Citation: Huimin Li, Shuwen Xiang, Yanlong Yang, Chenwei Liu. Differential evolution particle swarm optimization algorithm based on good point set for computing Nash equilibrium of finite noncooperative game[J]. AIMS Mathematics, 2021, 6(2): 1309-1323. doi: 10.3934/math.2021081
[1] | Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad . New results on a coupled system for second-order pantograph equations with ABC fractional derivatives. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071 |
[2] | Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316 |
[3] | Tamer Nabil . Ulam stabilities of nonlinear coupled system of fractional differential equations including generalized Caputo fractional derivative. AIMS Mathematics, 2021, 6(5): 5088-5105. doi: 10.3934/math.2021301 |
[4] | H. H. G. Hashem, Hessah O. Alrashidi . Qualitative analysis of nonlinear implicit neutral differential equation of fractional order. AIMS Mathematics, 2021, 6(4): 3703-3719. doi: 10.3934/math.2021220 |
[5] | Muath Awadalla, Manigandan Murugesan, Subramanian Muthaiah, Bundit Unyong, Ria H Egami . Existence results for a system of sequential differential equations with varying fractional orders via Hilfer-Hadamard sense. AIMS Mathematics, 2024, 9(4): 9926-9950. doi: 10.3934/math.2024486 |
[6] | Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880 |
[7] | Sivaranjani Ramasamy, Thangavelu Senthilprabu, Kulandhaivel Karthikeyan, Palanisamy Geetha, Saowaluck Chasreechai, Thanin Sitthiwirattham . Existence, uniqueness and controllability results of nonlinear neutral implicit ABC fractional integro-differential equations with delay and impulses. AIMS Mathematics, 2025, 10(2): 4326-4354. doi: 10.3934/math.2025200 |
[8] | Gulalai, Shabir Ahmad, Fathalla Ali Rihan, Aman Ullah, Qasem M. Al-Mdallal, Ali Akgül . Nonlinear analysis of a nonlinear modified KdV equation under Atangana Baleanu Caputo derivative. AIMS Mathematics, 2022, 7(5): 7847-7865. doi: 10.3934/math.2022439 |
[9] | Sabri T. M. Thabet, Miguel Vivas-Cortez, Imed Kedim . Analytical study of ABC-fractional pantograph implicit differential equation with respect to another function. AIMS Mathematics, 2023, 8(10): 23635-23654. doi: 10.3934/math.20231202 |
[10] | Abdelkrim Salim, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On the nonlocal hybrid (k,φ)-Hilfer inverse problem with delay and anticipation. AIMS Mathematics, 2024, 9(8): 22859-22882. doi: 10.3934/math.20241112 |
The fundamental concept of fractional calculus involves replacing natural numbers with rational numbers in the order of differentiation operators. Although this concept may initially appear undeveloped and straightforward, it carries profound implications and yields significant results that effectively describe phenomena in various fields, including bioengineering, dynamics, modeling, control theory, and medicine. For more detailed information on this topic, we refer the reader to the following references [1,2,3,4]. Fractional differential equations (FDEs) play a critical role in modeling the growth of systems, particularly through nonlocal Cauchy-type problems that describe nonnegative quantities like species concentrations or temperature distributions. Before applying these models to real-world phenomena, it is crucial to establish the existence of solutions, which can be addressed using fixed point theory. Furthermore, it is essential to develop stable algorithms and reliable numerical procedures to obtain accurate results and ensure the practicality and validity of the models in real-life applications. The articles [5,6,7,8] and their references explore a wide range of interesting and innovative findings related to the existence and stability of coupled systems in various types of FDEs. These studies delve into different aspects of coupled systems and contribute to our understanding of their dynamics and properties. They provide valuable insights into the behavior and solutions of coupled FDEs, opening up avenues for further research and applications in this field. New strategies and methodologies have been developed to describe the dynamics of real problems. In particular, Caputo and Fabrizio [9] introduced a new class of fractional derivatives within the exponential kernel, which Losada and Nieto [10] explored further, uncovering intriguing characteristics. Atangana and Baleanu [11] investigated a novel type of fractional derivatives using Mittag-Leffler (ML) kernels. Abdeljawad [12] extended the ABC fractional derivative to higher arbitrary orders and included their associated integral operators. The reader may find theoretical works on the ABC fractional operator in references [13,14,15,16].
It is evident that the challenges posed by operators of variable order are more complex compared to operators of constant order. Recently, several authors have explored the applications of variable order derivatives in various scientific fields, including multi-fractional Gaussian noises, mechanical applications, and anomalous diffusion models. Among these, numerous studies have focused on developing numerical techniques for a specific class of variable-order FDEs, as exemplified by [17,18,19,20]. In this regard, Lorenzo et al. [21], utilizing fractional operators with variable order, addressed the problem of fractional diffusion. Subsequently, fractional variable order has found applications in various areas of science and engineering (see [22,23,24]). Sun et al. [25] conducted a comparative study between constant and variable order models to describe systems with memory. Various techniques are available for approximating solutions to fractional boundary value problems with variable orders. For instance, the authors in [26] developed a nonlinear model of alcoholism within the framework of FDEs with variable order and examined its solutions numerically and analytically. Recently, Li et al [27] investigated the following fractional problem using a novel numerical strategy
{MLDω(ι)0+y(ι)+a(ι)y(ι)=H(ι,y(ι)),ι∈[0,1],B(y)=0, | (1.1) |
where, MLDω(ι)0+ is the Mittag-Leffler fractional derivative of order ω(ι). Kaabar et al. [28] examined the qualitative characteristics of the following implicit FDEs with variable order
{CDω(ι)0+y(ι)=H(ι,y(ι),CDω(ι)0+y(ι)), ι∈[0,b],y(0)=0,y(b)=0, | (1.2) |
where, CDω(ι)0+ is the Caputo fractional differential (FD) of variable order ω(ι). Jeelani et al. [29] employed generalized intervals, Krasnoselskii and Banach's fixed point theorems, and piecewise constant functions to conduct qualitative analyses on a nonlinear fractional integrodifferential equation.
Based on the provided justifications, we are motivated to evaluate and investigate the necessary conditions for a coupled system within the context of the ABC-fractional derivative with a variable order as the following
{ABCDω(ι)0+y1(ι)=H1(ι,y2(ι),ABCDω(ι)0+y1(ι)),ι∈J:=(0,b],ABCDω(ι)0+y2(ι)=H2(ι,y1(ι),ABCDω(ι)0+y2(ι)),ι∈J:=(0,b],y1(0)=0,y1(b)=n∑k=1y1(τk), τk∈(0,b),y2(0)=0,y2(b)=n∑k=1y2(γk), γk∈(0,b), | (1.3) |
where
i)ABCDω(ι)0+ is the ABC-FD of variable order ω(ι)∈(1,2].
ii) τk,γk∈R, k=1,2,...,n, are prefixed points satisfying 0<κ1≤κ2≤...≤κn<b and 0<γ1≤γ2≤...≤γn<b.
iii) H1,H2:J×R2⟶R are continuous functions that comply with a few later-described presumptions.
To the best of our knowledge, no studies in the aforementioned body of research address an implicit coupled system of fractional variable order. The proposed implicit coupled system (1.3) is a more general form compared to the previous problems (1.1) and (1.2) in [26,28,29]. The proposed implicit coupled system (1.3) contains nonlocal conditions and variable order ω(ι)∈(1,2]. The complexity of calculations and partitioning the principal time interval has limited the number of studies specifically addressing the stability and existence of fractional integrodifferential boundary value problems with variable order. To bridge this gap, we conduct a comprehensive qualitative analysis of a new implicit coupled system (1.3) with a variable order within the framework of ABC fractional operators. By employing extended intervals and piecewise constant functions, we accurately transform the coupled system into an equivalent standard system with constant order in the context of the ABC-fractional derivative. The existence and uniqueness of solutions to the coupled system (1.3) are then demonstrated using fixed point techniques such as Krasnoselskii and Banach theorems. The Ulam-Hyers stability result of the suggested problem is also discussed. Additionally, we establish suitable conditions for the existence of effective solutions to the coupled system (1.3). The contributions of this work lie in providing a framework to address the challenges associated with variable-order FDEs involving the ABC fractional operator. The study offers transformation techniques, investigation of qualitative properties, existence and uniqueness analysis, stability analysis, and illustrative examples to support its findings. The results obtained in this study will contribute to understanding the stability properties of the considered implicit coupled system of fractional variable order. This knowledge is valuable for designing and controlling systems modeled using such equations, ensuring their robustness, and predicting their behavior accurately.
The paper's structure is as follows: Section 2 offers an overview of fractional calculus notations, definitions, and relevant lemmas, including a crucial lemma that converts the coupled system of ABC-fractional derivative into an equivalent integral equation. Section 3 focuses on establishing the existence and uniqueness of solutions for the coupled system, while Section 4 investigates the Ulam-Hyers stability of the system. To illustrate the obtained results, Section 5 presents numerical examples. Finally, the paper concludes with a summary of the findings, concluding remarks, and suggestions for potential future research directions.
Let C(J,R) be a Banach space consisting of all continuous functions y:J→R, where J:=(0,b] with the following supremum norm
‖y‖=sup{|y(ι)|:ι∈J}. |
Define the product space Υ=C(J,R)×C(J,R). Thus, Υ\ is Banach space with the following norm
‖(y1,y2)‖Υ=‖y1‖+‖y2‖, |
for each (y1,y2)∈Υ.
Derivatives and integrals that have orders as functions of specific variables belong to the category of operators with variable order, which is a more complex classification. Variable order fractional integrals and derivatives can be defined in various ways.
Definition 2.1. [17] Let ω(ι)∈(n−1,n], y∈H1(J), then, the left ABC fractional derivative of order ω(ι) for function y(ι) with the lower limit zero are defined as
ABCDω(ι)0+y(ι)=Λ(ω(ι))1−ω(ι)∫ι0Eω(ι)(ω(ι)ω(ι)−1(ι−θ)ω)y′(θ)dθ, ι>0. | (2.1) |
The normalization function Λ(ω(ι)) satisfies Λ(0)=Λ(1)=1, where Eω(ι) is the ML function defined by
Eω(ι)(y)=∞∑k=0ykΓ(kω(ι)+1), Re(ω)>0,y∈C. |
The left Atangana-Baleanu (AB) fractional integral of order ω(ι) for function y(ι) are defined as
ABIω(ι)0+y(ι)=1−ω(ι)Λ(ω(ι))y(ι)+ω(ι)Λ(ω(ι))Γ(ω(ι))∫ι0(ι−s)ω(ι)−1y(s)ds. |
Lemma 2.2. [12] Let y(ι) be a function defined on the interval [0,b] and n<ω≤n+1, n∈N0. Then, we have
(ABIωABC0+Dω0+y)(ι)=y(ι)−n∑k=0y(k)(0)k!ιk. |
Theorem 2.3. [30] Let X be a Banach space and S⊂\ X be a nonempty, closed, convex and bounded subset. If there exist two operators Φ1,Φ2 satisfying the following conditions:
(1) Φ1u+Φ2v∈X, for all u,v∈X.
(2) Φ1 is completely continuous and Φ2 is a contraction mapping.
Then, there exists a function z∈S such that z=Φ1z+Φ2z.
