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Abstract: In this paper, a hybrid differential evolution particle swarm optimization (PSO) method
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utilized as the variation operator to perform variation crossover selection with differential evolution
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1. Introduction

Game theory is a mathematical theory that studies interactions between decision makers. It mainly
studies how players use the information they have to make decisions. Game theory is widely used in
many fields, such as economics, political science, biology and other fields [1–6]. Noncooperative game
is the main component of game theory, and the Nash equilibrium is the core concept of noncooperative
game. However, achieving equilibrium requires players to make predictions according to certain steps
in the game. Therefore, it can be reduced to a calculation problem to a certain extent.

At present, many numerical methods have been proposed to solve the Nash equilibrium, such as the
Lemke-Howson algorithm [7], global Newton algorithm [8], projection-like method [9], trust region
algorithm [10] and other traditional calculation methods. In recent years, with the increased complexity
of game problems, traditional numerical methods are almost impossible to use in solving due to the
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increasing difficulty of finding the solution and the computation time. Increasing numbers of scholars
have focused on intelligent algorithms for biological simulation. Because of the rationality of imitating
biological behaviors, such algorithms have the implicit rational characteristics of games. By such
means, such algorithms can be considered as some sort of paths to achieve the Nash equilibrium.

Pavlidis [11] verified the effectiveness of three computational intelligence algorithms, namely,
covariance matrix adaptation evolution strategies, particle swarm optimization (PSO) and differential
evolution (DE), to compute the Nash equilibrium of finite strategic games. Boryczka [12] compared
DE with two well-known algorithms: simplicial subdivision and the Lemke-Howson algorithm. It has
also been proven that the DE method can obtain an approximate Nash equilibrium solution. Chen [13]
utilized the genetic algorithm (GA) to acquire the Nash equilibrium of an N-person noncooperative
game. With the examples of double matrix games, the implementation of the genetic algorithm was
discussed and proven to be effective. Qiu [14] proposed an immune algorithm (IA) for solving game
equilibrium. The advantages of this algorithm in solving game problems and its stable convergence
were verified through examples. Franken [15] investigated the application of coevolutionary training
techniques based on PSO to evolve the iterated prisoner’s dilemma (IPD). Jia [16] proposed an immune
particle swarm optimization (IPSO) to compute finite noncooperative games among N people. The
results show that this algorithm is superior to the immune algorithm and original swarm algorithm in
solving game problems. Yang [17] proposed the fireworks algorithm (FWA) to compute the Nash
equilibrium of N-person noncooperative game. Computer simulation results demonstrate that the
proposed algorithm is effective and superior to IPSO.

The above studies all demonstrate the advantages of intelligent algorithms in solving Nash
equilibrium problems. However, several issues remain, such as the higher complexity of the algorithm,
its slow convergence speed and its low accuracy; in particular, the convergence of the algorithm is not
proven theoretically. The goal of this paper is to propose an efficient hybrid of GPDEPSO to solve
the game problem and then prove its convergence. The paper is organized as follows: In Section 2,
we summarize the concept of a noncooperative N-person game. In Section 3, we propose a hybrid
algorithm, GPDEPSO, to compute the Nash equilibrium of noncooperative N-person games. First,
we initialize the population with a good point set to ensure the initial particle distribution is global,
which will help the algorithm avoid local convergence. Then, the position updating formula of PSO
is simplified in a new form that does not have a velocity term, and it is used as a variation operator to
perform variation crossover selection with DE. The convergence of GPDEPSO is proved by stochastic
functional analysis in Section 4. Section 5 is devoted to computational experiments, and by comparing
the algorithm proposed in this paper with other algorithms, its superiority is proven.

