Processing math: 92%
Research article

Existence, uniqueness and controllability results of nonlinear neutral implicit ABC fractional integro-differential equations with delay and impulses

  • Received: 07 January 2025 Revised: 18 February 2025 Accepted: 24 February 2025 Published: 28 February 2025
  • MSC : 34A09, 47H09, 34A37, 93B05, 34K20, 58C30

  • In this article, the necessary and sufficient conditions for the existence and uniqueness of the mild solutions for nonlinear neutral implicit integro-differential equations of non-integer order 0<α<1 in the sense of ABC derivative with impulses, delay, and integro initial conditions were established. The existence results were derived using the semi-group theory, measures of non-compactness, and the fixed-point theory in the sense of Arzelˊa–Ascoli theorem and Schauder's fixed-point theorem. We analyzed the controllability results of the proposed problem by incorporating the ideas of semi-group theory and fixed-point techniques. The Banach contraction principle was used to derive the uniqueness and controllability of the proposed problem. We provide an example to support the theoretical results.

    Citation: Sivaranjani Ramasamy, Thangavelu Senthilprabu, Kulandhaivel Karthikeyan, Palanisamy Geetha, Saowaluck Chasreechai, Thanin Sitthiwirattham. Existence, uniqueness and controllability results of nonlinear neutral implicit ABC fractional integro-differential equations with delay and impulses[J]. AIMS Mathematics, 2025, 10(2): 4326-4354. doi: 10.3934/math.2025200

    Related Papers:

    [1] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861
    [2] Ahmed Morsy, Kottakkaran Sooppy Nisar, Chokkalingam Ravichandran, Chandran Anusha . Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces. AIMS Mathematics, 2023, 8(3): 5934-5949. doi: 10.3934/math.2023299
    [3] H. H. G. Hashem, Hessah O. Alrashidi . Qualitative analysis of nonlinear implicit neutral differential equation of fractional order. AIMS Mathematics, 2021, 6(4): 3703-3719. doi: 10.3934/math.2021220
    [4] Prabakaran Raghavendran, Tharmalingam Gunasekar, Irshad Ayoob, Nabil Mlaiki . AI-driven controllability analysis of fractional impulsive neutral Volterra-Fredholm integro-differential equations with state-dependent delay. AIMS Mathematics, 2025, 10(4): 9342-9368. doi: 10.3934/math.2025432
    [5] Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani . Existence and data dependence results for neutral fractional order integro-differential equations. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052
    [6] Qi Wang, Chenxi Xie, Qianqian Deng, Yuting Hu . Controllability results of neutral Caputo fractional functional differential equations. AIMS Mathematics, 2023, 8(12): 30353-30373. doi: 10.3934/math.20231550
    [7] Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316
    [8] Hasanen A. Hammad, Hassen Aydi, Hüseyin Işık, Manuel De la Sen . Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives. AIMS Mathematics, 2023, 8(3): 6913-6941. doi: 10.3934/math.2023350
    [9] Sabri T. M. Thabet, Sa'ud Al-Sa'di, Imed Kedim, Ava Sh. Rafeeq, Shahram Rezapour . Analysis study on multi-order $ \varrho $-Hilfer fractional pantograph implicit differential equation on unbounded domains. AIMS Mathematics, 2023, 8(8): 18455-18473. doi: 10.3934/math.2023938
    [10] Thanin Sitthiwirattham, Rozi Gul, Kamal Shah, Ibrahim Mahariq, Jarunee Soontharanon, Khursheed J. Ansari . Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2022, 7(3): 4017-4037. doi: 10.3934/math.2022222
  • In this article, the necessary and sufficient conditions for the existence and uniqueness of the mild solutions for nonlinear neutral implicit integro-differential equations of non-integer order 0<α<1 in the sense of ABC derivative with impulses, delay, and integro initial conditions were established. The existence results were derived using the semi-group theory, measures of non-compactness, and the fixed-point theory in the sense of Arzelˊa–Ascoli theorem and Schauder's fixed-point theorem. We analyzed the controllability results of the proposed problem by incorporating the ideas of semi-group theory and fixed-point techniques. The Banach contraction principle was used to derive the uniqueness and controllability of the proposed problem. We provide an example to support the theoretical results.