Remark 2.4. Let u(ι),v(ι)∈C(J,R) be two continuous functions. Then, we have
ABIu(ι)0+ ABIv(ι)0+y(ι)≠ ABIu(ι)+v(ι)0+y(ι). |
Lemma 2.5. [12] Let ω∈(1,2] and ℏ∈C([a,b],R). Then, the following integral equation
y(ι)=c1+c2(ι−a)+ABIωa+ℏ(ι), |
is an equivalent to the following linear problem
{ABCDωa+y(ι)=ℏ(ι),y(a)=c1,y′(a)=c2, |
where
ABIωa+ℏ(ι)=2−ωΛ(ω−1)∫ιaℏ(s)ds+ω−1Λ(ω−1)Γ(ω)∫ιa(ι−s)ω−1ℏ(s)ds. | (2.2) |
For the sake of simplicity in our analysis, we will use the following notations:
Θ1=(bi−bi−1)−n∑k=1(τk−bi−1)≠0,Θ2=(bi−bi−1)−n∑k=1(γk−bi−1)≠0, |
P1=2−ωiΛ(ωi−1),P2=ωi−1Λ(ωi−1),P3=2−ωiΛ(ωi−1),P4=ωi−1Λ(ωi−1)Γ(ωi), |
ZΠ=(P3(bi−bi−1)+P4Γ(ωi+1)(bi−bi−1)ωi), |
GΠ1=P1(bi−bi−1)Θ1(n∑k=1(τk−bi−1)+(bi−bi−1))+P2(bi−bi−1)Θ1Γ(ωi+1)(n∑k=1(τk−bi−1)ωi+(bi−bi−1)ωi), |
GΠ2=P1(bi−bi−1)Θ2(n∑k=1(γk−bi−1)+(bi−bi−1))+P2(bi−bi−1)Θ2Γ(ωi+1)(n∑k=1(γk−bi−1)ωi+(bi−bi−1)ωi), |
RΠ1=GΠ1+ZΠ and RΠ2=GΠ2+ZΠ, |
and
Ω1=RΠ1NH11−NH1 and Ω2=RΠ2NH21−NH2. | (2.3) |
In this part, we convert the coupled system (1.3) with variable-order ω(ι) into an equivalent integral equations. To begin, we transform the coupled system with variable order into a coupled system with constant order by using generalized intervals and piecewise constant functions. Let B be a partition of the interval J defined as
B={J1=[b0,b1],J2=(b1,b2],J3=(b2,b3],.....,Jn=(bn−1,bn]}, |
such that b0=0,bn=b and n∈N. Let ω(ι):J→(1,2] be a piecewise constant function concerning B. This means that the function ω(ι) takes values in the interval (1,2] and is constant over different intervals or "pieces" defined by the set B. In other words, for each interval in B, the function ω(ι) remains constant within that interval. The specific values of ω(ι) within each interval can vary, but they will always be within the range of (1,2]. The set B defines the partition or division of the domain J into different intervals, and within each interval, the function ω(ι) takes on a constant value. So, the function ω(ι) can be a representation as
ω(ι)=n∑i=1ωiUi(ι)={ω1, if ι∈J1,ω2, if ι∈J2,...ωn, if ι∈Jn, |
where, ωi∈(1,2] are constants numbers, and Ui is the indicator of the interval Ji:=(bi−1,bi], i=1,2,...,n such that
Ui(ι)={1, if ι∈Ji,0, for elsewhere. |
Let C(Ji,R), i∈{1,2,...,n} be a Banach space of all continuous functions defined as yi:Ji→R with the following norm
‖yi‖=sup{|y(ι)|:ι∈Ji}. |
By (2.1), the coupled system (1.3) can be expressed as
{Λ(ω(ι))1−ω(ι)∫ι0Eω(ι)(ω(ι)ω(ι)−1(ι−θ)ω)y′1(θ)dθ=H1(ι,y2(ι),ABCDω(ι)0+y1(ι)),Λ(ω(ι))1−ω(ι)∫ι0Eω(ι)(ω(ι)ω(ι)−1(ι−θ)ω)y′2(θ)dθ=H2(ι,y1(ι),ABCDω(ι)0+y2(ι)). | (2.4) |
Then, for ι∈Ji,i=1,2,...,n the coupled system (2.4) on Ji can express as a sum of left ABC-coupled systems of constant-orders ω1,ω2,....ωn as follows
{Λ(ω1)1−ω1∫b10Eω1(ω1(ι−θ)ω1ω1−1)y′1(θ)dθ+...+Λ(ωi)1−ωi∫ιbi−1Eωi(ωi(ι−θ)ωiωi−1)y′1(θ)dθ=H1(ι,y2(ι),ABCDωi0+y1(ι)),Λ(ω1)1−ω1∫b10Eω1(ω1(ι−θ)ω1ω1−1)y′2(θ)dθ+...+Λ(ωi)1−ωi∫ιbi−1Eωi(ωi(ι−θ)ωiωi−1)y′2(θ)dθ=H2(ι,y1(ι),ABCDωi0+y2(ι)). | (2.5) |
Let the function (y1,y2) be such that y1(ι)≡y2(ι)≡0 on ι∈[0,bi−1],i=1,2,....,n, and such that it solves the system (2.5). Hence, the coupled system (1.3) with variable-order ω(ι) is reduced to the following system
{ABCDωib+i−1y1(ι)=H1(ι,y2(ι),ABCDωib+i−1y1(ι)),ι∈Ji,ABCDωib+i−1y2(ι)=H2(ι,y1(ι),ABCDωib+i−1y2(ι)),ι∈Ji,y1(bi−1)=0, y1(bi)=n∑k=1y1(τk), τk∈(0,b),y2(bi−1)=0, y2(bi)=n∑k=1y2(γk), γk∈(0,b). | (2.6) |
Now, to analyze the properties of solutions using fixed point theorems, we transform the coupled system (2.6) into an equivalent integral equation. For that, we present the following theorem.
Theorem 2.6. For i=1,2,...,n, let ωi∈(1,2], and H:Ji×R2→R be a continuous function and Θ1,Θ2≠0. If (y1,y2)∈Υ is a solution of coupled system (2.6), then, (y1,y2) satisfies the following fractional integral equations
y1(ι)=(ι−bi−1)Θ1[n∑k=1ABIωib+i−1Hy1(τk)−ABIωib+i−1Hy1(bi)]+ABIωib+i−1Hy1(ι), | (2.7) |
and
y2(ι)=(ι−bi−1)Θ2[n∑k=1ABIωib+i−1Hy2(γk)−ABIωib+i−1Hy2(bi)]+ABIωib+i−1Hy2(ι), | (2.8) |
where
Hy1(ι)=H1(ι,y2(ι),ABCDωib+i−1y1(ι)),Hy2(ι)=H2(ι,y1(ι),ABCDωib+i−1y2(ι)). |
Proof. We assume that (y1,y2)∈Υ is a solution of coupled system (2.6). Apply the operator ABIωib+i−1 to both sides of (2.6) and using Lemma 2.5, we get
y1(ι)=c1+c2(ι−bi−1)+ABIωib+i−1Hy1(ι), | (2.9) |
and
y2(ι)=c3+c4(ι−bi−1)+ABIωib+i−1Hy2(ι). | (2.10) |
By conditions y1(bi−1)=0 and y2(bi−1)=0, we get c1=c3=0. Hence. Eqs (2.9) and (2.10) become as
y1(ι)=c2(ι−bi−1)+ABIωib+i−1Hy1(ι), |
and
y2(ι)=c4(ι−bi−1)+ABIωib+i−1Hy2(ι). |
By second conditions y1(bi)=∑nk=1y1(τk) and y2(bi)=∑nk=1y2(γk), we get
c2=1Θ1[n∑k=1 ABIωib+i−1Hy1(τk)−ABIωib+i−1Hy1(bi)], |
and
c4=1Θ2[n∑k=1 ABIωib+i−1Hy2(γk)−ABIωib+i−1Hy2(bi)]. |
Substitute the values of c1,c2,c3,c4 into (2.9) and (2.10), and we get (2.7) and (2.8). Conversely, assume that (y1,y2)∈Υ satisfies (2.7) and (2.8). Then, by applying ABCDωib+i−1 on both sides of (2.7) and (2.8), with using the fact ABCDωib+i−1(ι−bi−1)=0, we get (2.6). Next, take ι→τk in (2.7), and we get
n∑k=1y1(τk)=∑nk=1(τk−bi−1)Θ1[n∑k=1 ABIωib+i−1Hy1(τk)−ABIωib+i−1Hy1(bi)]+n∑k=1 ABIωib+i−1Hy1(τk)=(bi−bi−1)−Θ1Θ1[n∑k=1 ABIωib+i−1Hy1(τk)−ABIωib+i−1Hy1(bi)]+n∑k=1 ABIωib+i−1Hy1(τk)=y1(bi). |
In the same manner, we get y2(bi)=∑nk=1y2(γk). Thus, the nonlocal conditions are satisfied.
For further analysis, we simplify the solutions (2.7) and (2.8) as
\begin{eqnarray*} y_{1}(\iota ) & = &\frac{P_{1}(\iota -b_{i-1})}{\Theta _{1}}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\tau _{k}}\mathcal{H}_{y_{1}}\left( s\right) ds-\int_{b_{i-1}}^{b_{i}}\mathcal{H}_{y_{1}}\left( s\right) ds\right) \\ &&+\frac{P_{2}(\iota -b_{i-1})}{\Theta _{1}\Gamma (\omega _{i})}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\tau _{k}}\left( \tau _{k}-s\right) ^{\omega _{i}-1}\mathcal{H}_{y_{1}}\left( s\right) ds-\int_{b_{i-1}}^{b_{i}}\left( b_{i}-s\right) ^{\omega _{i}-1}\mathcal{H}_{y_{1}}\left( s\right) ds\right) \\ &&+P_{3}\int_{b_{i-1}}^{\iota }\mathcal{H}_{y_{1}}\left( s\right) ds+\frac{ P_{4}}{\Gamma (\omega _{i})}\int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\mathcal{H}_{y_{1}}\left( s\right) ds, \end{eqnarray*} |
and
\begin{eqnarray*} y_{2}(\iota ) & = &\frac{P_{1}(\iota -b_{i-1})}{\Theta _{2}}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\gamma _{k}}\mathcal{H}_{y_{2}}\left( s\right) ds-\int_{b_{i-1}}^{b_{i}}\mathcal{H}_{y_{2}}\left( s\right) ds\right) \\ &&+\frac{P_{2}(\iota -b_{i-1})}{\Theta _{2}\Gamma (\omega _{i})}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\gamma _{k}}\left( \gamma _{k}-s\right) ^{\omega _{i}-1}\mathcal{H}_{y_{2}}\left( s\right) ds-\int_{b_{i-1}}^{b_{i}}\left( b_{i}-s\right) ^{\omega _{i}-1}\mathcal{H} _{y_{2}}\left( s\right) ds\right) \\ &&+P_{3}\int_{b_{i-1}}^{\iota }\mathcal{H}_{y_{2}}\left( s\right) ds+\frac{ P_{4}}{\Gamma (\omega _{i})}\int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\mathcal{H}_{y_{2}}\left( s\right) ds. \end{eqnarray*} |
In this part, we will examine the necessary conditions for the existence and uniqueness for the coupled system (2.6) by using some fixed point theorems.
Theorem 3.1. Suppose that
(H _{1} ) The functions \mathcal{H}_{1}, \mathcal{H}_{2}:\mathcal{J} _{i}\times \mathbb{R} ^{2}\rightarrow \mathbb{R} are continuous and there exist constant numbers \mathfrak{N}_{\mathcal{H} _{1}}, \mathfrak{N}_{\mathcal{H}_{2}} > 0 such that
\begin{eqnarray*} \left\vert \mathcal{H}_{1}(\iota , x, y)-\mathcal{H}_{1}(\iota , \overline{x}, \overline{y})\right\vert &\leq &\mathfrak{N}_{\mathcal{H}_{1}}\left( \left\vert x-\overline{x}\right\vert +\left\vert y-\overline{y}\right\vert \right) , \mathfrak{N}_{\mathcal{H}_{1}} > 0, \\ \left\vert \mathcal{H}_{2}(\iota , x, y)-\mathcal{H}_{2}(\iota , \overline{x}, \overline{y})\right\vert &\leq &\mathfrak{N}_{\mathcal{H}_{2}}\left( \left\vert x-\overline{x}\right\vert +\left\vert y-\overline{y}\right\vert \right) , \mathfrak{N}_{\mathcal{H}_{2}} > 0, \end{eqnarray*} |
for all x, y, \overline{x}, \overline{y}\in C\left(\mathcal{J}_{i}, \mathcal{ \mathbb{R} }\right). Then, the coupled system (2.6) has a unique solution provided that \max \left\{ \Omega _{1}, \Omega _{2}\right\} < 1 , where \Omega _{1} and \Omega _{2} are defined by (2.3).