2. Game and Nash equilibrium Definitions [18]

Definition 1. We consider an N-person finite strategic game defined by Γ = ((N, S i,Ui, Xi, fi), i =

1, . . . , n),
where
(1). N = {1, . . . , n} is the set of players and n is the number of players;
(2). S i = {si1, . . . , simi} ∀i ∈ N is the pure strategy set of player i, mi represents the number of

strategies available to player i, S =
∏n

i=1 S i is the Cartesian product of pure strategy sets of all players,
and each pure strategy profile meets (S 1, S 2, . . . , S n) ∈ S ;
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(3). Ui : S → R ∀i ∈ N represents the payoff function;
(4). Xi = {xi = (xi1, . . . , ximi) : xik ≥ 0, k = 1, . . . ,mi,

∑mi
ki=1 xiki = 1} ∀i ∈ N is the set of mixed

strategies, where xi j is the probability that player i adopts si j for j = 1, · · · ,mi. X =
∏n

i=1 Xi is
the Cartesian product of mixed strategy sets of all players, and each mixed strategy profile meets
(x1, x2, . . . , xn) ∈ X;

(5). fi : X → R ∀i ∈ N represents the expected payoff function.
fi(x1, . . . , xn) =

∑m1
k1=1 . . .

∑mn
kn=1 Ui(s1k1 , . . . , snkn)

∏n
i=1 xiki represents player i getting the expected

payoff value when he chooses a mixed strategy xi = (xi1, . . . , ximi) ∈ Xi. where Ui(siki , . . . , snkn)
represents player i getting the payoff value when each player i chooses the pure strategy siki ∈ S i, i =

1, . . . , n.
Definition 2. If there is x∗ = (x∗1, . . . , x

∗
n), such that fi(x∗i , x

∗
i∧) = max

ui∈Xi
fi(ui, x∗i∧), ∀i ∈ N, then x∗ is the

Nash equilibrium point of an N-person finite noncooperative game, where i∧ = N\{i}, ∀i ∈ N.
Conclusion 1. Mixed strategy x∗ is the Nash equilibrium point if and only if every pure strategy
siki(1 ≤ ki ≤ mi) of each player i has fi(x∗) ≥ fi(x∗ q siki), where (x∗ q siki) is only the player i replacing
their own strategy with siki , and the other players do not change their own strategy under the condition
of equilibrium solution x∗.

In particular, the Γ is a bimatrix game when N = 2, (x∗, y∗) is the Nash equilibrium solution if and

only if

x∗Ay∗ ≥ xAy∗T , ∀x,

x∗By∗ ≥ x∗ByT , ∀y,
where A and B are payoff matrices for each player.

Theorem 1. A mixed strategy x∗ ∈ X is the Nash equilibrium point of a game Γ if and only if x∗ is an
optimal solution to the following optimization problem, and the optimal value is 0:

min f (x) =

n∑
i=1

max
1≤ki≤mi

{ fi(x q siki) − fi(x), 0}

mi∑
ki=1

xiki = 1

0 ≤ xiki ≤ 1
i = 1, · · · , n; ki = 1, · · · ,mi

(2.1)

Proof Necessity: Suppose that x∗ is the Nash equilibrium point. According to Conclusion 1, we have
fi(x∗) ≥ fi(x∗ q siki),∀i ∈ N,∀siki ∈ S i, then

n∑
i=1

max
1≤ki≤mi

{ fi(x∗ q siki) − fi(x∗), 0} = 0.

Because of x∗ ∈ X =
∏n

i=1 Xi, the constraint condition of (2.1) hold. In formula (2.1), f (x) is
nonnegative, so f (x) gets the minimum value 0 at x∗.

Sufficiency: Assume that x∗ is the solution of problem (2.1). According to x∗ satisfies conditions of
(2.1), we can know that x∗ ∈ X =

∏n
i=1 Xi. And because of f (x∗) = 0, so fi(x∗ q siki) − fi(x∗) ≤ 0, that

is fi(x∗) ≥ fi(x∗ q siki),∀i ∈ N,∀siki ∈ S i. So x∗ is the Nash equilibrium point of the game Γ.
For the two-person double matrix game, the above optimization problem can be simplified as:

f (x, y) = max{max
1<i<m
{AiyT − xAyT , 0}} + max{max

1< j<n
{xB j − xByT , 0}}. (2.2)
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where Ai is the ith row of matrix A and B j is the jth column of matrix B. Then, (x∗, y∗) is a Nash
equilibrium solution of a two-person noncooperative game, which is also f (x∗, y∗) = 0.

