. Over time, fractional operators have been differentiated with their singularity, locality and having general forms with the improvements made in their kernel structures. In this sense, based on the basic concepts of fractional analysis, Riemann-Liouville (R-L) and Caputo operators, various new trends have been successful. Fractional integral inequalities are marvelous tools for building up the qualitative and quantitative properties of convex functions. There has been a ceaseless development of intrigue in such a region of research so as to address the issues of different utilizations of these variants. Interested readers can refer to [9,19,23,26].
Suppose Φ∈L[σ1,σ2]. Then the Riemann-Liouville (R-L) fractional integrals of order ω>0 with σ1≥0 are defined as follows:
Jωσ+1Φ(z)= 1Γ(ω)∫zσ1(z−μ)ω−1 Φ(μ) dμ , z>σ1 |
and
Jωσ−2Φ(z)= 1Γ(ω)∫σ2z(μ−z)ω−1 Φ(μ) dμ z<σ2. |
In [25], Sarikaya et al. described the following fractional integral version of Hermite-Hadamard inequality.
Theorem 1.1. Suppose a mapping Φ:[σ1,σ2]→ℜ is positive with 0≤σ1<σ2 and Φ∈L[σ1,σ2]. If the convexity of Φ on [σ1,σ2], then the following inequality
Φ(σ1+σ22)≤Γ(ω+1)2(σ2−σ1)ω[Jωσ+1Φ(σ2)+Jωσ−2Φ(σ1)]≤Φ(σ1)+Φ(σ2)2, |
satisfies with ω>0.
Owing to the aforementioned trend and inspired by the ongoing activities, the rest of this paper is organized as follows: First, in Section 1, we discuss some preliminary concepts about convexity and theory of inequality. Next, Sections 2 and 3 deal with our main results, where we have presented a new fractional identity and employing this new identity, we have derived several results for convexity and quasi convexity. In Sections 4 and 5, we present some applications of our established result in the form of special means and modified Bessel functions. Finally, in Section 6, we present the conclusion of the paper.
In the sense of above indices, we generalize the results proved in [17] to develop some new modifications Hermite-Hadamard (H–H) type inequalities for thrice differentiable convexity and quasi-convexity. Throughout the article we assume that ω>0.
In order to establish our main results, firstly we need to prove the following equality.
Lemma 2.1. Suppose a mapping Φ:I⊆ℜ→ℜ is thrice differentiable on Io (the interior of I) with σ2>σ1 and Φ′′′∈L[σ1,σ2], then the following equality for fractional integral satisfies:
Φ(σ1+σ22)+(σ2−σ1)24(ω+1)(ω+2)Φ′′(σ1+σ22)−2ωΓ(ω+3)2(ω+1)(ω+2)(σ2−σ1)ω{ Jω(σ1+σ22)− Φ(σ1) + Jω(σ1+σ22)+ Φ(σ2)}= (σ2−σ1)316(ω+1)(ω+2){ ∫10μω+2Φ′′′(μσ1+σ22+(1−μ)σ1)dμ − ∫10(1−μ)ω+2Φ′′′(μσ2+(1−μ)σ1+σ22)dμ}. | (2.1) |
Proof. It is easy to write that
(σ2−σ1)316(ω+1)(ω+2){ ∫10μω+2Φ′′′(μσ1+σ22+(1−μ)σ1)dμ − ∫10(1−μ)ω+2Φ′′′(μσ2+(1−μ)σ1+σ22)dμ}=(σ2−σ1)316(ω+1)(ω+2){I1−I2}. | (2.2) |
Where
I1=∫10μω+2Φ′′′(μσ1+σ22+(1−μ)σ1)dμ. |
Using integrating by parts
I1=μω+2Φ′′(μσ1+σ22+(1−μ)σ1)σ2−σ12|10 − ∫10Φ′′(μσ1+σ22+(1−μ)σ1)σ2−σ12(ω+2)μω+1dμ=2σ2−σ1 Φ′′(σ1+σ22)− 2(ω+2)σ2−σ1∫10μω+1 Φ′′(μσ1+σ22+(1−μ)σ1)dμ= 2σ2−σ1 Φ′′(σ1+σ22)− 2(ω+2)σ2−σ1{2σ2−σ1 Φ′(σ1+σ22)−4(ω+1)(σ2−σ1)2Φ(σ1+σ22)+ 2ω+2(ω+2)(σ2−σ1)ω+2Jω(σ1+σ22)− Φ(σ1)}= 2σ2−σ1 Φ′′(σ1+σ22)− 4(ω+2)(σ2−σ1)2Φ′(σ1+σ22)+8(ω+1)(ω+2)(σ2−σ1)3Φ(σ1+σ22)− 2ω+3Γ(ω+3)(σ2−σ1)ω+3Jω(σ1+σ22)− Φ(σ1) |
and similarly, we can get
I2=∫10(1−μ)ω+2Φ′′′(μσ2+(1−μ)σ1+σ22)dμ =− 2σ2−σ1 Φ′′(σ1+σ22)− 4(ω+2)(σ2−σ1)2Φ′(σ1+σ22) −8(ω+1)(ω+2)(σ2−σ1)3Φ(σ1+σ22) + 2ω+3Γ(ω+3)(σ2−σ1)ω+3Jω(σ1+σ22)+ Φ(σ2). |
By using the value of I1 and I2 in (2.2), we can get (2.1).
This completes the proof.
Remark 2.1. If we set ω=1, in Lemma 2.1, then we get Lemma 2.1 in [21].
Theorem 2.1. Suppose a mapping Φ:I⊆ℜ→ℜ is thrice differentiable on Io (the interior of I) with σ2>σ1 and Φ′′′∈L[σ1,σ2] such that |Φ′′′| is convex function on [σ1,σ2], then the following inequality satisfies:
|Φ(σ1+σ22)+(σ2−σ1)24(ω+1)(ω+2)Φ′′(σ1+σ22)−2ωΓ(ω+3)2(ω+1)(ω+2)(σ2−σ1)ω{ Jω(σ1+σ22)− Φ(σ1) + Jω(σ1+σ22)+ Φ(σ2)}|≤(σ2−σ1)316(ω+1)(ω+2)[|Φ′′′(σ1)|1(ω+3)(ω+4)+|Φ′′′(σ1+σ22)|2(ω+4)+|Φ′′′(σ2)|1(ω+3)(ω+4)]. | (2.3) |
Proof. From (2.1), with the convexity of |Φ′′′|, we obtain
|Φ(σ1+σ22)+(σ2−σ1)24(ω+1)(ω+2)Φ′′(σ1+σ22)−2ωΓ(ω+3)2(ω+1)(ω+2)(σ2−σ1)ω{ Jω(σ1+σ22)− Φ(σ1) + Jω(σ1+σ22)+ Φ(σ2)}|≤(σ2−σ1)316(ω+1)(ω+2)×{ ∫10μω+2|Φ′′′(μσ1+σ22+(1−μ)σ1)|dμ + ∫10(1−μ)ω+2|Φ′′′(μσ2+(1−μ)σ1+σ22)|dμ}≤(σ2−σ1)316(ω+1)(ω+2){ ∫10μω+2{μ|Φ′′′(σ1+σ22)|+(1−μ)|Φ′′′(σ1)|}dμ + ∫10(1−μ)ω+2{μ|Φ′′′(σ2)|+(1−μ)|Φ′′′(σ1+σ22)|}dμ}≤(σ2−σ1)316(ω+1)(ω+2)[|Φ′′′(σ1)|1(ω+3)(ω+4)+|Φ′′′(σ1+σ22)|2(ω+4)+|Φ′′′(σ2)|1(ω+3)(ω+4)]. |
This completes the proof.
Corollary 2.1. Under the same suppositions as defined in Theorem 2.1, if we choose ω=1, we get
|Φ(σ1+σ22)+(σ2−σ1)224Φ′′(σ1+σ22)−1σ2−σ1∫σ2σ1Φ(u)du|≤(σ2−σ1)396{|Φ′′′(σ1)|20+25|Φ′′′(σ1+σ22)|+|Φ′′′(σ2)|20}. |
Theorem 2.2. Suppose a mapping Φ:I⊆ℜ→ℜ is thrice differentiable on Io (the interior of I) with σ2>σ1 and Φ′′′∈L[σ1,σ2] such that |Φ′′′|r is convex function on [σ1,σ2] for r>1, then the following inequality satisfies:
|Φ(σ1+σ22)+(σ2−σ1)24(ω+1)(ω+2)Φ′′(σ1+σ22)−2ωΓ(ω+3)2(ω+1)(ω+2)(σ2−σ1)ω{ Jω(σ1+σ22)− Φ(σ1) + Jω(σ1+σ22)+ Φ(σ2)}|≤(σ2−σ1)316(ω+1)(ω+2)(1(ω+2)p+1)1p×{(12|Φ′′′(σ1+σ22)|r+12|Φ′′′(σ1)|r)1r+(12|Φ′′′(σ2)|r+12|Φ′′′(σ1+σ22)|r)1r}, | (2.4) |
where p−1=1−r−1.