    Fractional calculus presents numerous applications in modeling complex problems, and analyses using fixed-point techniques are highly effective in fractional integro-differential equations (FIDEs). Models using FIDEs are better for real-world problems compared to those using local derivatives [2,3,4]. The results obtained from these FIDEs, with various definitions of non-local (fractional) derivatives, demonstrate their unique applications in scientific and non-scientific fields. Among these derivatives, Atangana and Baleanu introduced a non-local derivative with a non-singular kernel based on the Mittag-Leffler function in the sense of Caputo [6,7,8]. This definition highlights the importance of the Mittag-Leffler function, and together, they present numerous applications in different areas. The ABC derivative involves the Mittag-Leffler kernel; as such, it is not affected by the singularities of FIDEs compared to other fractional derivatives. Also, it effectively captures the memory effect of the system, performing better than classical derivatives. The ultimate merit of the ABC derivative is to maintain physical phenomena while evaluating the existence and uniqueness of mild solutions for fractional differential equations.

    Numerous problems in the biomedical field involve sudden state changes. Impulsive differential equations of non-integer orderprovide a clear frameworks for addressing such problems in future investigation. Many research works have been conducted in this area [9,10], and remarkable results have been obtained. In particular, researchers have analyzed impulsive fractional integro-differential equations (IFIDEs) [9,10,11] using semigroup theory and fixed-point techniques (FPTs). The study of impulsive problems involving non-integer order derivatives is particularly noteworthy due to their distinctiveness.

    Several models for physical phenomena completely rely on historical data. In such cases, delay differential equations (DDEs) [7,12,13] are used to model scenarios in fields such as control systems, oceanography, and geography. Researchers have investigated the approximate mild solution of the multi-pantograph DDE of second order with singularity [14,15]. Models involving DDEs account only for past states but not past rates [12,13,14,15].

    Many researchers are working on coupled delayed fractional systems [16]. For the first time, the fractional adaptive sliding mode control method is being used to study the projective synchronization of uncertain fractional-order reaction-diffusion systems. Adaptive sliding mode control laws are derived by creating a fractional-order integral-type switching function, which makes the fractional-order sliding mode surface reachable in a finite amount of time. In [17], the Lyapunov functional approach and Fillipov's theory were used to derive a novel algebraic necessary condition for the global ML synchronization of fractional-order memristor neural networks (FOMNNs) with leakage delay via a hybrid adaptive controller. In [18], researchers investigated global Mittag-Leffler synchronization by designing a new fractional integral sliding mode surface and its associated control law. In [19,20], authors examined the well-posedness of systems of incommensurate delay fractional differential equations (DFDEs) of retarded type with non-vanishing constant delay in the space of continuous functions. The behavior of dynamical systems can occasionally vary due to impulses and abrupt process changes. These changes can be modeled [21] using short-memory fractional differential equations

    The existence of mild solutions for the given problem and their stability was discussed by Reunsumrit et al. [11]:

    ABC0Dαt[s(t)N(t,s(t))]=I(t,s(t),Ls(t)),0<α1,t[0,]=J,Δ(s)|t=tk=Ii(s(ti)),s(0)=ϱ0(ϱν)α1Γ(α)S(ν,s(ν))dν,

    where ABC0Dαt- is the ABC fractional derivative of order α and U,S:J×RR and V,g:J×R2R is a continuous function.

    Here, Ls(t)=t0g(t,τ,ϕ(τ))dτ, and Ii:RR, i=1,2,...q, 0=t0<t1<t2<...<tq=, Δs|t=ti=s(t+i)s(ti), and s(t+i)=limh0+s(ti+h) and s(ti)=limh0s(tih) represents the limits from the left and right sides of s(t) at t=ti.

    Benchohra et al. [12] inspected the existence and stability of the mild solution for the below implicit fractional differential equations (FDEs) involving neutrality and impulses

    cDαtq[s(t)N(t,st)]=I(t,st,cDαtqs(t)), for each t(tq,tq+1], q=0,1,...n, 0<α1,Δ(s)|t=tq=Iq(ϕtq), q=1,...n,s(t)=φ(t), t[r,0], r>0,

    where cDαtq represents the fractional derivative in Caputo sense, I:[0,]×PC([r,0],)×, N:[0,]×PC([r,0],)  are the given functions with I(0,φ)=0, Iq:PC([r,0],), φPC([r,0],), 0=t0<t1<<tn<tn+1=. Δs|t=tq=s(t+q)s(tq), where s(t+q)=limh0+s(tq+h) and s(tq)=limh0s(tqh) denote the limit values approaching from the right and left side of s at t=tq, respectively. Here, st(θ)=s(t+θ).