3. Differential evolution particle swarm optimization algorithm based on good point set
(GPDEPSO)

3.1. Good point set

Good point set was originally proposed by Hua Luogeng et al. [19] and defined as follows:

(1). Let Gs be a unit cube in s-dimensional Euclidean space. Let x ∈ Gs

x = (x1, x2, . . . , xs) ∈ Gs, 0 ≤ x j ≤ 1, j = 1, . . . , s. (3.1)

(2). Let Gs have a set of points Pn(i) with n points:

Pn(i) = {x(1), · · · , x(i), · · · , x(n)}

x(i) = {{x(i)
1 }, · · · , {x

(i)
j }, · · · , {x

(i)
s }} (3.2)

0 ≤ x(i)
j ≤ 1; i = 1, · · · , n; j = 1, 2, · · · , s.

where {·} represents the decimal part of the value.

(3). For any given point r = (r1, r2, · · · , rs) ∈ Gs, let Nn(r) = Nn(r1, r2, · · · , rs) represents the number
of points in Pn(i) that meet the following inequality:

0 ≤ x(i)
j ≤ r j, j = 1, 2, · · · , s.

ϕ(n) = sup|(Nn(r)/n) − |r||, where |r| = r1r2 · · · · · rs, is called a deviation of the point set Pn(i). If
∀n, ϕ(n) = O(1), then Pn(i) is said to be uniformly distributed on Gs and the deviation is ϕ(n).

(4). Let r ∈ Gs, and Pn(i) = {(r1 ∗ i, r2 ∗ i, · · · , rs ∗ i, ), i = 1, · · · , n}, the deviation ϕ(n) meets
ϕ(n) = C(r, ε) · n−1+ε, where C(r, ε) is a constant related only to r, ε(ε is an arbitrarily small positive
number), then, the Pn(i) is called the good point set, r is called the good point.

In this paper, we take

ri = {ei, 1 ≤ i ≤ s}. (3.3)

In the following, we generate two distribution maps (Figures 1 and 2) of 500 populations with the
random point method and the exponential good point set method, respectively.
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Figure 1. Two-dimensional initial population generated by random method.
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Figure 2. Two-dimensional initial population generated by exponential sequence.

As shown, the good point sequence is more uniform and global than the random point method. In
addition, the good point method is independent with spatial dimensions, thus it can be well adapted to
the high-dimensional problems. It is also stable that the distribution results are the same every time
when the number of points is the same.
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3.2. Differential evolution algorithm (DE)

DE is a new simple and robust evolutionary algorithm that was first introduced by Storm and Price
[20]. There are four operations of DE: initialization, variation, crossover, and selection operation.

(1). Initialization
Let each individual in a population be

X = (xi1, . . . , xi j, . . . , xiD) i = 1, . . . ,N; j = 1, . . . ,D. (3.4)

where N and D represent, respectively, the population size and space dimension. In the study of DE,
it is generally assumed that the initial population conforms to uniform probability distribution, and its
form is as follows:

xi j = rand[0, 1] · (xU
j − xL

j ) + xL
j i = 1, . . . ,N; j = 1, . . . ,D. (3.5)

where rand[0, 1] represents random values in the range [0,1], xU
j and xL

j represent, respectively, the
upper and lower bounds of parameter variables.

(2). Variation
The variation operation is mainly executed to distinguish DE from other evolutionary algorithms.

The variation of individual V = (vi1, . . . , viD) is generated by the following equation:

V t+1
i = Xt

r1 + F · (Xt
r2 − Xt

r3) (3.6)
Xt

r1, X
t
r2, X

t
r3 ∈ X; i = 1, . . . ,N.

where r1, r2, and r3 are different integers between 1 and N, and they are also different from i; F is a
constriction factor to control the size of difference of two individuals, and t is the current iterate point.

(3). Crossover
We use the crossover between the parent and offspring with the given probability for generating

new individual U = (ui1, . . . , uiD):

ut+1
i j =

vt+1
i j , i f (rand( j) ≤ CR)or( j = rnbr(i)),

xt+1
i j , otherwise.

(3.7)

where rand( j) is random value in the range [0,1], CR is crossover operator in the range [0,1], and
rnbr(i) ∈ {1, . . . ,D} is a randomly selected sequence, which ensures that a new individual gets at least
one component value from the variation vector.