Proof. On the light of Theorem 2.6, we define the operator \mathbf{ \Pi }:\Upsilon \rightarrow \Upsilon as
\begin{equation*} \mathbf{\Pi }\left( y_{1}, y_{2}\right) \left( \iota \right) = \left( \mathbf{ \Pi }_{1}\left( y_{1}, y_{2}\right) \left( \iota \right) , \mathbf{\Pi } _{2}\left( y_{1}, y_{2}\right) \left( \iota \right) \right) , \end{equation*} |
where
\begin{eqnarray*} \mathbf{\Pi }_{1}\left( y_{1}, y_{2}\right) \left( \iota \right) & = &\frac{ P_{1}(\iota -b_{i-1})}{\Theta _{1}}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\tau _{k}}\mathcal{H}_{y_{1}}\left( s\right) ds-\int_{b_{i-1}}^{b_{i}}\mathcal{H} _{y_{1}}\left( s\right) ds\right) \\ &&+\frac{P_{2}(\iota -b_{i-1})}{\Theta _{1}\Gamma (\omega _{i})}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\tau _{k}}\left( \tau _{k}-s\right) ^{\omega _{i}-1}\mathcal{H}_{y_{1}}\left( s\right) ds-\int_{b_{i-1}}^{b_{i}}\left( b_{i}-s\right) ^{\omega _{i}-1}\mathcal{H}_{y_{1}}\left( s\right) ds\right) \\ &&+P_{3}\int_{b_{i-1}}^{\iota }\left\vert \mathcal{H}_{y_{1}}\left( s\right) \right\vert ds+\frac{P_{4}}{\Gamma (\omega _{i})}\int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\mathcal{H}_{y_{1}}\left( s\right) ds, \end{eqnarray*} |
and
\begin{eqnarray*} \mathbf{\Pi }_{2}\left( y_{1}, y_{2}\right) \left( \iota \right) & = &\frac{ P_{1}(\iota -b_{i-1})}{\Theta _{2}}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\gamma _{k}}\mathcal{H}_{y_{2}}\left( s\right) ds-\int_{b_{i-1}}^{b_{i}}\mathcal{H}_{y_{2}}\left( s\right) ds\right) \\ &&+\frac{P_{2}(\iota -b_{i-1})}{\Theta _{2}\Gamma (\omega _{i})}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\gamma _{k}}\left( \gamma _{k}-s\right) ^{\omega _{i}-1}\mathcal{H}_{y_{2}}\left( s\right) ds-\int_{b_{i-1}}^{b_{i}}\left( b_{i}-s\right) ^{\omega _{i}-1}\mathcal{H} _{y_{2}}\left( s\right) ds\right) \\ &&+P_{3}\int_{b_{i-1}}^{\iota }\left\vert \mathcal{H}_{y_{2}}\left( s\right) \right\vert ds+\frac{P_{4}}{\Gamma (\omega _{i})}\int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\mathcal{H}_{y_{2}}\left( s\right) ds. \end{eqnarray*} |
Let \beta _{\eta _{i}} be a closed ball defined as
\begin{equation*} \beta _{\eta _{i}} = \left\{ \left( y_{1}, y_{2}\right) \in \Upsilon :\left\Vert \left( y_{1}, y_{2}\right) \right\Vert _{\Upsilon }\leq \eta _{i}\right\} , \end{equation*} |
with radius \eta _{i}\geq \frac{\left(\Phi _{1}+\Phi _{2}\right) }{1-\max \left\{ \Omega _{1}, \Omega _{2}\right\} }, and
\begin{equation*} \Phi _{i} = \mathcal{R}_{\Pi _{i}}\mathcal{L}_{\mathcal{H}_{i}}, i = 1, 2, \end{equation*} |
where \mathcal{L}_{\mathcal{H}_{i}} = \max_{\iota \in \mathcal{J} _{i}}\left\vert \mathcal{H}_{_{i}}(\iota, 0, 0)\right\vert. Now, we show that \mathbf{\Pi }\beta _{\eta _{i}}\subset \beta _{\eta _{i}}. For the operator \mathbf{\Pi }_{1}, let \left(y_{1}, y_{1}\right) \in \beta _{\eta _{i}} and \iota \in \mathcal{J}_{i} . Then, we have
\begin{eqnarray*} \left\vert \mathbf{\Pi }_{1}\left( y_{1}, y_{2}\right) \left( \iota \right) \right\vert & = &\frac{P_{1}(\iota -b_{i-1})}{\Theta _{1}}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\tau _{k}}\left\vert \mathcal{H}_{y_{1}}\left( s\right) \right\vert ds-\int_{b_{i-1}}^{b_{i}}\left\vert \mathcal{H} _{y_{1}}\left( s\right) \right\vert ds\right) \\ &&+\frac{P_{2}(\iota -b_{i-1})}{\Theta _{1}\Gamma (\omega _{i})}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\tau _{k}}\left( \tau _{k}-s\right) ^{\omega _{i}-1}\left\vert \mathcal{H}_{y_{1}}\left( s\right) \right\vert ds-\int_{b_{i-1}}^{b_{i}}\left( b_{i}-s\right) ^{\omega _{i}-1}\left\vert \mathcal{H}_{y_{1}}\left( s\right) \right\vert ds\right) \\ &&+P_{3}\int_{b_{i-1}}^{\iota }\left\vert \mathcal{H}_{y_{1}}\left( s\right) \right\vert ds+\frac{P_{4}}{\Gamma (\omega _{i})}\int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\left\vert \mathcal{H}_{y_{1}}\left( s\right) \right\vert ds. \end{eqnarray*} |
By \left(H_{1}\right) , we have
\begin{eqnarray} \left\vert \mathcal{H}_{y_{1}}\left( \iota \right) \right\vert & = &\left\vert \mathcal{H}_{_{1}}(\iota )\right\vert = \left\vert \mathcal{H} _{1}(\iota , y_{2}(\iota ), {^{ABC}}\mathbf{D}_{b_{i-1}^{+}}^{\omega _{i}}y_{1}(\iota ))-\mathcal{H}_{_{1}}(\iota , 0, 0)\right\vert +\left\vert \mathcal{H}_{_{1}}(\iota , 0, 0)\right\vert \\ &\leq &\frac{\mathfrak{N}_{\mathcal{H}_{1}}}{1-\mathfrak{N}_{\mathcal{H}_{1}} }\left\vert y_{2}(\iota )\right\vert +\mathcal{L}_{\mathcal{H}_{1}}. \end{eqnarray} | (3.1) |
Hence
\begin{eqnarray*} \left\Vert \mathbf{\Pi }_{1}\left( y_{1}, y_{2}\right) \right\Vert &\leq & \frac{P_{1}(\iota -b_{i-1})}{\Theta _{1}}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\tau _{k}}\left\vert \mathcal{H}_{y_{1}}\left( s\right) \right\vert ds-\int_{b_{i-1}}^{b_{i}}\left\vert \mathcal{H} _{y_{1}}\left( s\right) \right\vert ds\right) \\ &&+\frac{P_{2}(\iota -b_{i-1})}{\Theta _{1}\Gamma (\omega _{i})}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\tau _{k}}\left( \tau _{k}-s\right) ^{\omega _{i}-1}\left\vert \mathcal{H}_{y_{1}}\left( s\right) \right\vert ds-\int_{b_{i-1}}^{b_{i}}\left( b_{i}-s\right) ^{\omega _{i}-1}\left\vert \mathcal{H}_{y_{1}}\left( s\right) \right\vert ds\right) \\ &&+P_{3}\int_{b_{i-1}}^{\iota }\left\vert \mathcal{H}_{y_{1}}\left( s\right) \right\vert ds+\frac{P_{4}}{\Gamma (\omega _{i})}\int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\left\vert \mathcal{H}_{y_{1}}\left( s\right) \right\vert ds \\ &\leq &\Omega _{1}\left\Vert y_{2}\right\Vert +\Phi _{1}. \end{eqnarray*} |
In the same manner, for the operator \mathbf{\Pi }_{2}, we get
\begin{equation*} \left\Vert \mathbf{\Pi }_{2}\left( y_{1}, y_{2}\right) \right\Vert \leq \Omega _{2}\left\Vert y_{1}\right\Vert +\Phi _{2}. \end{equation*} |
Hence, by the fact \left\Vert \mathbf{\Pi }\left(y_{1}, y_{2}\right) \right\Vert _{\Upsilon } = \left\Vert \mathbf{\Pi }_{1}\left(y_{1}, y_{2}\right) \right\Vert +\left\Vert \mathbf{\Pi }_{2}\left(y_{1}, y_{1}\right) \right\Vert, we get
\begin{eqnarray*} \left\Vert \mathbf{\Pi }\left( y_{1}, y_{2}\right) \right\Vert _{\Upsilon } &\leq &\Omega _{1}\left\Vert y_{1}\right\Vert +\Omega _{2}\left\Vert y_{2}\right\Vert +\left( \Phi _{1}+\Phi _{2}\right) \\ &\leq &\max \left\{ \Omega _{1}, \Omega _{2}\right\} \left( \left\Vert y_{1}\right\Vert +\left\Vert y_{2}\right\Vert \right) +\left( \Phi _{1}+\Phi _{2}\right) \\ &\leq &\max \left\{ \Omega _{1}, \Omega _{2}\right\} \left\Vert \left( y_{1}, y_{2}\right) \right\Vert _{\Upsilon }+\left( \Phi _{1}+\Phi _{2}\right) \\ &\leq &\eta _{i}. \end{eqnarray*} |
Thus \mathbf{\Pi }\left(y_{1}, y_{2}\right) \in \beta _{\eta _{i}} . Now, we shall prove that \mathbf{\Pi }\left(y_{1}, y_{2}\right) is a contraction. Let \left(y_{1}, y_{2}\right), \left(\widehat{y}_{1}, \widehat{ y}_{2}\right) \in \beta _{\eta _{i}} and \iota \in \mathcal{J}_{i} . Then, for the operator \mathbf{\Pi }_{1}, we have
\begin{eqnarray*} &&\left\vert \mathbf{\Pi }_{1}\left( y_{1}, y_{2}\right) (\iota )-\mathbf{\Pi }_{1}\left( \widehat{y}_{1}, \widehat{y}_{2}\right) (\iota )\right\vert \\ &\leq &\frac{P_{1}(\iota -b_{i-1})}{\Theta _{1}}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\tau _{k}}\left\vert \mathcal{H}_{y_{1}}\left( s\right) -\mathcal{H}_{\widehat{y}_{1}}\left( s\right) \right\vert ds+\int_{b_{i-1}}^{b_{i}}\left\vert \mathcal{H}_{y_{1}}\left( s\right) - \mathcal{H}_{\widehat{y}_{1}}\left( s\right) \right\vert ds\right) \\ &&+\frac{P_{2}(\iota -b_{i-1})}{\Theta _{1}\Gamma (\omega _{i})}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\tau _{k}}\left( \tau _{k}-s\right) ^{\omega _{i}-1}\left\vert \mathcal{H}_{y_{1}}\left( s\right) -\mathcal{H}_{\widehat{y }_{1}}\left( s\right) \right\vert ds+\int_{b_{i-1}}^{b_{i}}\left( b_{i}-s\right) ^{\omega _{i}-1}\left\vert \mathcal{H}_{y_{1}}\left( s\right) -\mathcal{H}_{\widehat{y}_{1}}\left( s\right) \right\vert ds\right) \\ &&+P_{3}\int_{b_{i-1}}^{\iota }\left\vert \mathcal{H}_{y_{1}}\left( s\right) -\mathcal{H}_{\widehat{y}_{1}}\left( s\right) \right\vert ds+\frac{P_{4}}{ \Gamma (\omega _{i})}\int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\left\vert \mathcal{H}_{y_{1}}\left( s\right) -\mathcal{H}_{\widehat{y }_{1}}\left( s\right) \right\vert ds. \end{eqnarray*} |
By (H _{1} ), we obtain
\begin{eqnarray} \left\vert \mathcal{H}_{y_{1}}\left( s\right) -\mathcal{H}_{\widehat{y} _{1}}\left( s\right) \right\vert & = &\left\vert \mathcal{H}_{1}(s, y_{2}(s), { ^{ABC}}\mathbf{D}_{b_{i-1}^{+}}^{\omega _{i}}y_{1}(s))-\mathcal{H}_{1}(s, \widehat{y}_{2}(s), {^{ABC}}\mathbf{D}_{b_{i-1}^{+}}^{\omega _{i}}\widehat{y} _{1}(s))\right\vert \\ &\leq &\mathfrak{N}_{f}\left( \left\vert y_{2}(s)-\widehat{y} _{2}(s)\right\vert +\left\vert \mathcal{H}_{y_{1}}\left( s\right) -\mathcal{H }_{\widehat{y}_{1}}\left( s\right) \right\vert \right) \\ &\leq &\frac{\mathfrak{N}_{f}}{1-\mathfrak{N}_{f}}\left( \left\Vert y_{2}- \widehat{y}_{2}\right\Vert \right) . \end{eqnarray} | (3.2) |
Hence
\begin{equation*} \left\Vert \mathbf{\Pi }_{1}\left( y_{1}, y_{2}\right) -\mathbf{\Pi } _{1}\left( \widehat{y}_{1}, \widehat{y}_{2}\right) \right\Vert \leq \Omega _{1}\left( \left\Vert y_{2}-\widehat{y}_{2}\right\Vert \right) . \end{equation*} |
In the same manner, for the operator \mathbf{\Pi }_{1}, we get
\begin{equation*} \left\Vert \mathbf{\Pi }_{2}\left( y_{1}, y_{2}\right) -\mathbf{\Pi } _{2}\left( \widehat{y}_{1}, \widehat{y}_{2}\right) \right\Vert \leq \Omega _{2}\left( \left\Vert y_{1}-\widehat{y}_{1}\right\Vert \right) . \end{equation*} |
Thus, we have
\begin{eqnarray*} \left\Vert \mathbf{\Pi }\left( y_{1}, y_{2}\right) -\mathbf{\Pi }\left( \widehat{y}_{1}, \widehat{y}_{2}\right) \right\Vert _{\Upsilon } & = &\left\Vert \mathbf{\Pi }_{1}\left( y_{1}, y_{1}\right) -\mathbf{\Pi } _{1}\left( \widehat{y}_{1}, \widehat{y}_{1}\right) \right\Vert +\left\Vert \mathbf{\Pi }_{2}\left( y_{1}, y_{1}\right) -\mathbf{\Pi }_{2}\left( \widehat{ y}_{1}, \widehat{y}_{1}\right) \right\Vert \\ &\leq &\Omega _{1}\left\Vert y_{2}-\widehat{y}_{2}\right\Vert +\Omega _{2}\left\Vert y_{1}-\widehat{y}_{1}\right\Vert \\ &\leq &\max \left\{ \Omega _{1}, \Omega _{2}\right\} \left\Vert \left( y_{1}, y_{2}\right) -\left( \widehat{y}_{1}, \widehat{y}_{2}\right) \right\Vert _{\Upsilon }. \end{eqnarray*} |
Due to \max \left\{ \Omega _{1}, \Omega _{2}\right\} < 1, we deduce that the operator \mathbf{\Pi } is a contraction mapping. Thus, \mathbf{\Pi } has a unique fixed point. By Banach contraction principle, we deduce that the coupled system (2.6) has a unique solution.