    Gul et al. [1] researched the existence of the mild solution for BVPs, using the ABC non-integer order derivative

    ABC0Dαt[s(t)N(t,s(t))]=I(t,s(t)),0<α1, t[0,]=J,s(0)=ϱ0(ϱν)α1Γ(α)U(ν,s(ν))dν.

    Here, ABC0Dαt- is the ABC derivative of non-integer order α and N,U,I:J×.

    Karthikeyan et al. [14] studied the existence of the mild solution for implicit FIDEs using ABC derivatives as mentioned below:

    {ABC0Dαt[s(t)N(t,s(t))]=I(t,st,ABC0Dαts(t)), t[0,]=J, 0<α1,Δ(s)|t=ti=Ii(sti),s(t)=φ(t), t[r,0],s(0)=0(z)α1Γ(α)E(z,sz)dz,

    where ABC0Dαt- is the ABC fractional derivative of order α, P,E:J× and I:J×2 are continuous functions. Where Ii:, z=1,2,...,0=t0<t1<t2<...<tn=,Δs|t=ti=s(t+i)s(ti), s(ti)=limr0s(ti)r) and s(t+i)=limr0+s(ti+r) represent the limit of s(t) from right and left respectively, at t=ti. For any tJ, we represent st by st(θ)=s(t+θ) and rs0.

    Nowadays, many researchers are analyzing the exact and approximate controllability of the above mentioned systems involving different non-local derivatives. Aimene et al. [7] verified the controllability for semi-linear FDEs involving the ABC derivative and delay.

    {ABC0Dαt[s(t)]=As(t)+Bc(t)+G(t,st,χ(Ψ(t))), t[0,]=J, 0<α1,Δ(s)|t=ti=Ii(sti),s(t)=φ(t), t[r,0].

    Here, ABC0Dαt- denotes the ABC non-integer derivative with order α and A:D(A)ΩΩ is an infinitesimal generator of α resolvent family Tα&Sα for t0 forming the solution operator on the Banach space (Ω,.). Let cL2([0,];), here is also a Banach space and B is a bounded linear operator such that B={g:[r,0]Ω}, g is continuous everywhere except for a finite number of points r at which g(r),g(r+) exists and g(r)=g(r),g(JxBxΩ,Ω),χ(J,J+) where J={t1,...t},J+=[r,] and tr<χ(t)<t,r>0.tJandti<χ(t)<t,t(ti,ti+1],I(Ω,Ω),Δ(s)|t=ti=s(t+i)s(ti),0=t0<t1<t2<...<tn=,forn=1,2,...,, with respect to the right and left side approach, respectively, at t=ti is s(t+i)ands(ti).stB satisfies st(θ)=s(t+θ),θ[r,0].st(.) is the history of the state from tr to t.

    The controllability of the above defined system has been derived by researchers with the help of k-set contraction mapping.

    Inspired by the above mentioned research articles, we aim to investigate nonlinear implicit fractional systems involving impulses and delay in terms of ABC, the non-local derivative of the form,

    {ABC0Dαt[s(t)N(t,s(t))]=As(t)+Bc(t)+I(t,st,ABC0Dαts(t),c(t)), t[0,]=J, 0<α1,Δ(s)|t=ti=Ii(sti),s(t)=φ(t), t[r,0],s(0)=0(z)α1Γ(α)G(z,sz)dz, (1.1)

    where ABC0Dαt- denotes the ABC non-integer derivative with order α and A:D(A)ΩΩ is an infinitesimal generator of α resolvent family Tα&Sα for t0 forming the solution operator on the Banach space (Ω,.). Let cL2([0,];), here is also a Banach space and B is a bounded linear operator such that B:Ω. The functions N,G:J× and I:J×3 are continuous. Also, ABC0Dαt- denotes the ABC non-integer derivative with order α, and N,G:J× are continuous functions. Also, Ii:, i=1,2,...n,0=t0<t1<t2<...<tn=,Δs|t=ti=s(t+i)s(ti), s(ti)=limr0s(ti)r) and s(t+i)=limr0+s(ti+r) denotes the limit of s(t) with respect to the right and left side approach, respectively, at t=ti. For any tJ, we represent st by st(h)=s(t+h) and rs0.

    The remaining of this paper is organized as follows: rudimentary concepts, like definitions and lemmas, are given in Section 2. The existence of the mild solution for nonlinear neutral implicit impulsive FIDEs involving ABC fractional derivative with delay is verified in Section 3. The controllability of the nonlinear neutral implicit impulsive FIDEs involving ABC with delay is examined in Section 4. An example is provided in Section 5 to demonstrate the applicability of the proposed problem.