(4). Selection
The offspring Xt+1

i is generated by selecting the individual and parent according to the following
equation:

Xt+1
i j =

U t+1
i , i f ( f (U t+1

i ) < f (Xt
i)),

Xt
i , otherwise.

(3.8)

where f (·) is the fitness function value.
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3.3. Particle swarm optimization algorithm (PSO)

PSO was proposed by Eberhart and Kennedy [21], and is a random search algorithm, which is
inspired by the activities of flocking birds. PSO uses a population of individuals called particles, and
there are two main operations in PSO, speed updating and position updating:

vt+1
i j = ωvt

i j + c1r1(xt
pbest − xt

i j) + c2r2(xt
gbest − xt

i j)

xt+1
i j = xt

i j + vt
i j (3.9)

i = 1, . . . ,N; j = 1, . . . ,D.

The ω is the inertia weight, c1 and c2 are acceleration constants, r1 and r2 are random values in
the interval (0, 1), vt

i j is the ith particle’s velocity in generation t, xt
i j is the ith particle’s position in

generation t, xt
pbest is the personal best position of particle i before generation t, and xt

gbest is the global
best position in the searching history [22].

Speed updating can be further explained as follows: ωvt
i j is called the current state of the particle

with the ability to balance global and local search. c1r1(xt
pbest − xt

i j) is the cognitive modal of the
particle, which represents the ability of learning from itself and endows particles with strong local
search capabilities. c2r2(xt

gbest−xt
i j) represents the social cognition modal of the particle and information

sharing among particles, that is, the ability to learn from the entire population and endow particles with
strong global search ability. Then, the position updating makes the particles reach the new position.

A simplified position transformation formula without velocity term is expressed as follows [23]:

xt+1
i j = ωxt

i j + c1r1(xt
pbest − xt

i j) + c2r2(xt
gbest − xt

i j). (3.10)

3.4. GPDEPSO experimental steps and its implementation

The steps of GPDEPSO is described as follows :
Step 1: Set the parameters of GPDEPSO, such as N, D, CR, F0, ωmin, ωmax, xL, xU , c1, c2, and set

the maximum number of iteratios T , accuracy ε, where

ω = ωmax − (ωmax − ωmin) · t/T
F = F0 · 2λ

λ = e1−T/(T+1−t)

Step 2: Randomly generate N initial populations P(0) by using a good point set, and
∑mi

ki=1 xiki =

1, xiki ≥ 0, xiki ∈ Xi, i = 1, . . . ,N; ki = 1, . . . ,mi.
Step 3: Calculate the fitness function value f (x) of each individual in population P(t) and determine

the xt
pbest and xt

gbest.
Step 4: The next generation population P1(t) is generated by variation of formula (3.10), and

population P2(t) is generated by variation of formula (3.6).
Step 5: The population P

′

(t) is generated by crossover of formula (3.7).
Step 6: According to formula (3.8), populations P(t) and P

′

(t) are selected to generate offspring
population P(t + 1) and the fitness function value of population P(t + 1) is calculated.

Step 7: Determine whether to end according to the accuracy and the maximum number of iterations,
and output the optimal value; otherwise, turn to step 3.
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The pseudo code of GPDEPSO is as follows:

Algorithm 1 GPDEPSO

Input: Parameters N, D, CR, F0, T , ωmin, ωmax, xL, xU , c1, c2, ε
Output: The best vector (Solution) · · · ∆

t ← 1 (Initialization with good point set)
for i = 0 to N do

for j = 0 to D do
xt

i, j = rand(0, 1) · (xU
i, j − xL

i, j) + xL
i, j

end for
end for
while | f (∆)| ≥ ε or t ≤ T do

for i = 0 to N do
(Update the xt

p, x
t
g)

for j = 0 to D do
xt

p = xt
pbest

xt
g = xt

gbest
end for
(Variation and Crossover)
for j = 0 to D do

vt
i, j = Variation (xt

p, x
t
g, x

t
i, j)

ut
i, j = Crossover (vt

i, j, x
t
i, j)

end for
(Selection)
if f (ut

i, j) < f (xt
i, j) then

xt
i, j ← ut

i, j
else { f (xt

i, j) < f (∆)}
∆← xt

i, j
end if

end for
t = t + 1

end while

return the best vector ∆

4. Convergence analysis of GPDEPSO

The main operations of GPDEPSO are a variation operation based on PSO, a crossover operation,
and a selection operation of DE. Considering variation crossover operations as a difference operator
based on PSO (DOPSO), which is essentially a variation operation, the individual Xi generates an
intermediate individual Vi with at least 1 − (1 − CR − 1/D)D probability. The selection operation is
regarded as a selection operator (SO), which is strictly based on the strategy of survival of the fittest.
It produces a better new generation of individuals by eliminating the inferior individuals in Xi and Vi.