Theorem 3.2. Under the hypothesis (H _{1} ) mentioned in Theorem 3.1. If Z_{\Pi }\max \left(\frac{\mathfrak{N}_{\mathcal{H}_{1}}}{1-\mathfrak{N}_{ \mathcal{H}_{1}}}, \frac{\mathfrak{N}_{\mathcal{H}_{2}}}{1-\mathfrak{N}_{ \mathcal{H}_{2}}}\right) < 1, then, the coupled system (2.6) has at least one solution
Proof. Define the operators \mathbf{F}_{1}, \mathbf{G}_{1}, \mathbf{F}_{2}, \mathbf{G} _{2}:\Upsilon \rightarrow \Upsilon as
\begin{eqnarray*} \mathbf{F}_{1}\left( y_{1}, y_{2}\right) \left( \iota \right) & = &P_{3}\int_{b_{i-1}}^{\iota }\left\vert \mathcal{H}_{y_{1}}\left( s\right) \right\vert ds+\frac{P_{4}}{\Gamma (\omega _{i})}\int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\mathcal{H}_{y_{1}}\left( s\right) ds, \\ && \\ \mathbf{F}_{2}\left( y_{1}, y_{2}\right) \left( \iota \right) & = &P_{3}\int_{b_{i-1}}^{\iota }\left\vert \mathcal{H}_{y_{2}}\left( s\right) \right\vert ds+\frac{P_{4}}{\Gamma (\omega _{i})}\int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\mathcal{H}_{y_{2}}\left( s\right) ds, \\ && \\ \mathbf{G}_{1}\left( y_{1}, y_{2}\right) \left( \iota \right) & = &\frac{ P_{1}(\iota -b_{i-1})}{\Theta _{1}}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\tau _{k}}\mathcal{H}_{y_{1}}\left( s\right) ds-\int_{b_{i-1}}^{b_{i}}\mathcal{H} _{y_{1}}\left( s\right) ds\right) \\ &&+\frac{P_{2}(\iota -b_{i-1})}{\Theta _{1}\Gamma (\omega _{i})}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\tau _{k}}\left( \tau _{k}-s\right) ^{\omega _{i}-1}\mathcal{H}_{y_{1}}\left( s\right) ds-\int_{b_{i-1}}^{b_{i}}\left( b_{i}-s\right) ^{\omega _{i}-1}\mathcal{H}_{y_{1}}\left( s\right) ds\right) , \\ && \\ \mathbf{G}_{2}\left( y_{1}, y_{2}\right) \left( \iota \right) & = &\frac{ P_{1}(\iota -b_{i-1})}{\Theta _{2}}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\gamma _{k}}\mathcal{H}_{y_{2}}\left( s\right) ds-\int_{b_{i-1}}^{b_{i}}\mathcal{H}_{y_{2}}\left( s\right) ds\right) \\ &&+\frac{P_{2}(\iota -b_{i-1})}{\Theta _{2}\Gamma (\omega _{i})}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\gamma _{k}}\left( \gamma _{k}-s\right) ^{\omega _{i}-1}\mathcal{H}_{y_{2}}\left( s\right) ds-\int_{b_{i-1}}^{b_{i}}\left( b_{i}-s\right) ^{\omega _{i}-1}\mathcal{H} _{y_{2}}\left( s\right) ds\right) . \end{eqnarray*} |
From the above mentioned operators, we can write
\begin{equation*} \mathbf{\Pi }_{1}\left( y_{1}, y_{2}\right) \left( \iota \right) = \mathbf{F} _{1}\left( y_{1}, y_{2}\right) \left( \iota \right) +\mathbf{G}_{1}\left( y_{1}, y_{2}\right) \left( \iota \right) , \end{equation*} |
and
\begin{equation*} \mathbf{\Pi }_{2}\left( y_{1}, y_{2}\right) \left( \iota \right) = \mathbf{F} _{2}\left( y_{1}, y_{2}\right) \left( \iota \right) +\mathbf{G}_{2}\left( y_{1}, y_{2}\right) \left( \iota \right) . \end{equation*} |
Thus, the operator \mathbf{\Pi } can be expressed as
\begin{equation*} \mathbf{\Pi }\left( y_{1}, y_{2}\right) \left( \iota \right) = \left( \mathbf{ \Pi }_{1}\left( y_{1}, y_{2}\right) \left( \iota \right) , \mathbf{\Pi } _{2}\left( y_{1}, y_{2}\right) \left( \iota \right) \right) . \end{equation*} |
We split the proof into the following steps:
Step 1:In this step, we shall prove that \Pi is continuous. The continuity of \mathcal{H}_{y_{1}} and \mathcal{H}_{y_{2}} implies the continuity of \mathbf{F}_{1}, \mathbf{G}_{1}, \mathbf{F}_{2} and \mathbf{G}_{2} . Consequently, \mathbf{\Pi } is continuous.
Step 2: In this step, we shall prove that \mathbf{G}_{1} and \mathbf{G}_{2} are bounded. By (3.1), we have
\begin{eqnarray*} \left\Vert \mathbf{G}_{1}\left( y_{1}, y_{2}\right) \right\Vert &\leq &\frac{ P_{1}(\iota -b_{i-1})}{\Theta _{1}}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\tau _{k}}\left\vert \mathcal{H}_{y_{1}}\left( s\right) \right\vert ds-\int_{b_{i-1}}^{b_{i}}\left\vert \mathcal{H}_{y_{1}}\left( s\right) \right\vert ds\right) \\ &&+\frac{P_{2}(\iota -b_{i-1})}{\Theta _{1}\Gamma (\omega _{i})}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\tau _{k}}\left( \tau _{k}-s\right) ^{\omega _{i}-1}\left\vert \mathcal{H}_{y_{1}}\left( s\right) \right\vert ds-\int_{b_{i-1}}^{b_{i}}\left( b_{i}-s\right) ^{\omega _{i}-1}\left\vert \mathcal{H}_{y_{1}}\left( s\right) \right\vert ds\right) \\ &\leq &\frac{P_{1}(b_{i}-b_{i-1})}{\Theta _{1}}\left( \sum\limits_{k = 1}^{n}\left( \tau _{k}-b_{i-1}\right) +\left( b_{i}-b_{i-1}\right) \right) \left( \frac{ \mathfrak{N}_{\mathcal{H}_{1}}}{1-\mathfrak{N}_{\mathcal{H}_{1}}}\left\Vert y_{1}\right\Vert +\mathcal{L}_{\mathcal{H}_{1}}\right) \\ &&+\frac{P_{2}(b_{i}-b_{i-1})}{\Theta _{1}\Gamma (\omega _{i}+1)}\left( \sum\limits_{k = 1}^{n}\left( b_{i}-b_{i-1}\right) ^{\omega _{i}}+\left( b_{i}-b_{i-1}\right) ^{\omega _{i}}\right) \left( \frac{\mathfrak{N}_{ \mathcal{H}_{1}}}{1-\mathfrak{N}_{\mathcal{H}_{1}}}\left\Vert y_{1}\right\Vert +\mathcal{L}_{\mathcal{H}_{1}}\right) \\ &\leq &\mathcal{G}_{\Pi _{1}}\frac{\mathfrak{N}_{\mathcal{H}_{1}}}{1- \mathfrak{N}_{\mathcal{H}_{1}}}\left\Vert y_{1}\right\Vert +\mathcal{G}_{\Pi _{1}}\mathcal{L}_{\mathcal{H}_{1}} \\ & = &Q_{1}. \end{eqnarray*} |
In the same manner, we get
\begin{eqnarray*} \left\Vert \mathbf{G}_{2}\left( y_{1}, y_{2}\right) \right\Vert &\leq & \mathcal{G}_{\Pi _{2}}\frac{\mathfrak{N}_{\mathcal{H}_{2}}}{1-\mathfrak{N}_{ \mathcal{H}_{2}}}\left\Vert y_{2}\right\Vert +\mathcal{G}_{\Pi _{2}}\mathcal{ L}_{\mathcal{H}_{2}} \\ & = &Q_{2}, \end{eqnarray*} |
which implies
\begin{equation*} \left\Vert \mathbf{G}\left( y_{1}, y_{2}\right) \right\Vert _{\Upsilon }\leq \max \left( Q_{1}, Q_{2}\right) , \end{equation*} |
where
\begin{equation*} Q_{i} = \mathcal{G}_{\Pi _{i}}{\Large [\frac{\mathfrak{N}_{\mathcal{H}_{i}}}{1- \mathfrak{N}_{\mathcal{H}_{i}}}\left\Vert y_{i}\right\Vert +\mathcal{L}_{ \mathcal{H}_{i}}].} \end{equation*} |
This proves \mathbf{G}_{1}, \mathbf{G}_{2} are uniformly bounded.