    Let us define `PC([r,0],)={s:[r,0]:sˊC((ti,ti+1],), i=0,1,..., and  s(ti) and s(t+i), i=1...., with s(ti)=s(t+i)}.

    `PC([r,0],) denotes the Banach space, having norm s`PC=supt[r,0]s(t).

    `PC1([0,],)={s:[0,]:sˊC((ti,ti+1],), i=0,1,..., and  s(ti) and s(t+i), i=1,...,, with s(ti)=s(t+i)}.`PC1([0,],) represents the Banach space, having norm s`PC1=supt[0,]s(t),

    Ω={s:[r,]:s|[r,0]`PC([r,0],) and s|[0,]`PC1([0,],)}.

    Ω holds the properties of Banach space with norm sΩ=supt[r,]s(t).

    Remark 1 ([[7,8,10,12]]). `PC([0,],) is the Banach space, which is a complete normed vector space (`PC,.) with the following properties:

    (1) f0 and f=0 if and only if f=0,f`PC([0,],).

    (2) βf=|β|f,whereβ is a scalar, f`PC([0,],)andβ.

    (3) f+gf+g,fandg`PC([0,],).

    Definition 1 ([[7,8,10,12]]). The non-integer order ABC derivative of f(t) is

    ABC0Dαtf(t)=N(α)1α0f(z)Eα[α(tz)1α]dz,

    where, α(0,1] and αE1(0,).N(α) is the normalization function satisfying N(0)=N(1)=1 and Eα=i=0tiα(αi+1) is a special function, introduced by Mittag-Leffler.

    Definition 2 ([[7,8,10,12]]). The non-integer order ABC integral of f is

    ABC0Iαtf(t)=1αN(α)f(t)+αN(α)t0(tz)α1Γ(α)f(z)dz,

    where Iα represents the R-L fractional integral.

    Remark 2 ([[7,8,10,12]]). Some important properties of ABC derivative and the generalized Mittag-Leffler function during the implementation of Laplace transform are as follows:

    (1)L[ABCDαa+f(t)](s)=Nα1αL[Eα(λtα)(s)[sL(f(t))(s)f(0)]].

    (2)L[t(α1)Eα,α(λtα)(s)]=sααsα+λ.

    (3)L[t(α)](s)=Γ(α+1)sα+1.

    (4)L[f(t)Ψ(t)](s)=L[f(t)](s)L[Ψ(t)](s).

    Definition 3 ([[7,8,10,12]]). The Kurtawoski measure of non-compactness Υ on a bounded set BY is considered as follows:

    Υ(ˊL)=inf{ϵ>0impliesˊLmj=1Mjalsodiam(Mj)ϵ},

    with the following properties:

    (1) ˊL1ˊL2 gives Υ(ˊL1)Υ(ˊL2) where ˊL1,ˊL2 are bounded subsets of Y.

    (2) Υ(ˊL)=0 iff ˊL is relatively compact in Y.

    (3) Υ({z}ˊL)=Υ(ˊL) for all zY,ˊLY.

    (4) Υ(ˊL1ˊL2)max{Υ(ˊL1),Υ(ˊL2)}.

    (5) Υ(ˊL1+ˊL2)Υ(ˊL1)+Υ(ˊL2).

    (6) Υ((z)ˊL)|(z)|Υ(ˊL) for (z)R.

    Let ˊMC(I,Y) and ˊM((z))={υ(r)Y|υˊM}. We define

    t0ˊM((z))dz={t0υ((z))dz|υˊM},tˊJ.

    Proposition 1 ([7,8,12]). If ˊMC(ˊJ,Y) is equi-continuous and bounded, then tΥ(ˊM(t)) is continuous on I, also

    Υ(ˊM)=maxΥ(ˊM(t)),Υ(t0υ(z)dz)t0Υ(υ(z))dz,fortI.

    Proposition 2 ([7,8,12]). Let the functions {υn:ˊJY,nN} be Bochner integrable. For nN,υnm(t) a.e mL1(I,R+) and ξ(t)=Υ({υn(t)}n=1)L1(I,R+), then it satisfies

    Υ({t0υn(z)dz:nN})2t0ξ(z)dz.

    Proposition 3 ([7,8,12]). Let ˊM be a bounded set. Then, for each ζ>0, there exists a sequence {υn}n=1ˊM, such that

    Υ(ˊM)2Υ{υn}n=1 +ζ.