AIMS Mathematics Volume 6, Issue 2, 1309–1323.



1317

For the minimal optimization problem, GPDEPSO evaluation function { f (Xt
i) : 1 < t < T } is a

monotonous nonincremental sequence. The convergence of GPDEPSO is illustrated by He’s stochastic
functional analysis method in the literature [24]. An iteration process of GPDEPSO is abstracted as a
composite random mapping of a DOPSO and a SO.
Definition 3. The process of generating test vector U by DOPSO is to recombine and transform
everyone dimensional component of the target vector according to probability θ = CR + 1/D. In
addition, the process can be described as a random mapping of the solution space Ψ1 : Ω × S → S 2,
which is defined as:

µ{ω|Ψ1(ω, Xi) = 〈Xi,Vi〉} = µ{Vi = Xr1 + F · (Xr2 − Xr3)} = 1 − (1 − θ)D. (4.1)

where (Ω, A, µ) is the complete probability measure space and Ω is the nonempty abstract set, and
its element ω is a basic event. A is the σ−algebra composed of some subsets of Ω, µ is the probability
measure on A, and S is the solution space: S = {X|X = (x1, x2, · · · , xD), xL

j ≤ x j ≤ xU
j , j = 1, 2, · · · ,D}.

Definition 4. The selection operator SO is the process of selecting the optimal individual from the test
vector Ui and the target vector Xi according to the greedy selection method. It is a mapping on the
solution space Ψ2 : S 2 → S :

Ψ2(〈Xi,Ui〉) = min{ f (Xi), f (Ui)}. (4.2)

Combining the above two definitions, it can be seen that one iteration of GPDEPSO is equivalent
to mapping Ψ = (Ψ2 ◦ Ψ1) : Ω × S → S (Ω × S → S 2 → S ) to the current population P(t), where
Ψ is a reverse-order synthesis mapping corresponding to DOPSO and SO mapping. Then, for the new
population P(t + 1) it can be expressed as P(t + 1) = Ψ(ω, P(t)) = Ψ2(Ψ1(ω, P(t))), 0 ≤ t ≤ T − 1.

Let f (Xt
best) be the fitness function value of the best individual Xt

best in P(t). Under the effect
of Ψ, the new generation population generated by GPDEPSO will be superior to the previous
one. Therefore, the sequence { f (Xt

best)}1≤t≤T is necessarily a monotonous nonincremental sequence
(assuming that f (X) is the minimum optimization function in this paper). In addition, the evolutionary
process of GPDEPSO can also be characterized by the optimal individual, and the mapping Ψ can
be redefined as a mapping corresponding to the process of generating the optimal individual, that is,
Xt+1

best = Ψ(ω, Xt
best) = Ψ2(Ψ1(ω, Xt

best)).
Lemma 1. Let λ : S × S → R be the distance defined on S and satisfy λ(Xi, X j) = | f (Xi) −
f (X j)|,∀Xi, X j ∈ S ; then, (S , λ) is a complete separable metric space.

Similar to the method presented in Ref. [25], Lemma 1 is established.
Theorem 2. The random mapping Ψ = (Ψ2 ◦ Ψ1) : Ω × S → S formed by one iteration of GPDEPSO
is a random contraction operator.

Proof. According to the definition of DOPSO and SO operation, it can be seen that the new population
generated by GPDEPSO in each iteration is better than the previous one. Therefore, for random
mapping Ψ = (Ψ2 ◦ Ψ1) : Ω × S → S , there exists a random variable with nonnegative real value
0 ≤ K(ω) < 1, which makes the following formula hold:

λ(Ψ(ω, Xt−1
best),Ψ(ω, Xt

best)) = λ(Xt
best, X

t+1
best)

= | f (Xt
best) − f (Xt+1

best)|
≤ K(ω) · | f (Xt−1

best) − f (Xt
best)| (4.3)

= K(ω) · λ(Xt−1
best, X

t
best).