Proof. From (2.1), with the convexity of |Φ′′′|r and the well-known Hölder's Rogers integral inequality, we obtain
|Φ(σ1+σ22)+(σ2−σ1)24(ω+1)(ω+2)Φ′′(σ1+σ22)−2ωΓ(ω+3)2(ω+1)(ω+2)(σ2−σ1)ω{ Jω(σ1+σ22)− Φ(σ1) + Jω(σ1+σ22)+ Φ(σ2)}|≤(σ2−σ1)316(ω+1)(ω+2)×{ ∫10μω+2|Φ′′′(μσ1+σ22+(1−μ)σ1)|dμ + ∫10(1−μ)ω+2|Φ′′′(μσ2+(1−μ)σ1+σ22)|dμ}≤(σ2−σ1)316(ω+1)(ω+2)×{ (∫10μ(ω+2)pdμ)1p(∫10|Φ′′′(μσ1+σ22+(1−μ)σ1)|rdμ)1r + (∫10(1−μ)(ω+2)pdμ)1p(∫10|Φ′′′(μσ2+(1−μ)σ1+σ22)|rdμ)1r}≤(σ2−σ1)316(ω+1)(ω+2)×{ (∫10μ(ω+2)pdμ)1p(∫10{μ|Φ′′′(σ1+σ22)|r+(1−μ)|Φ′′′(σ1)|r}dμ)1r+ (∫10(1−μ)(ω+2)pdμ)1p(∫10{μ|Φ′′′(σ2)|r+(1−μ)|Φ′′′(σ1+σ22)|r}dμ)1r}≤(σ2−σ1)316(ω+1)(ω+2)(1(ω+2)p+1)1p×{(12|Φ′′′(σ1+σ22)|r+12|Φ′′′(σ1)|r)1r+(12|Φ′′′(σ2)|r+12|Φ′′′(σ1+σ22)|r)1r}. |
This completes the proof.
Corollary 2.2. Under the same supposition as defined in Theorem 2.2, if we choose ω=1, we get
|Φ(σ1+σ22)+(σ2−σ1)224Φ′′(σ1+σ22)−1σ2−σ1∫σ2σ1Φ(u)du|≤(σ2−σ1)396(13p+1)1p×[(12|Φ′′′(σ1+σ22)|r+12|Φ′′′(σ1)|r)1r+(12|Φ′′′(σ2)|r+12|Φ′′′(σ1+σ22)|r)1r]. |
Theorem 2.3. Suppose a mapping Φ:I⊆ℜ→ℜ is thrice differentiable on Io (the interior of I) with σ2>σ1 and Φ′′′∈L[σ1,σ2] such that |Φ′′′|r is convex function on [σ1,σ2] for r≥1, then the following inequality satisfies:
|Φ(σ1+σ22)+(σ2−σ1)24(ω+1)(ω+2)Φ′′(σ1+σ22)−2ωΓ(ω+3)2(ω+1)(ω+2)(σ2−σ1)ω{ Jω(σ1+σ22)− Φ(σ1) + Jω(σ1+σ22)+ Φ(σ2)}|≤(σ2−σ1)316(ω+1)(ω+2)(1ω+3)1−1r×[(1ω+4|Φ′′′(σ1+σ22)|r+1(ω+3)(ω+4)|Φ′′′(σ1)|r)1r+(1(ω+3)(ω+4)|Φ′′′(σ2)|r+1ω+4|Φ′′′(σ1+σ22)|r)1r], | (2.5) |
where p−1=1−r−1.
Proof. From (2.1), with the convexity of |Φ′′′|r and the well-known power mean integral inequality, we obtain
|Φ(σ1+σ22)+(σ2−σ1)24(ω+1)(ω+2)Φ′′(σ1+σ22)−2ωΓ(ω+3)2(ω+1)(ω+2)(σ2−σ1)ω{ Jω(σ1+σ22)− Φ(σ1) + Jω(σ1+σ22)+ Φ(σ2)}|≤(σ2−σ1)316(ω+1)(ω+2)[ ∫10μω+2|Φ′′′(μσ1+σ22+(1−μ)σ1)|dμ + ∫10(1−μ)ω+2|Φ′′′(μσ2+(1−μ)σ1+σ22)|dμ]≤(σ2−σ1)316(ω+1)(ω+2)[ (∫10μω+2dμ)1−1r(∫10μω+2|Φ′′′(μσ1+σ22+(1−μ)σ1)|rdμ)1r+ (∫10(1−μ)ω+2dμ)1−1r(∫10(1−μ)ω+2|Φ′′′(μσ2+(1−μ)σ1+σ22)|rdμ)1r]≤(σ2−σ1)316(ω+1)(ω+2)[ (∫10μω+2dμ)1−1r×(∫10μω+2{μ|Φ′′′(σ1+σ22)|r+(1−μ)|Φ′′′(σ1)|r}dμ)1r+ (∫10(1−μ)ω+2dμ)1−1r×(∫10(1−μ)ω+2{μ|Φ′′′(σ2)|r+(1−μ)|Φ′′′(σ1+σ22)|r}dμ)1r]≤(σ2−σ1)316(ω+1)(ω+2)(1ω+3)1−1r×[(1ω+4|Φ′′′(σ1+σ22)|r+1(ω+3)(ω+4)|Φ′′′(σ1)|r)1r+(1(ω+3)(ω+4)|Φ′′′(σ2)|r+1ω+4|Φ′′′(σ1+σ22)|r)1r]. |
This completes the proof.
Corollary 2.3. Under the same suppositions as defined in Theorem 2.3, if we choose ω=1, we get
|Φ(σ1+σ22)+(σ2−σ1)224Φ′′(σ1+σ22)−1σ2−σ1∫σ2σ1Φ(u)du|≤(σ2−σ1)396(14)1−1r[(15|Φ′′′(σ1+σ22)|r+120|Φ′′′(σ1)|r)1r+(120|Φ′′′(σ2)|r+15|Φ′′′(σ1+σ22)|r)1r]. |
Theorem 2.4. Suppose a mapping Φ:I⊆ℜ→ℜ is thrice differentiable on Io (the interior of I) with σ2>σ1 and Φ′′′∈L[σ1,σ2] such that |Φ′′′|r is concave function on [σ1,σ2] with p∈ℜ, p>1, then the following inequality satisfies:
|Φ(σ1+σ22)+(σ2−σ1)24(ω+1)(ω+2)Φ′′(σ1+σ22)−2ωΓ(ω+3)2(ω+1)(ω+2)(σ2−σ1)ω{ Jω(σ1+σ22)− Φ(σ1) + Jω(σ1+σ22)+ Φ(σ2)}|≤(σ2−σ1)316(ω+1)(ω+2)(1(ω+2)p+1)1p[|Φ′′′(3σ1+σ24)|+|Φ′′′(σ1+3σ24)|], |
where p−1=1−r−1.