Step 3:In this step, we will prove that \mathbf{G}_{1} and \mathbf{G}_{2} are equicontinuous. For this purpose, let \left(y_{1}, y_{2}\right) \in \beta _{\eta _{l}} and \iota _{1}, \iota _{2}\in \mathcal{J} such that 0\leq \iota _{2} < \iota _{1}\leq b. Then, we have
\begin{eqnarray*} &&\left\vert \mathbf{G}_{1}\left( y_{1}, y_{2}\right) (\iota _{2})-\mathbf{G} _{1}\left( y_{1}, y_{2}\right) (\iota _{1})\right\vert \\ &\leq &\frac{P_{1}\left[ (\iota _{2}-b_{i-1})-(\iota _{1}-b_{i-1})\right] }{ \Theta _{1}}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\tau _{k}}\left\vert \mathcal{H}_{y_{1}}\left( s\right) \right\vert ds-\int_{b_{i-1}}^{b_{i}}\left\vert \mathcal{H}_{y_{1}}\left( s\right) \right\vert ds\right) \\ &&+\frac{P_{2}(\iota _{2}-b_{i-1})-(\iota _{1}-b_{i-1})}{\Theta _{1}\Gamma (\omega _{i})}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\tau _{k}}\left( \tau _{k}-s\right) ^{\omega _{i}-1}\left\vert \mathcal{H}_{y_{1}}\left( s\right) \right\vert ds-\int_{b_{i-1}}^{b_{i}}\left( b_{i}-s\right) ^{\omega _{i}-1}\left\vert \mathcal{H}_{y_{1}}\left( s\right) \right\vert ds\right) \mathfrak{.} \end{eqnarray*} |
Thus
\begin{equation*} \left\Vert \mathbf{G}_{1}\left( y_{1}, y_{2}\right) (\iota _{2})-\mathbf{G} _{1}\left( y_{1}, y_{2}\right) (\iota _{1})\right\Vert \rightarrow 0 \mbox{ as }\iota _{2}\rightarrow \iota _{1}. \end{equation*} |
In the same manner, we get
\begin{equation*} \left\Vert \mathbf{G}_{2}\left( y_{1}, y_{2}\right) (\iota _{2})-\mathbf{G} _{2}\left( y_{1}, y_{2}\right) (\iota _{1})\right\Vert \rightarrow 0 \mbox{ as }\iota _{2}\rightarrow \iota _{1}. \end{equation*} |
We conclude that the operator \mathbf{G}_{1} and \mathbf{G}_{2} are relatively compact. Based on the previous steps and using the Arzela-Ascoli theorem, we deduce that \mathbf{G} is completely continuous.
Step 4:In this step, we will prove that \mathbf{F}_{1} and \mathbf{F}_{2} are contractions. Let \left(y_{1}, y_{2}\right), \left(\widehat{y}_{1}, \widehat{y}_{2}\right) \in \beta _{\eta _{i}} and \iota \in \mathcal{J}_{i} . Then, for the operator \mathbf{F}_{1}, we have
\begin{eqnarray*} &&\left\Vert \mathbf{F}_{1}\left( y_{1}, y_{2}\right) (\iota )-\mathbf{F} _{1}\left( \widehat{y}_{1}, \widehat{y}_{2}\right) (\iota )\right\Vert \\ &\leq &P_{3}\int_{b_{i-1}}^{\iota }\left\vert \mathcal{H}_{y_{1}}\left( s\right) -\mathcal{H}_{\widehat{y}_{1}}\left( s\right) \right\vert ds+\frac{ P_{4}}{\Gamma (\omega _{i})}\int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\left\vert \mathcal{H}_{y_{1}}\left( s\right) -\mathcal{H}_{ \widehat{y}_{1}}\left( s\right) \right\vert ds \\ &\leq &\left( P_{3}\left( b_{i}-b_{i-1}\right) +\frac{P_{4}}{\Gamma (\omega _{i}+1)}\left( b_{i}-b_{i-1}\right) ^{\omega _{i}}\right) \frac{\mathfrak{N} _{\mathcal{H}_{1}}}{1-\mathfrak{N}_{\mathcal{H}_{1}}}. \end{eqnarray*} |
Thus, we have
\begin{equation*} \left\Vert \mathbf{F}_{1}\left( y_{1}, y_{2}\right) -\mathbf{F}_{1}\left( \widehat{y}_{1}, \widehat{y}_{2}\right) \right\Vert \leq Z_{\Pi }\frac{ \mathfrak{N}_{\mathcal{H}_{1}}}{1-\mathfrak{N}_{\mathcal{H}_{1}}}\left( \left\Vert y_{1}-\widehat{y}_{1}\right\Vert \right) . \end{equation*} |
In the same manner, we get
\begin{equation*} \left\Vert \mathbf{F}_{2}\left( y_{1}, y_{2}\right) -\mathbf{F}_{2}\left( \widehat{y}_{1}, \widehat{y}_{2}\right) \right\Vert \leq Z_{\Pi }\frac{ \mathfrak{N}_{\mathcal{H}_{2}}}{1-\mathfrak{N}_{\mathcal{H}_{2}}}\left( \left\Vert y_{2}-\widehat{y}_{2}\right\Vert \right) . \end{equation*} |
Consequently,
\begin{equation*} \left\Vert \mathbf{F}\left( y_{1}, y_{2}\right) -\mathbf{F}\left( \widehat{y} _{1}, \widehat{y}_{2}\right) \right\Vert _{\Upsilon }\leq Z_{\Pi }\max \left( \frac{\mathfrak{N}_{\mathcal{H}_{1}}}{1-\mathfrak{N}_{\mathcal{H}_{1}}}, \frac{\mathfrak{N}_{\mathcal{H}_{2}}}{1-\mathfrak{N}_{\mathcal{H}_{2}}} \right) \left\Vert \left( y_{1}, y_{2}\right) -\left( \widehat{y}_{1}, \widehat{y}_{2}\right) \right\Vert _{\Upsilon }. \end{equation*} |
Due to Z_{\Pi }\max \left(\frac{\mathfrak{N}_{\mathcal{H}_{1}}}{1- \mathfrak{N}_{\mathcal{H}_{1}}}, \frac{\mathfrak{N}_{\mathcal{H}_{2}}}{1- \mathfrak{N}_{\mathcal{H}_{2}}}\right) < 1, we deduce that the operator \mathbf{F} is contraction map. Hence, by Theorem 2.3, we see that \mathbf{\Pi } at least one fixed point, which is the corresponding solution \left(y_{1}, y_{2}\right) _{i} of the coupled system (2.6). For i\in \left\{ 1, 2, ..., n\right\} , we define the functions
\begin{equation} \left( y_{1}, y_{2}\right) _{i} = \left\{ \begin{array}{c} 0, { \ }\iota \in \left[ 0, b_{i-1}\right] , \\ \left( \widetilde{y}_{1}, \widetilde{y}_{2}\right) _{i}, { \ }\iota \in \mathcal{J}_{i}. { \ \ \ \ } \end{array} \right. \end{equation} | (3.3) |
As a result of this, it's well-known that, \left(y_{1}, y_{2}\right) _{i}\in C\left(\mathcal{J}_{i}, \mathcal{ \mathbb{R} }\right) \times C\left(\mathcal{J}_{i}, \mathcal{ \mathbb{R} }\right) given by (3.3) satisfies the following problem
\begin{eqnarray*} &&\frac{\Lambda \mathcal{(}\omega \mathcal{\mathfrak{(}}\iota \mathcal{ \mathfrak{)})}}{1-\omega \mathfrak{(}\iota \mathfrak{)}}\int_{0}^{b_{1}}E_{ \omega \mathfrak{(}\iota \mathfrak{)}}\left( \frac{\omega \mathfrak{(}\iota \mathfrak{)}\left( \iota _{1}-\theta \right) ^{\omega \mathfrak{(}\iota \mathfrak{)}}}{\omega \mathfrak{(}\iota \mathfrak{)}-1}\right) y_{1i}^{\prime }(\theta )d\theta \\ &&+...+\frac{\Lambda \mathcal{(}\omega \mathcal{\mathfrak{(}}\iota \mathcal{ \mathfrak{)})}}{1-\omega \mathfrak{(}\iota \mathfrak{)}}\int_{b_{i-1}}^{ \iota }E_{\omega \mathfrak{(}\iota \mathfrak{)}}\left( \frac{\omega \mathfrak{(}\iota \mathfrak{)}\left( b-\theta \right) ^{\omega \mathfrak{(} \iota \mathfrak{)}}}{\omega \mathfrak{(}\iota \mathfrak{)}-1}\right) y_{1i}^{\prime }(\theta )d\theta \\ & = &\mathcal{H}_{1}(\omega , y_{1i}(\omega ), {^{ABC}}\mathbf{D} _{0^{+}}^{\omega (\iota )}y_{2i}(\omega )), \end{eqnarray*} |
and
\begin{eqnarray*} &&\frac{\Lambda \mathcal{(}\omega \mathcal{\mathfrak{(}}\iota \mathcal{ \mathfrak{)})}}{1-\omega \mathfrak{(}\iota \mathfrak{)}}\int_{0}^{b_{1}}E_{ \omega \mathfrak{(}\iota \mathfrak{)}}\left( \frac{\omega \mathfrak{(}\iota \mathfrak{)}\left( \iota _{1}-\theta \right) ^{\omega \mathfrak{(}\iota \mathfrak{)}}}{\omega \mathfrak{(}\iota \mathfrak{)}-1}\right) y_{2i}^{\prime }(\theta )d\theta \\ &&+...+\frac{\Lambda \mathcal{(}\omega \mathcal{\mathfrak{(}}\iota \mathcal{ \mathfrak{)})}}{1-\omega \mathfrak{(}\iota \mathfrak{)}}\int_{b_{i-1}}^{ \iota }E_{\omega \mathfrak{(}\iota \mathfrak{)}}\left( \frac{\omega \mathfrak{(}\iota \mathfrak{)}\left( b-\theta \right) ^{\omega \mathfrak{(} \iota \mathfrak{)}}}{\omega \mathfrak{(}\iota \mathfrak{)}-1}\right) y_{2i}^{\prime }(\theta )d\theta \\ & = &\mathcal{H}_{2}(\omega , y_{2i}(\omega ), {^{ABC}}\mathbf{D} _{0^{+}}^{\omega (\iota )}y_{1i}(\omega )), \end{eqnarray*} |
where \left(y_{1}, y_{2}\right) _{i} is a solution to system (2.6) equipped with \left(y_{1}, y_{2}\right) _{i}(0)\equiv\left(y_{1}, y_{2}\right) _{i}(b_{i})\equiv\left(\widetilde{y}_{1}, \widetilde{y}_{2}\right) _{i}(b_{i})\equiv0. Then
\begin{equation*} \left( y_{1}, y_{2}\right) (\iota ) = \left\{ \begin{array}{c} \left( y_{1}, y_{2}\right) _{1}(\iota ), { \ \ \ \ }\iota \in \mathcal{J} _{1}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \left( y_{1}, y_{2}\right) _{2}(\iota ) = \left\{ \begin{array}{c} 0, {\ \ \ \ \ }\iota \in \mathcal{J}_{1}, \\ \left( \widetilde{y}_{1}, \widetilde{y}_{2}\right) _{2}, {\ \ \ }\iota \in \mathcal{J}_{2, } \end{array} \right. \\ . \\ . \\ . \\ \left( y_{1}, y_{2}\right) _{i}(\iota ) = \left\{ \begin{array}{c} 0, {\ \ \ \ }\iota \in \left[ 0, b_{i-1}\right] , \\ \left( \widetilde{y}_{1}, \widetilde{y}_{2}\right) _{n}, {\ \ \ \ \ \ \ \ }\iota \in \mathcal{J}_{i}, \end{array} \right. \end{array} \right. \end{equation*} |
is the solution for coupled system (2.6).