    Definition 4 ([[7,8,12]]). Let 0<μ<π and 1<β<0. We define S0μ={ˊυC{0} that is|argˊυ|<μ} and the closure of the form Sμ, that is

    Sμ={υC{0}|argˊυ|<μ}{0}.

    Definition 5 ([7,8,12]). For 1<β<0,0<ω<π2, we define {βω} as a family of all closed linear operators A:D(A)ΩΩ; this implies

    (1) σ(A)Sω, where σ(A) is the spectrum, which is a complement of the resolvent set.

    (2) For all μ(ω,π),Mμ implies R(z,A)L(X)Mμ|z|β, where R(z,A)=(zIA)1 is the resolvent operator and Aβω is said to be an Almost Sectorial operator on Ω.

    Proposition 4 ([7,8,12]). Let Aβω for 1<β<0 and 0<ω<π2 and we define {βω} as a family of all closed linear operators A:D(A)ΩΩ. Then, the following properties are fulfilled:

    (1) ˊ(t) is analytic and dndtnˊ(t)=(Anˊ(t)(tS0π2);

    (2) ˊ(t+s)=ˊ(t)ˊ(s)t,sS0π2;

    (3) ˊ(t)L(Ω)C0tβ1(t>0); where C0=C0(β)>0 is a constant;

    (4) Let ˊ={xΩ:limt0+ˊ(t)x=x}. Then D(AΥ)ˊ if Υ>1+β;

    (5) R(z,A)=0ezsˊ(s)ds, zC with Re(z)>0;

    (6) The range R(ˊ(t)) of ˊ(t), tS0π2ω is contained in D(A). Particularly, R(ˊ(t) is contained in D(A)β for all βC with Reβ>0,

    Aβˊ(t)x=12πiΓθzβetzR(z:A)xdz

    for all xX, and hence there exists a constant C=C(φ,β)>0, such that

    Aβˊ(t)CtφReβ1

    for all t>0.

    Remark 3. ˊ(t) is a C0 semi-group operator of an infinitesimal generator A.

    Definition 6 ([[7,8,12]]). Observe the system represented by the problem given below:

    ABC0Dαts(t)=f(t),s(0)=s0.

    The mild solution of the given problem is of the form,

    s(0)=s0+1αN(α)f(t)+αN(α)Γ(α)t0(tz)α1f(z)dz.

    Proof. From Definition 2, we obtain

    s(t)=s0+ABC0Iαtf(t)=s0++1αN(α)f(t)+αN(α)Γ(α)t0(tz)α1f(z)dz.

    Theorem 1 ([7,8,12]). Let (Ω,d) be a complete metric space. Then, a function Ψ:ΩΩ is said to be a contraction mapping if there is a constant α with 0α<1 such that for all x,yΩ, d(Ψ(x),Ψ(y))αd(x,y).

    Theorem 2 (Banach contraction principle). Let Ψ:ΩΩ represent the completely continuous operator on the Banach space Ω. Consider that the set ={sΩ:s=λΞs,for some λ(0,1)} is bounded, then Ψ has fixed points.

    Theorem 3 (Arzelˊa–Ascoli theorem). Let Ω,d be a compact space. A subset Ωμb of (Ω) is relatively compact if and only if Ωμbis uniformly bounded and equi-continuous.

    Theorem 4 (Schauder's fixed-point theorem). Let Ω,d be a complete metric space. Let Ωμb be a closed convex subset of Ω and let Ψ:ΩμbΩμb be a mapping such that the set {Ψs:sΩμb} is relatively compact in Ω, then Ψ has at least one fixed point.

    Lemma 1 ([12]). Let the real function ν(.):[0,](0,) and ρ(t) be a non-negative, locally integrable on [0,], and assume the constants c1>0 & 0<c21 such that

    ν(t)ρ(t)+c1t0(tz)c2ν(z)dz,

    which implies a constant =(c2) such that

    ν(t)ρ(t)+c1t0(tz)c2ν(z)dz, for every t[0,].