Proof. From (2.1), with the concavity of |Φ′′′|r and the well-known Hölder's Rogers integral inequality, we obtain
|Φ(σ1+σ22)+(σ2−σ1)24(ω+1)(ω+2)Φ′′(σ1+σ22)−2ωΓ(ω+3)2(ω+1)(ω+2)(σ2−σ1)ω{ Jω(σ1+σ22)− Φ(σ1) + Jω(σ1+σ22)+ Φ(σ2)}|≤(σ2−σ1)316(ω+1)(ω+2)[ ∫10μω+2|Φ′′′(μσ1+σ22+(1−μ)σ1)|dμ + ∫10(1−μ)ω+2|Φ′′′(μσ2+(1−μ)σ1+σ22)|dμ] |
≤(σ2−σ1)316(ω+1)(ω+2)[ (∫10μ(ω+2)pdμ)1p(∫10|Φ′′′(μσ1+σ22+(1−μ)σ1)|rdμ)1r+ (∫10(1−μ)(ω+2)pdμ)1p(∫10|Φ′′′(μσ2+(1−μ)σ1+σ22)|rdμ)1r]. | (2.6) |
Since |Φ′′′|r is concave on [σ1,σ2], we can use the Jensen's integral inequality to find that
∫10|Φ′′′(μσ1+σ22+(1−μ)σ1)|rdμ=∫10μo|Φ′′′(μσ1+σ22+(1−μ)σ1)|rdμ≤ (∫10μodμ)|Φ′′′(∫10μo(μσ1+σ22+(1−μ)σ1)dμ∫10μodμ)|r≤ |Φ′′′(3σ1+σ24)|r |
and similarly
∫10|Φ′′′(μσ2+(1−μ)σ1+σ22)|rdμ≤ |Φ′′′(σ1+3σ24)|r, |
then Eq (2.6), becomes
≤(σ2−σ1)316(ω+1)(ω+2)(1(ω+2)p+1)1p[|Φ′′′(3σ1+σ24)|+|Φ′′′(σ1+3σ24)|]. |
This completes the proof.
Corollary 2.4. Under the same suppositions as defined in Theorem 2.4, if we choose ω=1, we get
|Φ(σ1+σ22)+(σ2−σ1)224Φ′′(σ1+σ22)−1σ2−σ1∫σ2σ1Φ(u)du|≤(σ2−σ1)396(13p+1)1p[|Φ′′′(3σ1+σ24)|+|Φ′′′(σ1+3σ24)|]. |
Theorem 2.5. Suppose a mapping Φ:I⊆ℜ→ℜ is thrice differentiable on Io (the interior of I) with σ2>σ1 and Φ′′′∈L[σ1,σ2] such that |Φ′′′|r is convex function on [σ1,σ2] for r>1, then the following inequality satisfies:
|Φ(σ1+σ22)+(σ2−σ1)24(ω+1)(ω+2)Φ′′(σ1+σ22)−2ωΓ(ω+3)2(ω+1)(ω+2)(σ2−σ1)ω{ Jω(σ1+σ22)− Φ(σ1) + Jω(σ1+σ22)+ Φ(σ2)}|≤(σ2−σ1)316(ω+1)(ω+2)[{1p((ω+2)p+1)+12r(|Φ′′′(σ1+σ22)|r+|Φ′′′(σ1)|r)}+ {1p((ω+2)p+1)+12r(|Φ′′′(σ2)|r+|Φ′′′(σ1+σ22)|r)}], |
where p−1=1−r−1.
Proof. From (2.1), we obtain
|Φ(σ1+σ22)+(σ2−σ1)24(ω+1)(ω+2)Φ′′(σ1+σ22)−2ωΓ(ω+3)2(ω+1)(ω+2)(σ2−σ1)ω{ Jω(σ1+σ22)− Φ(σ1) + Jω(σ1+σ22)+ Φ(σ2)}|≤(σ2−σ1)316(ω+1)(ω+2)×[ ∫10μω+2|Φ′′′(μσ1+σ22+(1−μ)σ1)|dμ + ∫10(1−μ)ω+2|Φ′′′(μσ2+(1−μ)σ1+σ22)|dμ]. |
By using the Young's inequality as
uv<1pup+1rvr |
|Φ(σ1+σ22)+(σ2−σ1)24(ω+1)(ω+2)Φ′′(σ1+σ22)−2ωΓ(ω+3)2(ω+1)(ω+2)(σ2−σ1)ω{ Jω(σ1+σ22)− Φ(σ1) + Jω(σ1+σ22)+ Φ(σ2)}|≤(σ2−σ1)316(ω+1)(ω+2)[{1p∫10μ(ω+2)pdμ+1r∫10|Φ′′′(μσ1+σ22+(1−μ)σ1)|rdμ}+{1p∫10(1−μ)(ω+2)pdμ+1r∫10|Φ′′′(μσ2+(1−μ)σ1+σ22)|rdμ}]≤(σ2−σ1)316(ω+1)(ω+2)×[{1p∫10μ(ω+2)pdμ+1r∫10{μ|Φ′′′(σ1+σ22)|r+(1−μ)|Φ′′′(σ1)|r}dμ}+{1p∫10(1−μ)(ω+2)pdμ+1r∫10{μ|Φ′′′(σ2)|r+(1−μ)|Φ′′′(σ1+σ22)|r}dμ}]≤(σ2−σ1)316(ω+1)(ω+2)[{1p((ω+2)p+1)+12r(|Φ′′′(σ1+σ22)|r+|Φ′′′(σ1)|r)}+ {1p((ω+2)p+1)+12r(|Φ′′′(σ2)|r+|Φ′′′(σ1+σ22)|r)}]. |
This completes the proof.
Corollary 2.5. Under the same supposition as defined in Theorem 2.5, if we choose ω=1, we get
|Φ(σ1+σ22)+(σ2−σ1)224Φ′′(σ1+σ22)−1σ2−σ1∫σ2σ1Φ(u)du|≤(σ2−σ1)396[{1p(3p+1)+12r(|Φ′′′(σ1+σ22)|r+|Φ′′′(σ1)|r)}+ {1p(3p+1)+12r(|Φ′′′(σ2)|r+|Φ′′′(σ1+σ22)|r)}]. |
In this section, we will present some results related to quasi-convex function.
Theorem 3.1. Suppose a mapping Φ⊆[0,+∞)→ℜ is thrice differentiable on Io (the interior of I) with σ2>σ1 and Φ′′′∈L[σ1,σ2] such that |Φ′′′| is quasi-convex function on [σ1,σ2], then the following inequality satisfies:
|Φ(σ1+σ22)+(σ2−σ1)24(ω+1)(ω+2)Φ′′(σ1+σ22)−2ωΓ(ω+3)2(ω+1)(ω+2)(σ2−σ1)ω{ Jω(σ1+σ22)− Φ(σ1) + Jω(σ1+σ22)+ Φ(σ2)}|≤(σ2−σ1)316(ω+1)(ω+2)(ω+3)[max | (3.1) |
Proof. From (2.1) and the quasi-convexity of \left\vert \Phi^{{\prime \prime \prime }}\right\vert, we obtain
\begin{align} & \bigg|\Phi\left( \frac{\sigma_1+\sigma_2}{2}\right) +\frac{\left( \sigma_2-\sigma_1\right) ^{2}}{ 4\left( \omega +1\right) \left( \omega +2\right) }\Phi^{{\prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \\& -\frac{2^{\omega }\Gamma \left( \omega +3\right) }{2\left( \omega +1\right) \left( \omega +2\right) \left( \sigma_2-\sigma_1\right) ^{\omega }} \bigg\{\ J_{\left( \frac{\sigma_1+\sigma_2}{2}\right) ^{-}}^{\omega }\ \Phi\left( \sigma_1\right) \ \ +\ \ J_{\left( \frac{\sigma_1+\sigma_2}{2}\right) ^{+}}^{\omega }\ \Phi\left( \sigma_2\right) \bigg\}\bigg| \\& \leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) } \\& \times \bigg[\ \int_{0}^{1}\mu^{\omega +2}\bigg|\Phi^{{\prime \prime \prime }}\left( \mu \frac{\sigma_1+\sigma_2}{2}+\left( 1-\mu\right) \sigma_1\right)\bigg| d\mu\ \\& +\ \int_{0}^{1}\left( 1-\mu\right) ^{\omega +2}\bigg|\Phi^{{\prime \prime \prime }}\left( \mu \sigma_2+\left( 1-\mu\right) \frac{\sigma_1+\sigma_2}{2}\right)\bigg| d\mu\bigg] \\& \leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) }\bigg[\ \int_{0}^{1}\mu^{\omega +2}\; \max \bigg\{\left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_1\right) \right\vert , \left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert \bigg\}d\mu\ \\& +\ \int_{0}^{1}\left( 1-\mu\right) ^{\omega +2}\; \max \bigg\{\left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert , \left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_2\right) \right\vert \bigg\}d\mu\bigg] \\& \leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) \left( \omega +3\right) }\bigg[\max \bigg\{\left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_1\right) \right\vert , \left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert \bigg\} \\& +\max \bigg\{\left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert , \left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_2\right) \right\vert \bigg\}\bigg]. \end{align} |
This completes the proof.