In this section, we discuss Ulam-Hyers (UH) stability results for coupled system (2.6). For more information about the following definition see [31,32,33]. Let \varepsilon _{1}, \varepsilon _{2} > 0 , and y be a function such that y(\iota)\in C\left(\mathcal{J}_{i}, \mathcal{ \mathbb{R} }\right) satisfies the following inequalities:
\begin{equation} \left\{ \begin{array}{c} \left\vert {^{ABC}}\mathbf{D}_{0}^{\omega (\iota )}y_{1}(\iota )-\mathcal{H} _{y_{1}}(\iota )\right\vert \leq \varepsilon _{1}, { \ }\iota \in \mathcal{J}, \\ \left\vert {^{ABC}}\mathbf{D}_{0}^{\omega (\iota )}y_{2}(\iota )-\mathcal{H} _{y_{2}}(\iota )\right\vert \leq \varepsilon _{2}, { \ }\iota \in \mathcal{J}. \end{array} \right. \end{equation} | (4.1) |
Now, we defined the functions \left(y_{1}, y_{2}\right) _{i}(\iota), \left(\widehat{y}_{1}, \widehat{y}_{2}\right) _{i}(\iota) , \left(\Bbbk _{1}, \Bbbk _{2}\right) _{i}(\iota), \iota \in \mathcal{J}_{i} as
\begin{equation} \left( y_{1}, y_{2}\right) _{i}(\iota ) = \left\{ \begin{array}{c} 0, {\ \ \ }if\mbox{ }\iota \in \left[ 0, b_{i-1}\right] , \\ \left( y_{1}, y_{2}\right) (\iota ){\ \ \ \ \ \ \ \ \ \ }if\mbox{ }\iota \in \mathcal{J}_{i}, \end{array} \right. \end{equation} | (4.2) |
\begin{equation} \left( \widehat{y}_{1}, \widehat{y}_{2}\right) _{i}(\iota ) = \left\{ \begin{array}{c} 0, {\ \ \ }if\mbox{ }\iota \in \left[ 0, b_{i-1}\right] , \\ \left( \widehat{y}_{1}, \widehat{y}_{2}\right) (\iota ) {\ \ \ \ \ \ \ \ \ \ }if\mbox{ }\iota \in \mathcal{J}_{i}, \end{array} \right. \end{equation} | (4.3) |
and
\begin{equation*} \left( \Bbbk _{1}, \Bbbk _{2}\right) _{i}(\iota ) = \left\{ \begin{array}{c} 0, {\ \ \ }if\mbox{ }\iota \in \left[ 0, b_{i-1}\right] , \\ \left( \Bbbk _{1}, \Bbbk _{2}\right) (\iota ){\ \ \ \ \ \ \ \ \ \ }if \mbox{ }\iota \in \mathcal{J}_{i}. \end{array} \right. \end{equation*} |
In the forthcoming analyses, we will use the above notations \left(y_{1}, y_{2}\right) (\iota), \left(\widehat{y}_{1}, \widehat{y}_{2}\right) (\iota)\ and \left(\Bbbk _{1}, \Bbbk _{2}\right) (\iota).
Definition 4.1. The coupled system (2.6) is UH stable if there is a real number C_{\mathcal{H}} = \max \left\{ C_{\mathcal{H}_{1}}, C_{\mathcal{H} _{2}}\right\} > 0 such that for each \varepsilon = \max \{\varepsilon _{1}, \varepsilon _{2}\} > 0, and each solution \left(\widehat{y}_{1}, \widehat{y}_{2}\right) \in \Upsilon of coupled system (2.6) satisfying the inequalities (4.1), there exists a solution \left(y_{1}, y_{2}\right) \in \Upsilon of coupled system (2.6) such that
\begin{equation*} \left\Vert \left( \widehat{y}_{1}, \widehat{y}_{2}\right) -\left( y_{1}, y_{2}\right) \right\Vert _{\Upsilon }\leq C_{\mathcal{H}}\varepsilon , \end{equation*} |
where \left(y_{1}, y_{2}\right) and \left(\widehat{y}_{1}, \widehat{y} _{2}\right) defined in (4.2) and (4.3), respectively.
Remark 4.2. Let \left(\widehat{y}_{1}, \widehat{y}_{2}\right) \in \Upsilon be solutions of the inequalities (4.1) if and only if there is a function \left(\Bbbk _{1}, \Bbbk _{2}\right) (\iota)\in \Upsilon (which depends on \left(y_{1}, y_{2}\right)) \ satisfying the following conditions,
i) \left\{ \begin{array}{c} \left\vert \Bbbk _{1}(\iota)\right\vert \leq \varepsilon _{1}{ \ }for { \ }all{ \ }\iota \in \mathcal{J}, \\ \left\vert \Bbbk _{2}(\iota)\right\vert \leq \varepsilon _{2}{ \ }for { \ }all{ \ }\iota \in \mathcal{J}, \end{array} \right.
ii) \left\{ \begin{array}{c} {^{ABC}}\mathbf{D}_{b_{i-1}^{+}}^{\omega _{i}}\widehat{y}_{1}(\iota) = \mathcal{H}_{\widehat{y}_{1}}(\iota)+\Bbbk _{1}(\iota), \iota \in \mathcal{J }, \\ {^{ABC}}\mathbf{D}_{b_{i-1}^{+}}^{\omega _{i}}\widehat{y}_{2}(\iota) = \mathcal{H}_{\widehat{y}_{2}}(\iota)+\Bbbk _{2}(\iota), \iota \in \mathcal{J }. \end{array} \right.
Lemma 4.3. Let \left(\widehat{y}_{1}, \widehat{y}_{2}\right) \in \Upsilon be satisfying (4.1), then \left(\widehat{y}_{1}, \widehat{y} _{2}\right) satisfy the following inequalities
\begin{equation*} \left\{ \begin{array}{c} \left\vert \widehat{y}_{1}(\iota )-\Psi _{\widehat{y}_{1}}-P_{3} \int_{b_{i-1}}^{\iota }\mathcal{H}_{\widehat{y}_{1}}\left( s\right) ds \mathfrak{-}\frac{P_{4}}{\Gamma (\omega _{i})}\int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\mathcal{H}_{\widehat{y}_{1}}\left( s\right) ds\right\vert \leq \varepsilon _{1}\mathcal{R}_{\Pi _{1}}, \\ \left\vert \widehat{y}_{2}(\iota )-\Psi _{\widehat{y}_{2}}-P_{3} \int_{b_{i-1}}^{\iota }\mathcal{H}_{\widehat{y}_{2}}\left( s\right) ds \mathfrak{-}\frac{P_{4}}{\Gamma (\omega _{i})}\int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\mathcal{H}_{\widehat{y}_{2}}\left( s\right) ds\right\vert \leq \varepsilon _{2}\mathcal{R}_{\Pi _{2}}, \end{array} \right. \end{equation*} |
where
\begin{eqnarray*} \Psi _{\widehat{y}_{1}} & = &\frac{P_{1}(\iota -b_{i-1})}{\Theta _{1}}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\tau _{k}}\mathcal{H}_{\widehat{y}_{1}}\left( s\right) ds-\int_{b_{i-1}}^{b_{i}}\mathcal{H}_{\widehat{y}_{1}}\left( s\right) ds\right) \\ &&+\frac{P_{2}(\iota -b_{i-1})}{\Theta _{1}\Gamma (\omega _{i})}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\tau _{k}}\left( \tau _{k}-s\right) ^{\omega _{i}-1}\mathcal{H}_{\widehat{y}_{1}}\left( s\right) ds-\int_{b_{i-1}}^{b_{i}}\left( b_{i}-s\right) ^{\omega _{i}-1}\mathcal{H}_{ \widehat{y}_{1}}\left( s\right) ds\right) , \end{eqnarray*} |
and
\begin{eqnarray*} \Psi _{\widehat{y}_{2}} & = &\frac{P_{1}(\iota -b_{i-1})}{\Theta _{2}}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\gamma _{k}}\mathcal{H}_{\widehat{y} _{2}}\left( s\right) ds-\int_{b_{i-1}}^{b_{i}}\mathcal{H}_{\widehat{y} _{2}}\left( s\right) ds\right) \\ &&+\frac{P_{2}(\iota -b_{i-1})}{\Theta _{2}\Gamma (\omega _{i})}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\gamma _{k}}\left( \gamma _{k}-s\right) ^{\omega _{i}-1}\mathcal{H}_{\widehat{y}_{2}}\left( s\right) ds-\int_{b_{i-1}}^{b_{i}}\left( b_{i}-s\right) ^{\omega _{i}-1}\mathcal{H}_{ \widehat{y}_{2}}\left( s\right) ds\right) . \end{eqnarray*} |
Proof. By Remark 4.2, we have
\begin{equation} \left\{ \begin{matrix} {^{ABC}}\mathbf{D}_{b_{i-1}^{+}}^{\omega _{i}}\widehat{y}_{1}(\iota ) = \mathcal{H}_{\widehat{y}1}(\iota )+\Bbbk _{1}(\iota ), \iota \in \mathcal{J}, \\ {^{ABC}}\mathbf{D}_{b_{i-1}^{+}}^{\omega _{i}}\widehat{y}_{2}(\iota ) = \mathcal{H}_{\widehat{y}_{2}}(\iota )+\Bbbk _{2}(\iota ), \iota \in \mathcal{J }. \end{matrix} \right. \end{equation} | (4.4) |
Then, by Theorem 2.6, the solutions of the system (4.4) are given as
\begin{eqnarray*} \widehat{y}_{1}(\iota ) & = &\Psi _{\widehat{y}_{1}}+P_{3}\int_{b_{i-1}}^{ \iota }\mathcal{H}_{y_{1}}\left( s\right) ds+\frac{P_{4}}{\Gamma (\omega _{i})}\int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\mathcal{ H}_{y_{1}}\left( s\right) ds \\ &&+\frac{P_{1}(\iota -b_{i-1})}{\Theta _{1}}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\tau _{k}}\Bbbk _{1}(s)ds-\int_{b_{i-1}}^{b_{i}}\Bbbk _{1}(s)ds\right) \\ &&+\frac{P_{2}(\iota -b_{i-1})}{\Theta _{1}\Gamma (\omega _{i})}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\tau _{k}}\left( \tau _{k}-s\right) ^{\omega _{i}-1}\Bbbk _{1}(s)ds-\int_{b_{i-1}}^{b_{i}}\left( b_{i}-s\right) ^{\omega _{i}-1}\Bbbk _{1}(s)ds\right) \\ &&+P_{3}\int_{b_{i-1}}^{\iota }\Bbbk _{1}(s)ds+\frac{P_{4}}{\Gamma (\omega _{i})}\int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\Bbbk _{1}(s)ds, \end{eqnarray*} |
and
\begin{eqnarray*} \widehat{y}_{2}(\iota ) & = &\Psi _{\widehat{y}_{2}}+P_{3}\int_{b_{i-1}}^{ \iota }\mathcal{H}_{y_{2}}\left( s\right) ds+\frac{P_{4}}{\Gamma (\omega _{i})}\int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\mathcal{ H}_{y_{2}}\left( s\right) ds \\ &&+\frac{P_{1}(\iota -b_{i-1})}{\Theta _{2}}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\gamma _{k}}\Bbbk _{2}(s)ds-\int_{b_{i-1}}^{b_{i}}\Bbbk _{2}(s)ds\right) \\ &&+\frac{P_{2}(\iota -b_{i-1})}{\Theta _{2}\Gamma (\omega _{i})}\left( \sum\limits_{k = 1}^{n}\int_{b_{i-1}}^{\gamma _{k}}\left( \gamma _{k}-s\right) ^{\omega _{i}-1}\Bbbk _{2}(s)ds-\int_{b_{i-1}}^{b_{i}}\left( b_{i}-s\right) ^{\omega _{i}-1}\Bbbk _{2}(s)ds\right) \\ &&+P_{3}\int_{b_{i-1}}^{\iota }\Bbbk _{2}(s)ds+\frac{P_{4}}{\Gamma (\omega _{i})}\int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\Bbbk _{2}(s)ds. \end{eqnarray*} |
By some calculations, we get
\begin{equation*} \left\{ \begin{array}{c} \left\vert \widehat{y}_{1}(\iota )-\Psi _{\widehat{y}_{1}}-P_{3} \int_{b_{i-1}}^{\iota }\mathcal{H}_{\widehat{y}_{1}}\left( s\right) ds \mathfrak{-}\frac{P_{4}}{\Gamma (\omega _{i})}\int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\mathcal{H}_{\widehat{y}_{1}}\left( s\right) ds\right\vert \leq \varepsilon _{1}\mathcal{R}_{\Pi _{1}}, \\ \left\vert \widehat{y}_{2}(\iota )-\Psi _{\widehat{y}_{2}}-P_{3} \int_{b_{i-1}}^{\iota }\mathcal{H}_{\widehat{y}_{2}}\left( s\right) ds \mathfrak{-}\frac{P_{4}}{\Gamma (\omega _{i})}\int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\mathcal{H}_{\widehat{y}_{2}}\left( s\right) ds\right\vert \leq \varepsilon _{2}\mathcal{R}_{\Pi _{2}}. \end{array} \right. \end{equation*} |
Theorem 4.4. Suppose that \left(H_{1}\right) holds. If
\begin{equation*} \left( P_{3}\left( b_{i}-b_{i-1}\right) +\frac{P_{4}\left( b_{i}-b_{i-1}\right) ^{\omega _{i}}}{\Gamma (\omega _{i}+1)}\right) \frac{ \mathfrak{N}_{f}(1+\mathcal{M})}{1-\mathfrak{N}_{f}} < 1, \end{equation*} |
then the coupled system (2.6) is UH stable.