AIMS Mathematics Volume 6, Issue 2, 1309–1323.



1318

letting
Ω0 = {ω|λ(Ψ(ω, Xt−1

best),Ψ(ω, Xt
best)) ≤ K(ω) · λ(Xt−1

best, X
t
best)} ⊆ Ω

then
µ(Ω0) = 1.

Therefore, the mapping formed by GPDEPSO, Ψ : Ω × S → S is a random contraction operator. �

Lemma 2. (Random Contraction Mapping Theorem) [26]
Letting Ψ : Ω × S → S be a random operator, satisfying that for almost all ω ∈ Ω and Ψ(ω) is

contractive operator, then for Ψ(ω) there exists a unique random fixed point ξ(ω), and Ψ(ω, ξ(ω)) =

ξ(ω).
According to Theorem 2, the random mapping Ψ is a random contraction operator. By using the

conclusion of Lemma 2, for Ψ(ω) there must exist a unique random fixed point. Then, the convergence
criterion of GPDEPSO can be derived, which means that GPDEPSO is asymptotically convergent.

5. Experimental design and results

5.1. Numerical examples

We take the classical games given in [16] and [17] as our numerical examples, and solve them
separately by using the GPDEPSO given in this paper and comparing with other algorithms. (For
Examples 1-3, the parameters of the algorithm are set as N = 50, T = 100, ε = 10−4, etc. For examples
4 and 5 of high dimension, the parameters setting are, respectively, N = 50, T = 100, ε = 10−5, etc.,
and N = 100, T = 300, ε = 10−5, etc.).

Example 1 Prisoner’s Dilemma Game Γ(X1,Y1, A1, B1):

A1 =

[
−8 0
−15 −1

]
, B1 =

[
−8 −15
0 −1

]
.

Example 2 Guessing Game Γ(X2,Y2, A2, B2):

A2 =

[
1 −1
−1 1

]
, B2 =

[
−1 1
1 −1

]
.

Example 3 Supervisory Game Γ(X3,Y3, A3, B3):

A3 =

[
0 50

30 30

]
, B3 =

[
−10 −50
60 70

]
.

Example 4 Consider a Three-Dimensional Payoff Matrix Game Γ(X4,Y4, A4, B4):

A4 =


1 0 0
0 1 0
0 0 1

 , B4 =


0 1 0
0 0 1
1 0 0

 .
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Example 5 Consider a 10-Dimensional Payoff Matrix Game Γ(X5,Y5, A5, B5):

A5 =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 , B5 =


0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
1 0 · · · 0

 .
5.2. Results and discussion

The following Tables 1–4 present computational results of the above examples by GPDEPSO.

Table 1. Results of Prisoner’s Dilemma Game Γ(X1,Y1, A1, B1).

Test times Iteration times Mixed strategy of player 1 Mixed strategy of player 2 Fitness value
Firstly 1 (1,0) (1,0) 0

Secondly 2 (1,0) (1,0) 0
Thirdly 1 (1,0) (1,0) 0
Fourthly 1 (1,0) (1,0) 0

Table 2. Results of Guessing Game Γ(X2,Y2, A2, B2).

Test times Iteration times Mixed strategy of player 1 Mixed strategy of player 2 Fitness value
Firstly 4 (0.5000,0.5000) (0.5000,0.5000) 3.8124e-05

Secondly 4 (0.5000,0.5000) (0.5000,0.5000) 2.2619e-05
Thirdly 7 (0.5000,0.5000) (0.5000,0.5000) 8.2926e-05
Fourthly 6 (0.5000,0.5000) (0.5000,0.5000) 8.5655e-05

Table 3. Results of Supervisory Game Γ(X3,Y3, A3, B3).