Remark 3.1. If we prefer \omega = 1, in Theorem 3.1, then we obtain the Theorem 2.1 in [21].
Corollary 3.1. Let us consider the assumptions as defined in Theorem 3.1, be valid and let
\begin{align} & K: = \bigg|\Phi\left( \frac{\sigma_1+\sigma_2}{2}\right) +\frac{\left( \sigma_2-\sigma_1\right) ^{2}}{ 4\left( \omega +1\right) \left( \omega +2\right) }\Phi^{{\prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \\& -\frac{2^{\omega }\Gamma \left( \omega +3\right) }{2\left( \omega +1\right) \left( \omega +2\right) \left( \sigma_2-\sigma_1\right) ^{\omega }} \bigg\{\ J_{\left( \frac{\sigma_1+\sigma_2}{2}\right) ^{-}}^{\omega }\ \Phi\left( \sigma_1\right) \ \ +\ \ J_{\left( \frac{\sigma_1+\sigma_2}{2}\right) ^{+}}^{\omega }\ \Phi\left( \sigma_2\right) \bigg\}\bigg|. \end{align} |
(i) If \left\vert \Phi^{{\prime \prime \prime }}\right\vert is increasing, then we have
\begin{align*} & K\leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) \left( \omega +3\right) }\bigg[\left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert +\left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_2\right) \right\vert \bigg]. \end{align*} |
(ii) If \left\vert \Phi^{{\prime \prime \prime }}\right\vert is decreasing, then we have
\begin{align*} & K\leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) \left( \omega +3\right) }\bigg[\left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_1\right) \right\vert +\left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert \bigg]. \end{align*} |
(iii) If \Phi^{{\prime \prime \prime }}\left(\frac{\sigma_1+\sigma_2}{2}\right) = 0 , then we have
\begin{align*} & K\leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) \left( \omega +3\right) }\bigg[\left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_1\right) \right\vert +\left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_2\right) \right\vert \bigg]. \end{align*} |
(iv) If \Phi^{{\prime \prime \prime }}\left(\sigma_1\right) = \Phi^{{\prime \prime \prime }}\left(\sigma_2\right) = 0 , then we have
\begin{align*} & K\leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) \left( \omega +3\right) }\left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert. \end{align*} |
Theorem 3.2. Suppose a mapping \Phi\subseteq [0, +\infty)\rightarrow \Re is thrice differentiable on I^o (the interior of I ) with \sigma_2 > \sigma_1 and \Phi^{{\prime \prime \prime }}\in \mathcal {L}[\sigma_1, \sigma_2] such that \left\vert \Phi^{{\prime \prime \prime }}\right\vert^r is quasi-convex function on [\sigma_1, \sigma_2] and r > 1 with r^{-1} = 1-p^{-1} , then the following inequality satisfies:
\begin{align} & \bigg|\Phi\left( \frac{\sigma_1+\sigma_2}{2}\right) +\frac{\left( \sigma_2-\sigma_1\right) ^{2}}{ 4\left( \omega +1\right) \left( \omega +2\right) }\Phi^{{\prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \\& -\frac{2^{\omega }\Gamma \left( \omega +3\right) }{2\left( \omega +1\right) \left( \omega +2\right) \left( \sigma_2-\sigma_1\right) ^{\omega }} \bigg\{\ J_{\left( \frac{\sigma_1+\sigma_2}{2}\right) ^{-}}^{\omega }\ \Phi\left( \sigma_1\right) \ \ +\ \ J_{\left( \frac{\sigma_1+\sigma_2}{2}\right) ^{+}}^{\omega }\ \Phi\left( \sigma_2\right) \bigg\}\bigg| \\& \leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) \left( \omega +3\right) }\left( \frac{1}{\left( \omega +2\right) p+1}\right) ^{\frac{1}{p}} \\& \times \bigg[\left( \max \bigg\{\left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_1\right) \right\vert ^{r}, \left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert ^{r}\bigg\}\right) ^{\frac{1}{r}} \\& +\left( \max \bigg\{\left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert ^{r}, \left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_2\right) \right\vert ^{r}\bigg\}\right) ^{\frac{1}{r}}\bigg]. \end{align} |
Proof. Suppose p > 1. Then from (2.1), with the quasi-convexity of \left\vert \Phi^{{\prime \prime \prime }}\right\vert^r and using the Hölder's Rogers inequality, we obtain
\begin{align} & \bigg|\Phi\left( \frac{\sigma_1+\sigma_2}{2}\right) +\frac{\left( \sigma_2-\sigma_1\right) ^{2}}{ 4\left( \omega +1\right) \left( \omega +2\right) }\Phi^{{\prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \\& -\frac{2^{\omega }\Gamma \left( \omega +3\right) }{2\left( \omega +1\right) \left( \omega +2\right) \left( \sigma_2-\sigma_1\right) ^{\omega }} \bigg\{\ J_{\left( \frac{\sigma_1+\sigma_2}{2}\right) ^{-}}^{\omega }\ \Phi\left( \sigma_1\right) \ \ +\ \ J_{\left( \frac{\sigma_1+\sigma_2}{2}\right) ^{+}}^{\omega }\ \Phi\left( \sigma_2\right) \bigg\}\bigg| \\& \leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) } \\& \times \bigg[\ \int_{0}^{1}\mu^{\omega +2}\bigg|\Phi^{{\prime \prime \prime }}\left( \mu \frac{\sigma_1+\sigma_2}{2}+\left( 1-\mu\right) \sigma_1\right)\bigg| d\mu\ \\& +\ \int_{0}^{1}\left( 1-\mu\right) ^{\omega +2}\bigg|\Phi^{{\prime \prime \prime }}\left( \mu\sigma_2+\left( 1-\mu\right) \frac{\sigma_1+\sigma_2}{2}\right)\bigg| d\mu\bigg] \\& \leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) } \\&\times \bigg[\left( \int_{0}^{1}\mu^{\left( \omega +2\right) p}d\mu\right) ^{\frac{1}{p}}\left( \int_{0}^{1}\left\vert \Phi^{{\prime \prime \prime }}\left( \mu\frac{\sigma_1+\sigma_2}{2}+\left( 1-\mu\right) \sigma_1\right) \right\vert ^{r}d\mu\right) ^{\frac{1}{r}} \\& +\ \left( \int_{0}^{1}\left( 1-\mu\right) ^{\left( \omega +2\right) p}d\mu\right) ^{\frac{1}{p}}\left( \int_{0}^{1}\left\vert \Phi^{{\prime \prime \prime }}\left( \mu\sigma_2+\left( 1-\mu\right) \frac{\sigma_1+\sigma_2}{2}\right) \right\vert ^{r}d\mu\right) ^{\frac{1}{r}}\bigg]. \end{align} |
The quasi-convexity of \left\vert \Phi^{{\prime \prime \prime }}\right\vert^r on [\sigma_1, \sigma_2] implies that
\begin{align*} & \int_{0}^{1}\left\vert \Phi^{{\prime \prime \prime }}\left( \mu\frac{ \sigma_1+\sigma_2}{2}+\left( 1-\mu\right) \sigma_1\right) \right\vert ^{r}d\mu\leq \max \bigg\{\left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_1\right) \right\vert ^{r}, \left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert ^{r}\bigg\}, \end{align*} |
and
\begin{align*} & \int_{0}^{1}\left\vert \Phi^{{\prime \prime \prime }}\left( \mu\sigma_2+\left( 1-\mu\right) \frac{\sigma_1+\sigma_2}{2}\right) \right\vert ^{r}d\mu\leq \max \bigg\{\left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert ^{r}, \left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_2\right) \right\vert ^{r}\bigg\}, \end{align*} |
then we obtain
\begin{align*} & \bigg|\Phi\left( \frac{\sigma_1+\sigma_2}{2}\right) +\frac{\left( \sigma_2-\sigma_1\right) ^{2}}{ 4\left( \omega +1\right) \left( \omega +2\right) }\Phi^{{\prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right)\notag \\& \notag -\frac{2^{\omega }\Gamma \left( \omega +3\right) }{2\left( \omega +1\right) \left( \omega +2\right) \left( \sigma_2-\sigma_1\right) ^{\omega }} \bigg\{\ J_{\left( \frac{\sigma_1+\sigma_2}{2}\right) ^{-}}^{\omega }\ \Phi\left( \sigma_1\right) \ \ +\ \ J_{\left( \frac{\sigma_1+\sigma_2}{2}\right) ^{+}}^{\omega }\ \Phi\left( \sigma_2\right) \bigg\}\bigg| \\&\notag \leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) \left( \omega +3\right) }\left( \frac{1}{\left( \omega +2\right) p+1}\right) ^{\frac{1}{p}} \\& \notag \times \bigg[\left( \max \bigg\{\left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_1\right) \right\vert ^{r}, \left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert ^{r}\bigg\}\right) ^{\frac{1}{r}} \\&\notag +\left( \max \bigg\{\left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert ^{r}, \left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_2\right) \right\vert ^{r}\bigg\}\right) ^{\frac{1}{r}}\bigg]. \end{align*} |
This completes the proof.