Proof. Let \varepsilon = \max \{\varepsilon _{1}, \varepsilon _{2}\} > 0 and \left(\widehat{y}_{1}, \widehat{y}_{2}\right) \in \Upsilon be a solution of coupled system (2.6) satisfying (4.1), and let \left(y_{1}, y_{2}\right) \in \Upsilon be the unique solution of the coupled system (2.6). Then, by Theorem 2.6, the solution of coupled system (2.6) is given by
\begin{eqnarray*} y_{1}(\iota ) & = &\Psi _{\widehat{y}_{1}}+P_{3}\int_{b_{i-1}}^{\iota } \mathcal{H}_{y_{1}}\left( s\right) ds+\frac{P_{4}}{\Gamma (\omega _{i})} \int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\mathcal{H} _{y_{1}}\left( s\right) ds, \\ y_{2}(\iota ) & = &\Psi _{\widehat{y}_{2}}+P_{3}\int_{b_{i-1}}^{\iota } \mathcal{H}_{y_{2}}\left( s\right) ds+\frac{P_{4}}{\Gamma (\omega _{i})} \int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\mathcal{H} _{y_{2}}\left( s\right) ds. \end{eqnarray*} |
Hence by Lemma 4.3 and \left(H_{1}\right), we have
\begin{eqnarray*} \left\vert \widehat{y}_{1}(\iota )-y_{2}(\iota )\right\vert &\leq &\left\vert \widehat{y}_{1}(\iota )-\Psi _{\widehat{y}_{1}}-P_{3} \int_{b_{i-1}}^{\iota }\mathcal{H}_{\widehat{y}_{1}}\left( s\right) ds \mathfrak{-}\frac{P_{4}}{\Gamma (\omega _{i})}\int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\mathcal{H}_{\widehat{y}_{1}}\left( s\right) ds\right\vert \\ &&+P_{3}\int_{b_{i-1}}^{\iota }\left\vert \mathcal{H}_{\widehat{y}_{1}}(s)- \mathcal{H}_{y_{1}}\left( s\right) \right\vert ds+\frac{P_{4}}{\Gamma (\omega _{i})}\int_{b_{i-1}}^{\iota }\left( \iota -s\right) ^{\omega _{i}-1}\left\vert \mathcal{H}_{\widehat{y}_{1}}\left( s\right) -\mathcal{H} _{y_{1}}\left( s\right) \right\vert ds \\ &\leq &\varepsilon _{1}\mathcal{R}_{\Pi _{1}}+\left( P_{3}\left( b_{i}-b_{i-1}\right) +\frac{P_{4}}{\Gamma (\omega _{i}+1)}\left( b_{i}-b_{i-1}\right) ^{\omega _{i}}\right) \frac{\mathfrak{N}_{f}}{1- \mathfrak{N}_{f}}\left\Vert \widehat{y}_{1}-y_{1}\right\Vert _{\Upsilon }. \end{eqnarray*} |
Thus
\begin{equation*} \left\Vert \widehat{y}_{1}-y_{1}\right\Vert \leq C_{\mathcal{H} _{1}}\varepsilon _{1}, \end{equation*} |
where
\begin{equation*} C_{\mathcal{H}_{1}} = \frac{\mathcal{R}_{\Pi _{1}}}{1-\left( P_{3}\left( b_{i}-b_{i-1}\right) +\frac{P_{4}}{\Gamma (\omega _{i}+1)}\left( b_{i}-b_{i-1}\right) ^{\omega _{i}}\right) \frac{\mathfrak{N}_{f}}{1- \mathfrak{N}_{f}}} > 0. \end{equation*} |
In the same manner, we have
\begin{equation*} \left\Vert \widehat{y}_{2}-y_{2}\right\Vert _{\Upsilon }\leq C_{\mathcal{H} _{2}}\varepsilon _{2}, \end{equation*} |
where
\begin{equation*} C_{\mathcal{H}_{2}} = \frac{\mathcal{R}_{\Pi _{1}}}{1-\left( P_{3}\left( b_{i}-b_{i-1}\right) +\frac{P_{4}}{\Gamma (\omega _{i}+1)}\left( b_{i}-b_{i-1}\right) ^{\omega _{i}}\right) \frac{\mathfrak{N}_{f}}{1- \mathfrak{N}_{f}}} > 0. \end{equation*} |
Thus, we have
\begin{eqnarray*} \left\Vert \left( \widehat{y}_{1}, \widehat{y}_{2}\right) -\left( y_{1}, y_{2}\right) \right\Vert _{\Upsilon } & = &\left\Vert \widehat{y} _{1}-y_{1}\right\Vert +\left\Vert \widehat{y}_{2}-y_{2}\right\Vert \\ &\leq &C_{\mathcal{H}_{1}}\varepsilon _{1}+C_{\mathcal{H}_{2}}\varepsilon _{2} \\ &\leq &2C_{\mathcal{H}}\varepsilon . \end{eqnarray*} |
Hence, coupled system (2.6) is UH stability. Now, by choosing C_{\mathcal{H }}(\varepsilon) = C_{\mathcal{H}}\varepsilon such that C_{\mathcal{H} }(0) = 0 , we conclude that coupled system (2.6) has Generalized UH stability.
To illustrate our key results, this section presents numerical examples addressing the coupled system (2.6) in the context of ABC-fractional derivative with variable order \omega (\iota) . These specific examples have been chosen based on the conditions outlined in the theorems used, the specific conditions mentioned in our proposed conclusions, and the values of parameters and fractional-order derivatives. These examples serve as an illustration of the various dynamic applications that can be created by combining the ABC-fractional derivative with variable order \omega (\iota) .
Example 5.1. Let us consider the following coupled system of ABC fractional problem with variable order \omega (\iota)
\begin{equation*} \left\{ \begin{matrix} {^{ABC}}\mathbf{D}_{0^{+}}^{\omega (\iota )}y_{1}(\iota ) = \frac{\iota ^{2}}{ 5e^{\iota }}\left( e^{-\iota }+\frac{\left\vert y_{2}(\iota )\right\vert }{ 1+\left\vert y_{2}(\iota )\right\vert }+\frac{^{ABC}\mathbf{D} _{0^{+}}^{\omega (\iota )}y_{1}(\iota )}{1+^{ABC}D_{0^{+}}^{\omega (\iota )}y_{1}(\iota )}\right) , \quad \;\, \iota \in \mathcal{J}: = \left( 0, 2\right] , \\ {^{ABC}}\mathbf{D}_{0^{+}}^{\omega (\iota )}y_{2}(\iota ) = \frac{\iota ^{3}}{ 2\left( e^{\iota }-1\right) }\left( \frac{1}{e^{\iota }}+\frac{\left\vert y_{1}(\iota )\right\vert }{1+\left\vert y_{1}(\iota )\right\vert }+\frac{ ^{ABC}\mathbf{D}_{0^{+}}^{\omega (\iota )}y_{2}(\iota )}{1+^{ABC}D_{0^{+}}^{ \omega (\iota )}y_{2}(\iota )}\right) , \quad \;\, \iota \in \mathcal{J} : = \left( 0, 2\right] , \\ y_{1}(0) = 0, y_{2}(0) = 0, y_{1}(2) = \frac{1}{2}, y_{2}(2) = \frac{1}{3}. \end{matrix} \right. \end{equation*} |
Here, a = 0, b = 2 , and
\begin{eqnarray*} \mathcal{H}_{y_{1}}(\iota ) & = &\frac{\iota ^{2}}{5e^{\iota }}\left( e^{-\iota }+\frac{\left\vert y_{2}(\iota )\right\vert }{1+\left\vert y_{2}(\iota )\right\vert }+\frac{^{ABC}\mathbf{D}_{0^{+}}^{\omega (\iota )}y_{1}(\iota )}{1+^{ABC}D_{0^{+}}^{\omega (\iota )}y_{1}(\iota )}\right) , \\ && \\ \mathcal{H}_{y_{2}}(\iota ) & = &\frac{\iota ^{3}}{2\left( e^{\iota }-1\right) }\left( \frac{1}{e}+\frac{\left\vert y_{1}(\iota )\right\vert }{1+\left\vert y_{1}(\iota )\right\vert }+\frac{^{ABC}\mathbf{D}_{0^{+}}^{\omega (\iota )}y_{2}(\iota )}{1+^{ABC}D_{0^{+}}^{\omega (\iota )}y_{2}(\iota )}\right) . \end{eqnarray*} |
Let \iota \in \left[0, 1\right], y_{1}, \overline{y}_{1}\in C\left(\mathcal{ J}_{i}, \mathcal{ \mathbb{R} }\right). Then
\begin{eqnarray*} &&\left\vert \mathcal{H}_{y_{1}}(\iota )-\mathcal{H}_{\overline{y} _{1}}(\iota )\right\vert \\ &\leq &\frac{1}{5}\left( \left\vert y_{2}(\iota )-\overline{y}_{2}(\iota )\right\vert +\left\vert {^{ABC}}\mathbf{D}_{0^{+}}^{\omega (\iota )}y_{1}(\iota )-{^{ABC}}\mathbf{D}_{0^{+}}^{\omega (\iota )}\overline{y} _{1}(\iota )\right\vert \right) , \end{eqnarray*} |
and
\begin{eqnarray*} &&\left\vert \mathcal{H}_{y_{2}}(\iota )-\mathcal{H}_{\overline{y} _{2}}(\iota )\right\vert \\ &\leq &\frac{1}{2}\left( \left\vert y_{1}(\iota )-\overline{y}_{1}(\iota )\right\vert +\left\vert {^{ABC}}\mathbf{D}_{0^{+}}^{\omega (\iota )}y_{2}(\iota )-{^{ABC}}\mathbf{D}_{0^{+}}^{\omega (\iota )}\overline{y} _{2}(\iota )\right\vert \right) . \end{eqnarray*} |
Therefore, hypothesis (H _{1} ) holds with \mathfrak{N}_{\mathcal{H}_{1}} = \frac{1}{5} and \mathfrak{N}_{\mathcal{H}_{2}} = \frac{1}{2}. Let
\begin{equation*} \omega (\iota ) = \left\{ \begin{array}{c} \frac{3}{2}, { \ if }\iota \in \left( 0, 1\right] , \\ \frac{5}{2}{ \ \ \ \ if }\iota \in \left( 1, 2\right] . \end{array} \right. \end{equation*} |
Then, for i = 1, by some calculation, we get \Omega _{1} = 0.65 and \Omega _{2} = 0.52 and hence \Omega = \max \left\{ \Omega _{1}, \Omega _{2}\right\} = 0.65 < 1. Thus, by Theorem 3.1, the coupled system of ABC (2.6) has a unique solution. For every \varepsilon = \max \{\varepsilon _{1}, \varepsilon _{2}\} > 0 and each \left(\widehat{y}_{1}, \widehat{y} _{2}\right) \in \Upsilon satisfying
\begin{equation*} \left\{ \begin{array}{c} \left\vert {^{ABC}}\mathbf{D}_{0}^{\omega (\iota )}\widehat{y}_{1}(\iota )- \mathcal{H}_{\widehat{y}_{1}}(\iota )\right\vert \leq \varepsilon _{1}, \\ \left\vert {^{ABC}}\mathbf{D}_{0}^{\omega (\iota )}\widehat{y}_{2}(\iota )- \mathcal{H}_{\widehat{y}_{2}}(\iota )\right\vert \leq \varepsilon _{2}, \end{array} \right. \end{equation*} |
there exists a solution \left(y_{1}, y_{2}\right) \in \Upsilon of the coupled system of ABC (2.6) with
\begin{equation*} \left\{ \begin{array}{c} \left\Vert \widehat{y}_{1}-y_{1}\right\Vert \leq C_{\mathcal{H} _{1}}\varepsilon _{1}, \\ \left\Vert \widehat{y}_{2}-y_{2}\right\Vert \leq C_{\mathcal{H} _{2}}\varepsilon _{2}, \end{array} \right. \end{equation*} |
where
\begin{equation*} C_{\mathcal{H}_{1}} = \frac{\mathcal{R}_{\Pi _{1}}}{1-\left( P_{3}\left( b_{i}-b_{i-1}\right) +\frac{P_{4}}{\Gamma (\omega _{i}+1)}\left( b_{i}-b_{i-1}\right) ^{\omega _{i}}\right) \frac{\mathfrak{N}_{f}}{1- \mathfrak{N}_{f}}} > 0, \end{equation*} |
and
\begin{equation*} C_{\mathcal{H}_{2}} = \frac{\mathcal{R}_{\Pi _{1}}}{1-\left( P_{3}\left( b_{i}-b_{i-1}\right) +\frac{P_{4}}{\Gamma (\omega _{i}+1)}\left( b_{i}-b_{i-1}\right) ^{\omega _{i}}\right) \frac{\mathfrak{N}_{f}}{1- \mathfrak{N}_{f}}} > 0. \end{equation*} |
Thus,
\begin{eqnarray*} \left\Vert \left( \widehat{y}_{1}, \widehat{y}_{2}\right) -\left( y_{1}, y_{2}\right) \right\Vert _{\Upsilon } &\leq &\left\Vert \widehat{y} _{1}-y_{1}\right\Vert _{\Upsilon }+\left\Vert \widehat{y}_{2}-y_{2}\right \Vert _{\Upsilon } \\ &\leq &C_{\mathcal{H}_{1}}\varepsilon _{1}+C_{\mathcal{H}_{2}}\varepsilon _{2} \\ &\leq &2C_{\mathcal{H}}\varepsilon . \end{eqnarray*} |
Therefore, by Theorem 4.4, the coupled system (2.6) is UH stable. Now, let C_{\mathcal{H}}(\varepsilon) = C_{\mathcal{H}}\varepsilon such that C_{\mathcal{H}}(0) = 0 , then the coupled system of ABC-fractional derivative (2.6) is GUH stability.