    Lemma 2 ([7,8,12]). Let the BVP with nonlinear integral boundary conditions, if fL(J),

    ABC0Dαts(t)=f(t), o<α<1, tJ,s(0)=0(z)α1Γ(α)E(z,s(z))dz,

    then, the mild solution sAC(J) is,

    s(t)=PTα0(z)α1Γ(α)E(z,s(z))dz+QP(1α)N(α)Γ(α)t0(tz)α1f(z)dz+αP2N(α)t0Sα(tz)f(z)dz. (2.1)

    Here, P and Q represents the linear operators, P=κ(κIA)1 and Q=ηA(κIA)1, where κ=N(α)1α,

    Tα=ˆEα(Q(t)α)=12πiΓeνtνα1(ναIQ)1dν,Sα=tα1ˆEα,α(Q(t)α)=12πiΓeνt(ναIQ)1dν.

    Proof. We easily prove result (2.1) through Lemma 2 directly by substituting s0 as the boundary condition.

    Definition 7 ([[7,8,12]]). Let the BVP with nonlinear integral boundary conditions, if fL(J),

    {ABC0Dαt[s(t)]=As(t)+Bc(t)+G(t,st,χ(Ψ(t))), t[0,]=J, 0<α1,Δ(s)|t=ti=Ii(sti),s(t)=φ(t), t[k,0], (2.2)

    then, the mild solution s`PC(J) is,

    s(t)={φ(t), t[k,0]PTαs0+QP(1α)N(α)Γ(α)t0(tz)α1×[B(cs(z))+G(z,sz,χ(Ψ(z)))]dz+αP2N(α)t0Sα(tz)[B(cs(z))+G(z,sz,χ(Ψ(z)))]dz, if t[0,t1],PTα(ttj)s(t1j))+QP(1α)N(α)Γ(α)ttj(tz)α1[B(cs(z))+G(z,sz,χ(Ψ(z)))]dz+αP2N(α)ttjSα(tz)[B(cs(z))+G(z,sz,χ(Ψ(z)))]dz+Ij(s(tj)), if t(tj,tj+1],j=1,2,...m. (2.3)

    Here, P and Q represents the linear operators. P=κ(κIA)1 and Q=ηA(κIA)1 where κ=N(α)1α and

    Tα=ˆEα(Q(t)α)=12πiΓeνtνα1(ναIQ)1dν,Sα=tα1ˆEα,α(Q(t)α)=12πiΓeνt(ναIQ)1dν.

    Definition 8 ([[7,8,12]]). The equivalent fractional solution integral for the prescribed system (1.1) is

    s(t)={φ(t), t[r,0],N(t,st)+PTα0(z)α1Γ(α)E(z,s(z))dz+QP(1α)N(α)Γ(α)t0(tz)α1×[B(cs(z))+q(z)]dz+αP2N(α)t0Sα(tz)[B(cs(z))+q(z)]dz, if t[0,t1],N(t,st)+PTα(tjtj1)s(t1j1))+QP(1α)N(α)Γ(α)tti(tz)α1[B(cs(z))+q(z)]dz+ij=1QP(1α)N(α)Γ(α)tjtj1(tjz)α1[B(cs(z))+q(z)]dz+αP2N(α)ij=1tjtj1Sα(tjz)[B(cs(z))+q(z)]dz+αP2N(α)ttiSα(tz)[B(cs(z))+q(z)]dz+PTα(t)ij=1Ij(s(tj)), if t(ti,ti+1]. (2.4)

    Definition 9 ([[7,8,12]]). Let ϕΩ be an initial function and sa`PC([0,],)Ω, then there exists a control cL2(J,), corresponding to the mild solution s(t) of (1.1), that fulfills s()=sa; then the system is controllable on [0,].

    Remark 4 ([[7,8,10,12]]). The readers may verify the mild solution and the solution operator in [7,8,12].

    Remark 5 ([[7,8,10,12]]). If AAα(α0,β0), then Tα(t)Reβt and Sα(t)Qeβt(1+tα1) for all t>0,β>β0. Therefore, we get ˆR=supt0Tα(t),ˆR1=supt0Qeβt(1+tα1) and so Tα(t)ˆR;Sα(t)tα1ˆR1.

    We examine the existence and uniqueness of the mild solutions of the proposed system by assuming that

    (P1) For ˊKu>0 and for any s,ρΩ

    |N(t,s(t))N(t,ρ(t))|ˊKus(t)ρ(t)`PC

    and

    N(t,s(t))ˆRn.

    (P2) For ˊKv,ˊLv&ˊMv and for any s1,s2,s3,ρ1,ρ2,ρ3(t)Ω

    |I(t,s1(t),s2(t),s3(t))I(t,ρ1(t),ρ2(t),ρ3(t))|ˊKvs1(t)ρ1(t)`PC+ˊLv|s2(t)ρ2(t)+ˊMv|s3(t)ρ3(t)|

    and

    I(t,s1(t),s2(t),s3(t))ˆRq.