Test times Iteration times Mixed strategy of player 1 Mixed strategy of player 2 Fitness value
Firstly 10 (0.2000,0.8000) (0.4000,0.6000) 6.7765e-05

Secondly 12 (0.2000,0.8000) (0.4000,0.6000) 9.8433e-05
Thirdly 11 (0.2000,0.8000) (0.4000,0.6000) 2.9027e-05
Fourthly 12 (0.2000,0.8000) (0.4000,0.6000) 3.3894e-05

Table 4. Results of Three-Dimensional Payoff Matrix Game Γ(X4,Y4, A4, B4).

Test times Iteration times Mixed strategy of player 1 Mixed strategy of player 2 Fitness value
Firstly 19 (0.3333,0.3333,0.3333) (0.3333,0.3333,0.3333) 8.6491e-06

Secondly 20 (0.3333,0.3333,0.3333) (0.3333,0.3333,0.3333) 9.3384e-06
Thirdly 17 (0.3333,0.3333,0.3333) (0.3333,0.3333,0.3333) 9.3761e-06
Fourthly 19 (0.3333,0.3333,0.3333) (0.3333,0.3333,0.3333) 6.3213e-06

From above four tables, we can see that the Nash equilibrium can be obtained under the given
parameters by using GPDEPSO proposed in this paper. In addition, the accuracy of fitness function
values is higher approximately 104 times and 102 times than that of Refs. [16] and [17]. It can be seen
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that the speed of this algorithm does not be affected under the condition of increasing the population
size (N=50). On the contrary, according to the results of Examples 1, 3, and 4, it is show that the
number of iterations is reduced significantly, and the Example 4 is the most obvious. Compared with
Refs. [16], the number of iteration of Example 4 is reduced by approximately 16 times, which is
approximately 8 times compared with Ref. [17]. Through the above analysis, GPDEPSO is superior
to the algorithms presented in the existing literature in terms of iteration times and accuracy of results.
Furthermore, although the number of populations is lager than that in the previous literature, it does not
affect the speed and accuracy of the algorithm, but plays a powerful role in finding the global optimal
solution.

The following are two comparison figures for solving Example 5, a high-dimensional payoff

matrix game. Figure 3 is a comparison between GPDEPSO and hybrid differential evolution particle
swarm optimization algorithm (DEPSO). Figure 4 is a comparison of GPDEPSO, differential evolution
algorithm based on good point set (GPDE), and particle swarm optimization algorithm based on
good point set (GPPSO). The Nash equilibrium solution calculated by all methods is x∗ = y∗ =

(0.1, . . . , 0.1)1×10.

Figure 3. Comparison of GPDEPSO and DEPSO.

Figure 4. Comparison of GPDEPSO, GPDE and GPPSO.
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As shown in Figures 3 and 4, the high-dimensional payoff matrix game can be solved better by
GPDEPSO. Compared with Ref. [17], it can be seen that not only the calculation speed is greatly
improved, but the accuracy of the fitness function value is also better. It can be seen from Figure 3
that GPDEPSO converges faster and more smoothly than DEPSO, which indicates that the good point
set can avoid falling into a local optimum during the calculation process. From Figure 4, comparing
GPDEPSO, GPPSO, with GPDE, and find that GPDEPSO combines the ability of PSO to find the
global optimum quickly with the fast convergence ability of DE. In Example 5, GPDEPSO can quickly
find the global optimal solution within the first 50 iterations, and the approximate exact solution can be
obtained after 150 iterations. Therefore, GPDEPSO has a good advantage in solving Nash equilibrium
problems with a high-dimensional payoff matrix.

6. Conclusions

We propose GPDEPSO from the point of view of DE, considering the different characteristics of DE
and PSO, and we use a good point set to make the initial data more uniform. This algorithm combines
the advantages of DE and PSO, which not only ensures the simple operation, easy implementation,
and fast convergence of DE, but also enhances its global optimization ability. By solving the
Nash equilibrium of noncooperative games, we find that the proposed algorithm is superior to the
comparative algorithms in terms of the calculation accuracy and convergence. In particular, for a
high-dimensional payoff matrix game, the efficiency of the algorithm is remarkable. In the future,
since a Nash equilibrium problem is a complex, NP-hard problem, it would be interesting to consider
the influence of different variation operations and selection strategies on the solution of the Nash
equilibrium, as well as to consider the Nash equilibrium problems for more complex multiobjective
games and multiple games.
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