For i = 2, with some calculation, we have \Omega _{1} = 0.55 and \Omega _{2} = 0.43 , and hence, \Omega = \max \left\{ \Omega _{1}, \Omega _{2}\right\} = 0.55 < 1. Then, by Theorem 3.1, the coupled system (2.6) has a unique solution. For every \varepsilon = \max \{\varepsilon _{1}, \varepsilon _{2}\} > 0 and each \left(\widehat{y}_{1}, \widehat{y}_{2}\right) \in \Upsilon satisfying
\begin{equation*} \left\{ \begin{array}{c} \left\vert {^{ABC}}\mathbf{D}_{0}^{\omega (\iota )}\widehat{y}_{1}(\iota )- \mathcal{H}_{\widehat{y}_{1}}(\iota )\right\vert \leq \varepsilon _{1}, \\ \left\vert {^{ABC}}\mathbf{D}_{0}^{\omega (\iota )}\widehat{y}_{2}(\iota )- \mathcal{H}_{\widehat{y}_{2}}(\iota )\right\vert \leq \varepsilon _{2}, \end{array} \right. \end{equation*} |
there exists a solution \left(y_{1}, y_{2}\right) \in \Upsilon of the coupled system of ABC-fractional derivative (2.6) with
\begin{eqnarray*} \left\Vert \left( \widehat{y}_{1}, \widehat{y}_{2}\right) -\left( y_{1}, y_{2}\right) \right\Vert _{\Upsilon } &\leq &\left\Vert \widehat{y} _{1}-y_{1}\right\Vert _{\Upsilon }+\left\Vert \widehat{y}_{2}-y_{2}\right \Vert _{\Upsilon } \\ &\leq &2C_{\mathcal{H}}\varepsilon , \end{eqnarray*} |
where C_{\mathcal{H}} = \max \left\{ C_{\mathcal{H}_{1}}, C_{\mathcal{H} _{2}}\right\} > 0 . Therefore, by Theorem 4.4, the coupled system (2.6) is UH stable. Now, by choosing C_{ \mathcal{H}}(\varepsilon) = C_{\mathcal{H}}\varepsilon such that C_{ \mathcal{H}}(0) = 0 , the coupled system (2.6) is a Generalized UH stability.
Recent research has emphasized the Atangana-Baleanu fractional derivative, leading to the study and development of various qualitative features of solutions to FDEs incorporating these operators. This research paper presents a novel investigation into an implicit coupled system of fractional variable order, filling a gap in the existing literature. In this context, we have established and examined the necessary conditions for the existence and uniqueness of solutions to the coupled system of the ABC fractional problem with variable order, without relying on the semigroup property. We utilized extended intervals, piecewise constant functions, and fixed point theorems of the Banach-type and Krasnoselskii-type to reduce the proposed ABC system into a fractional integral equation. Furthermore, we employed mathematical analysis tools to investigate the stability results in the UH sense. An illustrative example in two cases was provided to support the findings of the study. By extending the existing conclusions examined for the ABC operator, this research contributes to advancing the understanding of variable-order FDEs. The paper provides a solid theoretical foundation that can be further explored through analysis, numerical simulations, and practical applications. The transformation techniques, qualitative analysis, and illustrative examples presented in this work highlight its unique contributions and potential to serve as a foundation for future research in the field. Overall, this research paper expands the knowledge and understanding of variable-order FDEs, offering valuable insights and paving the way for further advancements in the field. We believe that the results obtained in this study will be significant for future research in the field of fractional calculus theory, given the recent extensive explorations and applications of the Mittag-Leffler power law.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
It is noted that the authors declare no conflicts of interest in the research study.
This research was funded by the Zhejiang Normal University Research Fund under Grant YS304223919.
[1] |
T. Kunieda, K. Nishimura, Finance and Economic Growth in a Dynamic Game, Dyn. Games Appl., 8 (2018), 588-600. doi: 10.1007/s13235-018-0249-7
![]() |
[2] | G. M. Korres, A. Kokkinou, Political Decision in a Game Theory Approach, European SocioEconomic Integration, 28 (2013), 51-61. |
[3] |
A. Traulsen, Biological Models in Game Theory, Journal of Statistical Theory and Practice, 10 (2016), 472-474. doi: 10.1080/15598608.2016.1172462
![]() |
[4] | M. Qingfeng, T. Shaohong, L. Zhen, Ch. Bingyao, Sh. Weixiang, A Review of Game Theory Application Research in Safety Management, IEEE Access, 8 (2020), 107301-107313. |
[5] | Q. Wang, L. Zhao, L. Guo, J. Ran, Z. Lijun, X. Yujing, et al., A Generalized Nash Equilibrium Game Model for Removing Regional Air Pollutant, J. Clean. Prod., 227 (2019), 522-531. |
[6] |
J. Sheng, W. Zhou, B. Zhu, The Coordination of Stakeholder Interests in Environmental Regulation: Lessons From China's Environmental Regulation Policies From The Perspective of The Evolutionary Game Theory, J. Clean. Prod., 249 (2020), 119385. doi: 10.1016/j.jclepro.2019.119385
![]() |
[7] | C. E. Lemke, J. T. Howson, Jr, Equilibrium Points of Bimatrix Games, Journal of the Society for Industrial and Applied Mathematics, 12 (1964), 413-423. |
[8] |
S. Govindan, R. Wilson, A Global Newton Method to Compute Nash Equilibria, Journal of Economic Theory, 110 (2003), 65-86. doi: 10.1016/S0022-0531(03)00005-X
![]() |
[9] |
J. Zhang, B. Qu, N. Xiu, Some Projection-like Methods for The Generalized Nash Equilibria, Comput. Optim. Appl., 45 (2010), 89-109. doi: 10.1007/s10589-008-9173-x
![]() |
[10] | Y. Ya xiang, A Trust Region Algorithm for Nash Equilibrium Problems, Pac. J. Optim., 7 (2011), 125-138. |
[11] |
N. G. Pavlidis, K. E. Parsopoulos, M. N. Vrahatis, Computing Nash Equilibria Through Computational Intelligence Methods, J. Comput. Appl. Math., 175 (2005), 113-136. doi: 10.1016/j.cam.2004.06.005
![]() |
[12] |
U. Boryczka, P. Juszczuk, Differential Evolution as a New Method of Computing Nash Equilibria, Transactions on Computational Collective Intelligence IX, 7770 (2013), 192-216. doi: 10.1007/978-3-642-36815-8_9
![]() |
[13] | C. ShiJun, S. YongGuang, W. ZongXin, A Genetic Algorithm to Acquire the Nash Equilibrium, System Engineering, 19 (2001), 67-70. |
[14] | Q. ZhongHua, G. Jie, Z. YueXing, Applying Immune Algorithm to Solving Game Problem, Journal of Systems Engineering, 21 (2006), 398-404. |
[15] |
N. Franken, A. P. Engelbrecht, Particle Swarm Optimization Approaches to Coevolve Strategies for The Iterated Prisoner's Dilemma, IEEE T. Evolut. Comput., 9 (2005), 562-579. doi: 10.1109/TEVC.2005.856202
![]() |
[16] | J. WenSheng, X. ShuWen, Y. JianFeng, W. S. Hu, Solving Nash Equilibrium for N-persons' Non-cooperative Game Based on Immune Particle Swarm Algorithm, Application Research of Computers, 29 (2012), 28-31. |
[17] | Y. Yanlong, X. Shuwen, X. Shunyou, J. Wensheng, Solving Nash Equilibrium of Non-Cooperative Game Based on Fireworks Algorithm, Computer Applications and Software, (in Chinese) 35 (2018), 215-218. |
[18] | Y. Jian, Selection of Game Theory, Chinese: Science Press, 2014. |
[19] | H. Luogeng, W. Yuan, Application of Number Theory in Modern Analysis, Beijing: Science Press, 1978. |
[20] | R. Storn, K. Price, Minimizing The Real Functions of The ICEC'96 Contest by Differential Evolution, Proceedings of IEEE International Conference on Evolutionary Computation IEEE, (1996), 824-844. |
[21] | R. C. Eberhart, J. Kennedy, A New Optimizer Using Particle Swarm Theory. In: 6th Symposium on Micro Machine and Human Science, Nagoya, Japan, (1995), 39-43. |
[22] |
Y. Wu, Y. Wu, X. Liu, Couple-based Particle Swarm Optimization for Short-term Hydrothermal Scheduling, Appl. Soft Comput., 74 (2019), 440-450. doi: 10.1016/j.asoc.2018.10.041
![]() |
[23] | J. Shen, F. Liang, M. Zheng, New Hybrid Differential Evolution and Particle Swarm Optimization Algorithm and Its Application, Sichuan Daxue Xuebao (Gongcheng Kexue Ban) Journal of Sichuan University (Engineering Science Edition), 46 (2014), 38-43. |
[24] |
Y. C. He, X. Z. Wang, K. Q. Liu, Y. Q. Wang, Convergent Analysis and Algorithmic Improvement of Differential Evolution, Journal of Software, 21 (2010), 875-885. doi: 10.3724/SP.J.1001.2010.03486
![]() |
[25] | M. Q. Li, J. S. Kou, D. Lin, S. Q. Li, Basic Theory and Application of Genetic Algorithm, Beijing: Science Press, (in Chinese) (2002), 115-119. |
[26] | T. S. Lu, Random Functional Analysis and Its Application, Qingdao: Qingdao Ocean University Press, 1990. |
1. | Tariq Alraqad, Mohammed A. Almalahi, Naglaa Mohammed, Ayman Alahmade, Khaled A. Aldwoah, Hicham Saber, Modeling Ebola Dynamics with a Φ-Piecewise Hybrid Fractional Derivative Approach, 2024, 8, 2504-3110, 596, 10.3390/fractalfract8100596 | |
2. | Muhammad Riaz, Zareen A. Khan, Sadique Ahmad, Abdelhamied Ashraf Ateya, Fractional-Order Dynamics in Epidemic Disease Modeling with Advanced Perspectives of Fractional Calculus, 2024, 8, 2504-3110, 291, 10.3390/fractalfract8050291 |