Remark 3.2. If we prefer \omega = 1, in Theorem 3.2, then we obtain the Theorem 2.2 in [21].
Corollary 3.2. Let us consider the assumptions as defined in Theorem 3.2, be valid and let
\begin{align} & K: = \bigg|\Phi\left( \frac{\sigma_1+\sigma_2}{2}\right) +\frac{\left( \sigma_2-\sigma_1\right) ^{2}}{ 4\left( \omega +1\right) \left( \omega +2\right) }\Phi^{{\prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \\& -\frac{2^{\omega }\Gamma \left( \omega +3\right) }{2\left( \omega +1\right) \left( \omega +2\right) \left( \sigma_2-\sigma_1\right) ^{\omega }} \bigg\{\ J_{\left( \frac{\sigma_1+\sigma_2}{2}\right) ^{-}}^{\omega }\ \Phi\left( \sigma_1\right) \ \ +\ \ J_{\left( \frac{\sigma_1+\sigma_2}{2}\right) ^{+}}^{\omega }\ \Phi\left( \sigma_2\right) \bigg\}\bigg|. \end{align} |
(i) If \left\vert \Phi^{{\prime \prime \prime }}\right\vert is increasing, then we have
\begin{align*} & K\leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) }\left( \frac{1}{\left( \omega +2\right) p+1}\right) ^{\frac{1}{p}}\bigg[\left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2} \right) \right\vert +\left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_2\right) \right\vert \bigg]. \end{align*} |
(ii) If \left\vert \Phi^{{\prime \prime \prime }}\right\vert is decreasing, then we have
\begin{align*} & K\leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) }\left( \frac{1}{\left( \omega +2\right) p+1}\right) ^{\frac{1}{p}}\bigg[\left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_1\right) \right\vert +\left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2} \right) \right\vert \bigg]. \end{align*} |
(iii) If \Phi^{{\prime \prime \prime }}\left(\frac{\sigma_1+\sigma_2}{2}\right) = 0 , then we have
\begin{align*} & K\leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) }\left( \frac{1}{\left( \omega +2\right) p+1}\right) ^{\frac{1}{p} }\bigg[\left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_1\right) \right\vert +\left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_2\right) \right\vert \bigg]. \end{align*} |
(iv) If \Phi^{{\prime \prime \prime }}\left(\sigma_1\right) = \Phi^{{\prime \prime \prime }}\left(\sigma_2\right) = 0 , then we have
\begin{align*} & K\leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) }\left( \frac{1}{\left( \omega +2\right) p+1}\right) ^{\frac{1}{p} }\left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert . \end{align*} |
Theorem 3.3. Suppose a mapping \Phi\subseteq [0, +\infty)\rightarrow \Re is thrice differentiable on I^o (the interior of I ) with \sigma_2 > \sigma_1 and \Phi^{{\prime \prime \prime }}\in \mathcal {L}[\sigma_1, \sigma_2] such that \left\vert \Phi^{{\prime \prime \prime }}\right\vert^r is quasi-convex function on [\sigma_1, \sigma_2] and r\geq1 with r^{-1} = 1-p^{-1} , then the following inequality satisfies:
\begin{align} & \bigg|\Phi\left( \frac{\sigma_1+\sigma_2}{2}\right) +\frac{\left( \sigma_2-\sigma_1\right) ^{2}}{ 4\left( \omega +1\right) \left( \omega +2\right) }\Phi^{{\prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \\& -\frac{2^{\omega }\Gamma \left( \omega +3\right) }{2\left( \omega +1\right) \left( \omega +2\right) \left( \sigma_2-\sigma_1\right) ^{\omega }} \bigg\{\ J_{\left( \frac{\sigma_1+\sigma_2}{2}\right) ^{-}}^{\omega }\ \Phi\left( \sigma_1\right) \ \ +\ \ J_{\left( \frac{\sigma_1+\sigma_2}{2}\right) ^{+}}^{\omega }\ \Phi\left( \sigma_2\right) \bigg\}\bigg| \\& \leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) \left( \omega +3\right) } \\&\times \bigg[\left( \max \bigg\{\left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_1\right) \right\vert ^{r}, \left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert ^{r}\bigg\}\right) ^{\frac{1}{r}} \\& +\left( \max \bigg\{\left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert ^{r}, \left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_2\right) \right\vert ^{r}\bigg\}\right) ^{\frac{1}{r}}\bigg]. \end{align} | (3.2) |
Proof. From (2.1), with the quasi-convexity of \left\vert \Phi^{{\prime \prime \prime }}\right\vert^r and using the power-mean inequality, we obtain
\begin{align} & \bigg|\Phi\left( \frac{\sigma_1+\sigma_2}{2}\right) +\frac{\left( \sigma_2-\sigma_1\right) ^{2}}{ 4\left( \omega +1\right) \left( \omega +2\right) }\Phi^{{\prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \\& -\frac{2^{\omega }\Gamma \left( \omega +3\right) }{2\left( \omega +1\right) \left( \omega +2\right) \left( \sigma_2-\sigma_1\right) ^{\omega }} \bigg\{\ J_{\left( \frac{\sigma_1+\sigma_2}{2}\right) ^{-}}^{\omega }\ \Phi\left( \sigma_1\right) \ \ +\ \ J_{\left( \frac{\sigma_1+\sigma_2}{2}\right) ^{+}}^{\omega }\ \Phi\left( \sigma_2\right) \bigg\}\bigg| \\& \leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) } \\& \times \bigg[\ \int_{0}^{1}\mu^{\omega +2}\bigg|\Phi^{{\prime \prime \prime }}\left( \mu \frac{\sigma_1+\sigma_2}{2}+\left( 1-\mu\right) \sigma_1\right)\bigg| d\mu\ \\& +\ \int_{0}^{1}\left( 1-\mu\right) ^{\omega +2}\bigg|\Phi^{{\prime \prime \prime }}\left( \mu \sigma_2+\left( 1-\mu\right) \frac{\sigma_1+\sigma_2}{2}\right)\bigg| d\mu\bigg] \\& \leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) } \\&\times \bigg[\left( \int_{0}^{1}\mu^{\omega +2}d\mu\right) ^{1- \frac{1}{r}}\left( \int_{0}^{1}\mu^{\omega +2}\left\vert \Phi^{{\prime \prime \prime }}\left( \mu\frac{\sigma_1+\sigma_2}{2}+\left( 1-\mu\right) \sigma_1\right) \right\vert ^{r}d\mu\right) ^{\frac{1}{r}} \\& +\ \left( \int_{0}^{1}\left( 1-\mu\right) ^{\omega +2}d\mu\right) ^{1-\frac{1}{r }}\left( \int_{0}^{1}\left( 1-\mu\right) ^{\omega +2}\left\vert \Phi^{{\prime \prime \prime }}\left( \mu\sigma_2+\left( 1-\mu\right) \frac{\sigma_1+\sigma_2}{2}\right) \right\vert ^{r}d\mu\right) ^{\frac{1}{r}}\bigg]. \end{align} | (3.3) |
The quasi-convexity of \left\vert \Phi^{{\prime \prime \prime }}\right\vert^r on [\sigma_1, \sigma_2] implies that
\begin{align*} & \int_{0}^{1}\mu^{\omega +2}\left\vert \Phi^{{\prime \prime \prime }}\left( \mu\frac{\sigma_1+\sigma_2}{2}+\left( 1-\mu\right) \sigma_1\right) \right\vert ^{r}d\mu \\&\notag \leq \frac{1}{\omega +3}\max \bigg\{\left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_1\right) \right\vert ^{r}, \left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert ^{r}\bigg\} \end{align*} |
and
\begin{align*} &\int_{0}^{1}\left( 1-\mu\right) ^{\omega +2}\left\vert \Phi^{{\prime \prime \prime }}\left( \mu\sigma_2+\left( 1-\mu\right) \frac{\sigma_1+\sigma_2}{2}\right) \right\vert ^{r}d\mu \\&\notag \leq \frac{1}{\omega +3}\max \bigg\{\left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert ^{r}, \left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_2\right) \right\vert ^{r}\bigg\}. \end{align*} |
Therefore, (3.3) becomes
\begin{align*} & \leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) \left( \omega +3\right) } \\&\times \bigg[\left( \max \bigg\{\left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_1\right) \right\vert ^{r}, \left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert ^{r}\bigg\}\right) ^{\frac{1}{r}} \\&\notag +\left( \max \bigg\{\left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert ^{r}, \left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_2\right) \right\vert ^{r}\bigg\}\right) ^{\frac{1}{r}}\bigg]. \end{align*} |
This completes the proof.