    (P3) For ˊKt>0 and for any s,ρΩ

    |Iis(t)Ijρ(t)|ˊKts1(t)ρ1(t)`PC

    and

    Iis(t)ω.

    (P4) For ˊKs>0 and for any s,ρΩ

    |G(t,s(t))G(t,ρ(t))|ˊKss(t)ρ(t)`PC

    and

    G(t,s(t))Kg.

    (P5) There exists c1,c2,c3,c4(J,+) with c3=suptJc3(t)<1 and c4=suptJc4(t)<1 such that

    |I(t,s,ρ,μ)|c1(t)+c2(t)s`PC+c3(t)|ρ|+c4(t)μ`PC

    for tJ,s`PC([r,0],) and ρ,μ.

    (P6) There are constants 1,2>0 such that

    |Ii(s)|1s`PC+2

    for each s`PC([r,0],), i=1,...,.

    (P7) Let the completely continuous function be N, and for each bounded set B in Ω, the set tN(t,st):sB is equi-continuous in `PC(J,) and hence, there are constants p1>0, p2>0 with 1+p1<1 such that

    |N(t,s)|p1s`PC+p2,tJ,s`PC([r,0],).

    (P8) The control operator is a bounded linear operator, and for each bounded set B in Ω,

    cs(t)cρ(t)ˆRcs(t)ρ(t)`PC.

    (P9) The linear operator W:`PC(J) is

    W(c(.))={QP(1α)N(α)Γ(α)0(z)α1B(cs(t))dz+αP2N(α)0Sα(z)B(cs(t))dz, if t[0,t1],QP(1α)N(α)Γ(α)tj(z)α1B(cs(t))dz+αP2N(α)tjSα(z)B(cs(t))dz, if t[tj,tj+1].

    Here, we get an invertible operator W1:BL2((0,],C)/ker(W),W1 is also bounded and hence we have BˉRandW1ˉR1.

    (P10) P&Q are linear operators that are bounded on B and hence Pζ1&Qζ2.

    Theorem 5. Let us consider that hypotheses (P1)–(P8) hold, then the proposed problem (1.1) has at least one mild solution.

    Proof. Consider the set,

    Ω={s:[r,]:s|[r,0]`PC([r,0],) and s|[0,]`PC1([0,],)}.

    Ω holds the properties of Banach space with norm

    sΩ=supt[r,]s(t).

    We define the operator Ψ1:ΩΩ defined by

    Ψ1(s(t))={φ(t);t[r,0]PTα(t)0(z)α1Γ(α)G(z,sz)dz+QP(1α)N(α)Γ(α)tti(tz)α1[B(cs(z))+q(z)]dz+ij=1QP(1α)N(α)Γ(α)tjtj1(tjz)α1[B(cs(z))+q(z)]+αP2N(α)ij=1tjtj1Sα(tjz)×[B(cs(z))+q(z)]dz+αP2N(α)ttiSα(tz)[B(cs(z))+q(z)]dz+PTα(t)ij=1Ij(s(tj)),[ti,ti+1). (3.1)

    The operator Ψ1 represented in (3.1) can be formed as Ψ=N(t,s(t))+Ψ1, for all tJ.

    With the help of Schauder's FPT, we derive the existence of a fixed point of Ψ. First, we show that Ψ is completely continuous. Due to the postulate (P7) of N, it is enough to show that Ψ1 is completely continuous.

    Step 1: Ψ1 is continuous. Consider the sequence {s} such that ss in Ω. If t[r,0], then

    |Ψ1(s)Ψ1(ρ)|=0.

    For tJ, we have

    |Ψ1(s)Ψ1(ρ)|PTα(t)0(z)α1Γ(α)|G(z,sz)G(z,sz)|dz+QP(1α)N(α)Γ(α)tjtj1(tz)α1|[B(cs(z))+q(z)][B(cs(z))+q(z)]|dz+ij=1QP(1α)N(α)Γ(α)tjtj1(tjz)α1|[B(cs(z))+q(z)][B(cs(z))+q(z)]|d(z)+αP2N(α)ttiSα(tz)|[B(cs(z))+q(z)][B(cs(z))+q(z)]|dz+αP2N(α)ij=1tjtj1Sα(tjz)|[B(cs(z))+q(z)][B(cs(z))+q(z)]|dz+PTα(t)ij=1|Ij(s(tj))Ij(ρ(tj))|, (3.2)

    here, q,q(J,) such that

    q(t)=I(t,st,q(t),c(t)),

    and

    q(t)=I(t,st,q(t),c(t)).