Remark 3.3. If we set \omega = 1, in Theorem 3.3, then we get the Theorem 2.3 in [21].
Corollary 3.3. Let us consider the assumptions as defined in Theorem 3.3, be valid and let
\begin{align} & K: = \bigg|\Phi\left( \frac{\sigma_1+\sigma_2}{2}\right) +\frac{\left( \sigma_2-\sigma_1\right) ^{2}}{ 4\left( \omega +1\right) \left( \omega +2\right) }\Phi^{{\prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \\& -\frac{2^{\omega }\Gamma \left( \omega +3\right) }{2\left( \omega +1\right) \left( \omega +2\right) \left( \sigma_2-\sigma_1\right) ^{\omega }} \bigg\{\ J_{\left( \frac{\sigma_1+\sigma_2}{2}\right) ^{-}}^{\omega }\ \Phi\left( \sigma_1\right) \ \ +\ \ J_{\left( \frac{\sigma_1+\sigma_2}{2}\right) ^{+}}^{\omega }\ \Phi\left( \sigma_2\right) \bigg\}\bigg|. \end{align} |
(i) If \left\vert \Phi^{{\prime \prime \prime }}\right\vert is increasing, then we have
\begin{align*} & K\leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) \left( \omega +3\right) }\bigg[\left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert +\left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_2\right) \right\vert \bigg]. \end{align*} |
(ii) If \left\vert \Phi^{{\prime \prime \prime }}\right\vert is decreasing, then we have
\begin{align*} & K\leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) \left( \omega +3\right) }\bigg[\left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_1\right) \right\vert +\left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert \bigg]. \end{align*} |
(iii) If \Phi^{{\prime \prime \prime }}\left(\frac{\sigma_1+\sigma_2}{2}\right) = 0 , then we have
\begin{align*} & K\leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) \left( \omega +3\right) }\bigg[\left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_1\right) \right\vert +\left\vert \Phi^{{\prime \prime \prime }}\left( \sigma_2\right) \right\vert \bigg]. \end{align*} |
(iv) If \Phi^{{\prime \prime \prime }}\left(\sigma_1\right) = \Phi^{{\prime \prime \prime }}\left(\sigma_2\right) = 0 , then we have
\begin{align*} & K\leq \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{16\left( \omega +1\right) \left( \omega +2\right) \left( \omega +3\right) }\left\vert \Phi^{{\prime \prime \prime }}\left( \frac{\sigma_1+\sigma_2}{2}\right) \right\vert. \end{align*} |
Let's consider the following special means for real numbers \sigma_1, \sigma_2 such that \sigma_1\neq \sigma_2.
The arithmetic mean:
\begin{equation*} A(\sigma_1, \sigma_2) = \frac{\sigma_1+\sigma_2}{2}. \end{equation*} |
The logarithmic mean:
\begin{equation*} L(\sigma_1, \sigma_2) = \frac{\sigma_2-\sigma_1}{log\sigma_2-log\sigma_1}. \end{equation*} |
The generalized logarithmic mean:
\begin{equation*} L_{c}(\sigma_1, \sigma_2) = \Bigg[\frac{\sigma_2^{c+1}-\sigma_1^{c+1}}{(c+1)(\sigma_2-\sigma_1)}\Bigg]^{\frac{1}{c}};\;\;c\in \Re \setminus \{-1, 0\}. \end{equation*} |
The identric mean:
\begin{equation*} I\left(\sigma_1, \sigma_2\right) = \left\{ \begin{array}{c} \sigma_1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if\ \ \ \ \sigma_1 = \sigma_2 \\ \frac{1}{e}\left( \frac{\sigma_2^{\sigma_2}}{\sigma_1^{\sigma_1}}\right) ^{ \frac{1}{\sigma_2-\sigma_1}}\ \ \ \ \ \ \ \ \ if\ \ \ \ \sigma_1\neq \sigma_2 \end{array} \right. \sigma_1, \sigma_2 \in \Re, \sigma_1, \sigma_2 > 0. \end{equation*} |
Proposition 4.1. Suppose k \in Z \backslash\{-1, 0\} and \sigma_1, \sigma_2\in \Re such that 0 < \sigma_1 < \sigma_2, then the following inequality
\begin{align*} & \left\vert A^{k}\left( \sigma_1, \sigma_2\right) +\frac{k\left( k-1\right) }{24} \left( \sigma_2-\sigma_1\right) ^{2}A^{k-2}\left( \sigma_1, \sigma_2\right) -L_{k}^{k}\left( \sigma_1, \sigma_2\right) \right\vert \\& \leq \ \frac{k\left( k-1\right) \left( k-2\right) }{960}\left( \sigma_2-\sigma_1\right) ^{3}\bigg[A\left( \left\vert \sigma_1\right\vert ^{k-3}, \left\vert \sigma_2\right\vert ^{k-3}\right) +4A^{k-3}\left( \sigma_1, \sigma_2\right) \bigg], \end{align*} |
satisfies.
Proof. The assertion follows from Corollary 2.1 for the function \Phi(x) = x^k and k as specified above.
Proposition 4.2. Suppose r\geq1 and \sigma_1, \sigma_2\in \Re such that 0 < \sigma_1 < \sigma_2, then the following inequality
\begin{align*} & \left\vert A^{-1}\left( \sigma_1, \sigma_2\right) +\frac{\left( \sigma_2-\sigma_1\right) ^{2}}{ 24}A^{-2}\left( \sigma_1, \sigma_2\right) -L^{-1}\left( \sigma_1, \sigma_2\right) \right\vert \\& \leq \ \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{96}\left( \frac{1}{4}\right) ^{1-\frac{ 1}{r}} \\&\notag\times \bigg[\left( \frac{2}{5}\left\vert A\left( \sigma_1, \sigma_2\right) \right\vert ^{-3r}+ \frac{1}{10}\left\vert \sigma_1\right\vert ^{-3r}\right) ^{\frac{1}{r}}+\left( \frac{1}{10}\left\vert \sigma_2\right\vert ^{-3r}+\frac{2}{5}\left\vert A\left( \sigma_1, \sigma_2\right) \right\vert ^{-3r}\right) ^{\frac{1}{r}}\bigg], \end{align*} |
satisfies.
Proof. The assertion follows from Corollary 2.3 for the function \Phi(x) = \frac{1}{x} .
Proposition 4.3. Suppose r\geq1 and \sigma_1, \sigma_2\in \Re such that 0 < \sigma_1 < \sigma_2, then the following inequality
\begin{align*} & \left\vert \frac{\left( \sigma_2-\sigma_1\right) ^{2}}{24} A ^{-2}\left( \sigma_1, \sigma_2\right) -\ln [A\left( \sigma_1, \sigma_2\right) \times I\left( \sigma_1, \sigma_2\right) ]\right\vert \\& \leq \ \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{96}\left( \frac{1}{4} \right) ^{1-\frac{1}{r}} \\& \times \bigg[ \left( \frac{2}{5}\left\vert A\left( \sigma_1, \sigma_2\right) \right\vert ^{-3r}+\frac{1}{10}\left\vert \sigma_1\right\vert ^{-3r}\right) ^{\frac{1}{r}}+\left( \frac{1}{10}\left\vert \sigma_2\right\vert ^{-3r}+\frac{2}{5}\left\vert A\left( \sigma_1, \sigma_2\right) \right\vert ^{-3r}\right) ^{\frac{1}{r}}\bigg], \end{align*} |
satisfies.
Proof. The assertion follows from Corollary 2.3 for the function \Phi(x) = -lnx .
We recall the first kind modified Bessel function \Im_m, which has the series representation (see [30], p.77)
\begin{equation*} \Im_m(\zeta) = \Sigma_{n\geq 0}\frac{\left( \frac{\zeta }{2}\right) ^{m+2n}}{n!\Gamma \left( m+n+1\right) }, \end{equation*} |
where \zeta \in \Re and m > -1, while the second kind modified Bessel function \Phi_m (see [30], p.78) is usually defined as
\begin{equation*} \Phi_{m}\left( \zeta \right) = \frac{\pi }{2}\ \frac{\Im_{-m}\left( \zeta \right) -\Im_{m}\left( \zeta \right) }{\sin m\pi }. \end{equation*} |
Consider the function \Omega_m\left(\zeta \right): \Re \rightarrow [1, \infty) defined by
\begin{equation*} \Omega_m\left( \zeta \right) = 2^{m}\Gamma \left( m+1\right) \zeta ^{-m}\Phi_{m}\left( \zeta \right) , \end{equation*} |
where \Gamma is the gamma function.
The first order derivative formula of \Omega_m\left(\zeta \right) is given by [30]:
\begin{equation} \Omega^{{\prime }}_m\left( \zeta \right) = \frac{\zeta }{2\left( m+1\right) }\Omega_{m+1}\left( \zeta \right) \end{equation} | (5.1) |
and the second derivative can be easily calculated from (5.1) as
\begin{equation} \Omega^{{\prime \prime }}_m\left( \zeta \right) = \frac{\zeta ^{2}}{4\left( m+1\right) \left( m+2\right) }\ \Omega_{m+2}\left( \zeta \right)\ +\ \ \frac{1}{2\left( m+1\right) }\Omega_{m+1}\left( \zeta \right) , \end{equation} | (5.2) |
and the third derivative can be easily calculated from (5.2) as
\begin{equation} \Omega _{m}^{{\prime \prime \prime }}\left( \zeta \right) = \frac{\zeta ^{3} }{4\left( m+1\right) \left( m+2\right) \left( m+3\right) }\Omega _{m+3}\left( \zeta \right) +\frac{3\zeta }{4\left( m+1\right) \left( m+2\right) }\Omega _{m+2}\left( \zeta \right) . \end{equation} | (5.3) |
Proposition 5.1. Suppose that m > -1 and 0 < \sigma_1 < \sigma_2. Then we have
\begin{align*} &\bigg| \Omega _{m}\left( \frac{\sigma_1+\sigma_2}{2}\right) +\frac{\left( \sigma_2-\sigma_1\right) ^{2}}{24}\bigg\{\frac{\left( \sigma_1+\sigma_2\right) ^{2}}{16\left( m+1\right) \left( m+2\right) }\Omega _{m+2}\left( \frac{\sigma_1+\sigma_2}{2}\right) \\& +\frac{1}{2\left( m+1\right) }\ \ \Omega _{m+1}\left( \frac{\sigma_1+\sigma_2}{2}\right) \bigg\} -\frac{1}{\sigma_2-\sigma_1 }\int_{\sigma_1}^{\sigma_2}\Omega_{m}\left( \zeta \right) d\zeta \bigg| \\& \leq \ \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{96}\bigg[\frac{1}{20} \bigg\{\frac{\sigma_1^{3}}{8\left( m+1\right) \left( m+2\right) \left( m+3\right) }\Omega _{m+3}\left( \sigma_1\right) +\frac{3\sigma_1}{4\left( m+1\right) \left( m+2\right) }\Omega _{m+2}\left( \sigma_1\right) \bigg\} \\& +\frac{2}{5}\bigg\{\frac{\left( \sigma_1+\sigma_2\right) ^{3}}{64\left( m+1\right) \left( m+2\right) \left( m+3\right) }\Omega _{m+3}\left( \frac{ \sigma_1+\sigma_2}{2}\right) +\frac{3\left( \sigma_1+\sigma_2\right) }{ 8\left( m+1\right) \left( m+2\right) }\Omega_{m+2}\left( \frac{\sigma_1+\sigma_2}{2}\right) \bigg\} \\& +\ \frac{1}{20}\bigg\{\frac{\sigma_2^{3}}{8\left( m+1\right) \left( m+2\right) \left( m+3\right) }\Omega_{m+3}\left( \sigma_2\right) +\frac{ 3\sigma_2}{4\left( m+1\right) \left( m+2\right) }\Omega_{m+2}\left( \sigma_2\right) \bigg\}\bigg]. \end{align*} |
Proof. The assertion follows immediately from Corollary 2.1 using \Phi\left(\zeta\right) = \Omega _{m}(\zeta), \zeta > 0 and the identities (5.2) and (5.3).
Proposition 5.2. Suppose that m > -1 and 0 < \sigma_1 < \sigma_2, r > 1. Then we have
\begin{align*} &\bigg| \Omega _{m}\left( \frac{\sigma_1+\sigma_2}{2}\right) +\frac{\left( \sigma_2-\sigma_1\right) ^{2}}{24}\bigg\{\frac{\left( \sigma_1+\sigma_2\right) ^{2}}{16\left( m+1\right) \left( m+2\right) }\Omega _{m+2}\left( \frac{\sigma_1+\sigma_2}{2}\right) \\& +\frac{1}{2\left( m+1\right) }\ \ \Omega _{m+1}\left( \frac{\sigma_1+\sigma_2}{2}\right) \bigg\} -\frac{1}{\sigma_2-\sigma_1 }\int_{\sigma_1}^{\sigma_2}\Omega_{m}\left( \zeta \right) d\zeta \bigg| \\& \leq \ \frac{\left( \sigma_2-\sigma_1\right) ^{3}}{96}\left( \frac{ 1}{3p+1}\right) ^{\frac{1}{p}}\left( \frac{1}{2}\right) ^{\frac{1}{r}} \\&\times \bigg[\bigg\{\bigg\{ \frac{\left( \sigma_1+\sigma_2\right) ^{3}}{64\left( m+1\right) \left( m+2\right) \left( m+3\right) }\Omega_{m+3}\left( \frac{\sigma_1+\sigma_2}{2} \right) \\& +\frac{3\left( \sigma_1+\sigma_2\right) }{8\left( m+1\right) \left( m+2\right) }\Omega_{m+2}\left( \frac{\sigma_1+\sigma_2}{2}\right) \bigg\}^{r} \\& +\ \bigg\{\frac{\sigma_1^{3}}{8\left( m+1\right) \left( m+2\right) \left( m+3\right) }\Omega_{m+3}\left( \sigma_1\right) +\frac{3\sigma_1}{4\left( m+1\right) \left( m+2\right) }\Omega_{m+2}\left( \sigma_1\right) \bigg\}^{r}\bigg\}^{ \frac{1}{r}} \\& +\ \bigg\{\bigg\{\frac{\sigma_2^{3}}{8\left( m+1\right) \left( m+2\right) \left( m+3\right) }\Omega _{m+3}\left( \sigma_2\right) +\frac{3\sigma_2}{4\left( m+1\right) \left( m+2\right) }\Omega _{m+2}\left( \sigma_2\right) \bigg\}^{r} \\& +\ \bigg\{\frac{\left( \sigma_1+\sigma_2\right) ^{3}}{64\left( m+1\right) \left( m+2\right) \left( m+3\right) }\Omega _{m+3}\left( \frac{\sigma_1+\sigma_2}{2} \right) \\& +\frac{3\left( \sigma_1+\sigma_2\right) }{8\left( m+1\right) \left( m+2\right) }\Omega _{m+2}\left( \frac{\sigma_1+\sigma_2}{2}\right) \bigg\}\bigg\}^{ \frac{1}{r}}\bigg]. \end{align*} |
Proof. The assertion follows immediately from Corollary 2.2 using \Phi\left(\zeta\right) = \Omega _{m}(\zeta), \zeta > 0 and the identities (5.2) and (5.3).
In this article, we have presented some basic Hermite-Hadamard type integral inequlaities. Moreover, a new integral equality for Riemann-Liouville fractional integral operator have been established. Employing this equality, some related generalizations of Hermite-Hadamard inequality for convex function and quasi-convex function with \Phi \in C^3 ([\sigma_1, \sigma_2]) such that \Phi^{{\prime \prime \prime }} \in \mathcal {L}([\sigma_1, \sigma_2]) via Riemann-Liouville fractional integrals are deduced. Finally, we give some applications for special mean and modified bessel function. The results, which we have presented in this article, will potentially motivate researchers to study analogous and more general integral inequalities for various other kinds of fractional integral operators.
This work was funded by the Basque Government for the grant number IT1207-19.
There is no any conflict to the authors.
[1] | Y. Qin, Integral and discrete inequalities and their applications, Birkhäuser, Cham, 2016. doi: 10.1007/978-3-319-33304-5. |
[2] | P. Agarwal, S. S. Dragomir, M. Jleli, B. Samet, Advances in mathematical inequalities and applications, Springer Singapore, 2018. doi: 10.1007/978-981-13-3013-1. |
[3] |
T. Du, M. U. Awan, A. Kashuri, S. Zhao, Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m, h)-preinvexity, Appl. Anal., 100 (2021), 642–662. doi: 10.1080/00036811.2019.1616083. doi: 10.1080/00036811.2019.1616083
![]() |
[4] |
T. Du, H. Wang, M. A. Khan, Y. Zhang, Certain integral inequalities considering generalized m-convexity on fractal sets and their applications, Fractals, 27 (2019), 1950117. doi: 10.1142/S0218348X19501172. doi: 10.1142/S0218348X19501172
![]() |
[5] |
S. Qaisar, J. Nasir, S. I. Butt, S. Hussain, On some fractional integral inequalities of Hermite-Hadamard type through convexity, Symmetry, 11 (2019), 137. doi: 10.3390/sym11020137. doi: 10.3390/sym11020137
![]() |
[6] |
S. I. Butt, J. Pečarić, A. Vukelić, Generalization of Popoviciu type inequalities via Fink's identity, Mediterr. J. Math., 13 (2016), 1495–1511. doi: 10.1007/s00009-015-0573-8. doi: 10.1007/s00009-015-0573-8
![]() |
[7] |
N. Mehmood, S. I. Butt, D. Pečarić, J. Pečarić, Generalizations of cyclic refinements of Jensen's inequality by Lidstone's polynomial with applications in information theory, J. Math. Inequal., 14 (2019), 249–271. doi: 10.7153/jmi-2020-14-17. doi: 10.7153/jmi-2020-14-17
![]() |
[8] | G. A. Anastassiou, Advanced inequalities, World Scientifc, Singapore, 2010. |
[9] | M. Alomari, M. Darus, U. S. Kirmaci, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comput. Math. Appl., 59, (2010), 225–232. doi: 10.1016/j.camwa.2009.08.002. |
[10] | G. Cristescu, L. Lupsa, Non-connected convexities and applications, Boston: Springer, 2002. doi: 10.1007/978-1-4615-0003-2. |
[11] |
H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100–111. doi: 10.1007/BF01837981. doi: 10.1007/BF01837981
![]() |
[12] | S. Hussain, S. Qaisar, New integral inequalities of the type of Hermite-Hadamard through quasi convexity, Punjab Univ. J. Math., 45 (2013), 33–38. |
[13] | K. Nikodem, J. L. Sanchez, L. Sanchez, Jensen and Hermite-Hadamard inequalities for strongly convex set-valued maps, Math. Aeterna, 4 (2014), 979–987. |
[14] |
M. E. Özdemir, M. Avci, E. Set, On some inequalities of Hermite-Hadamard type via m-convexity, Appl. Math. Lett., 23 (2010), 1065–1070. doi: 10.1016/j.aml.2010.04.037. doi: 10.1016/j.aml.2010.04.037
![]() |
[15] |
M. E. Özdemir, M. Avci, H. Kavurmaci, Hermite-Hadamard-type inequalities via (\omega, m)-convexity, Comput. Math. Appl., 61 (2011), 2614–2620. doi: 10.1016/j.camwa.2011.02.053. doi: 10.1016/j.camwa.2011.02.053
![]() |
[16] | D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Ann. Univ. Craiova-Math. Comput. Sci. Ser., 34 (2007), 82–87. |
[17] | M. Alomari, M. Darus, S. S. Dragomir, Inequalities of Hermite-Hadamard type for functions whose derivatives absolute values are quasi-convex, RGMIA Res. Rep. Collect, 12 (2009). |
[18] | W. W. Breckner, Stetigkeitsaussagen füreine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen, Pupl. Inst. Math., 23 (1978), 13–20. |
[19] | F. X. Chen, S. H. Wu, Several complementary inequalities to inequalities of Hermite-Hadamard type for s–convex functions, J. Nonlinear Sci. Appl., 9 (2016), 705–716. |
[20] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[21] |
P. O. Mohammed, M. Vivas Cortez, T. Abdeljawad, Y. Rangel-Oliveros, Integral inequalities of Hermite-Hadamard type for quasi-convex functions with applications, AIMS Math., 5 (2020), 7316–7331. doi: 10.3934/math.2020468. doi: 10.3934/math.2020468
![]() |
[22] |
P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 595. doi: 10.3390/sym12040595. doi: 10.3390/sym12040595
![]() |
[23] | O. Omotoyinbo, A. Mogbodemu, Some new Hermite-Hadamard integral inequalities for convex functions, Int. J. Sci. Innovation Tech., 1 (2014), 1–12. |
[24] | I. Podlubni, Fractional differential equations, Elsevier, 1998. |
[25] |
M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. doi: 10.1016/j.mcm.2011.12.048. doi: 10.1016/j.mcm.2011.12.048
![]() |
[26] |
E. Set, M. A. Noor, M. U. Awan, A. Gözpinar, Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 169 (2017), 1–10. doi: 10.1186/s13660-017-1444-6. doi: 10.1186/s13660-017-1444-6
![]() |
[27] | A. Qayyum, I. Faye, M. Shoaib, On new generalized inequalities via Riemann-Liouville fractional integration, J. Fract. Calc. Appl., 2015. |
[28] | H. Budak, M. Z. Sarikaya, A. Qayyum, New refinements and applications of Ostrowski type inequalities for mappings whose nth derivatives are of bounded variation, TWMS J. Appl. Eng. Math., 11 (2021), 424–435. |
[29] |
B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Spaces, 2012 (2012), 980438. doi: 10.1155/2012/980438. doi: 10.1155/2012/980438
![]() |
[30] | G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, 1995. |
1. | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri, Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel, 2022, 8, 2473-6988, 5616, 10.3934/math.2023283 | |
2. | Hüseyin Budak, Pınar Kösem, Hasan Kara, On new Milne-type inequalities for fractional integrals, 2023, 2023, 1029-242X, 10.1186/s13660-023-02921-5 | |
3. | Maimoona Karim, Aliya Fahmi, Zafar Ullah, Muhammad Awais Tariq Bhatti, Ather Qayyum, On certain Ostrowski type integral inequalities for convex function via AB-fractional integral operator, 2023, 8, 2473-6988, 9166, 10.3934/math.2023459 | |
4. | Ahmet Ocak Akdemir, Sinan Aslan, Mustafa Ali Dokuyucu, Ercan Çelik, Serena Matucci, Exponentially Convex Functions on the Coordinates and Novel Estimations via Riemann-Liouville Fractional Operator, 2023, 2023, 2314-8888, 1, 10.1155/2023/4310880 | |
5. | Asif Ali Shaikh, Evren Hincal, Sotiris K. Ntouyas, Jessada Tariboon, Muhammad Tariq, Some Hadamard-Type Integral Inequalities Involving Modified Harmonic Exponential Type Convexity, 2023, 12, 2075-1680, 454, 10.3390/axioms12050454 | |
6. | Abd-Allah Hyder, Çetin Yildiz, New Fractional Inequalities through Convex Functions and Comprehensive Riemann–Liouville Integrals, 2023, 2023, 2314-4785, 1, 10.1155/2023/9532488 | |
7. | Wali Haider, Hüseyin Budak, Asia Shehzadi, Fractional Milne-type inequalities for twice differentiable functions for Riemann–Liouville fractional integrals, 2024, 14, 1664-2368, 10.1007/s13324-024-00980-5 | |
8. | Barış Çelik, Hüseyin Budak, Erhan Set, On generalized Milne type inequalities for new conformable fractional integrals, 2024, 38, 0354-5180, 1807, 10.2298/FIL2405807C |