    By (P2), we have

    |q(t)q(t)|=|I(t,st),q(t),c(t))I(t,st,q(t),ct)|ˊKvstst`PC+ˊLv|q(t)q(t)|+ˊMwc(t)c(t)`PC,|q(t)q(t)|ˊKvstst`PC+ˊMwc(t)c(t)`PC1ˊLv.

    Due to the result ss, it gives q(t)q(t) as for all tJ.

    Now, consider ν>0, for each tJ, we write |q(t)|ν and |q(t)|ν.

    Hence, we get

    (tz)β1|q(z)q(t)|(tz)β1[|q(z)|+|q(t)|]2ν(tz)β1,

    and

    (tkz)β1|q(z)q(t)|(tkz)β1[|q(z)|+|q(t)|]2ν(tkz)β1.

    For all tJ, the maps z2ν(tz)β1 and z2ν(tkz)β1 are integrable on [0,t]; hence, by applying the Lebesgue dominated convergence theorem and (3.2), we get

    |Ψ1(s)(t)Ψ1(s)(t)|0as ,

    which results in the continuity of Ψ1.

    Step 2: The bounded sets of Ω will be mapped in to bounded sets of Ω by the function Ψ1. To show this, it is sufficient to prove that for any >0, such that for each sB={sΩ:sΩ}, we have Ψ1(s)|Ω.

    For each tJ, we get

    Ψ1(s(t))=PTα(t)0(z)α1Γ(α)G(z,sz)dz+QP(1α)N(α)Γ(α)tjtj1(tz)α1[B(cs(z))+q(z)]dz+ij=1QP(1α)N(α)Γ(α)tjtj1(tjz)α1[B(cs(z))+q(z)]+αP2N(α)ij=1tjtj1Sα(tjz)×[B(cs(z))+q(z)]dz+αP2N(α)ttiSα(tz)[B(cs(z))+q(z)]dz+PTα(t)ij=1Ij(s(tj)), (3.3)

    here, q(J,) such that q(t)=I(t,st,q(t),c(t)). From (P5), for each tJ, we can write

    |q(t)|=|I(t,st,q(t),ct|c1(t)+c2(t)st`PC+c3(t)|q(t)|+c4c(t)`PCc1(t)+c2(t)st`PC+c3(t)|q(t)|+c4c(t)`PCc1(t)+c2(t)+c3(t)|q(t)|+c4c(t)`PCc1+c2+c3|q(t)|+c4c(t)`PC,

    where c1=suptJc1(t), and c2=suptJc2(t). Then

    |q(t)|c1+c2+c4c(t)1c3:=R.

    Thus from (3.3),

    |Ψ1(s)(t)||PTα(t)0(z)α1Γ(α)G(z,sz)dz+QP(1α)N(α)Γ(α)tjtj1(tz)α1[B(cs(z))+q(z)]dz+ij=1QP(1α)N(α)Γ(α)tjtj1(tjz)α1×[B(cs(z))+q(z)]+αP2N(α)ij=1tjtj1Sα(tjz)[B(cs(z))+q(z)]dz+αP2N(α)ttiSα(tz)[B(cs(z))+q(z)]dz+PTα(t)ij=1Ij(s(tj))|ζ1ˆRαΓ(α+1)(f1s+f2)+ζ1ζ21αN(α)Γ(α)(ˉRM+R)+ζ1ζ21αN(α)Γ(α)(ˉRM+R)+αζ21N(α)(z)α1ˆR1(ˉRM+R)+αζ21N(α)(z)α1ˆR1(ˉRM+R)+ζ1ˆRi=1(1stk+2)ζ1ˆRαΓ(α+1)(f1ν+f2)+ζ1ζ21αN(α)Γ(α)(+1)(ˉRM+R)+αζ21N(α)(z)α1ˆR1(+1)(ˉRM+R)+ζ1ˆR(C1ν+C2):=S.

    For t[r,0], then

    |Ψ1(s)(t)|φ`PC,

    Hence,

    Ψ1(s)Ωmax{S,φ`PC}:=.

    Step 3: The function Ψ1 maps the bounded sets of Ω into equi-continuous sets of Ω.

    Let ti1,ti(0,], ti1<ti, B be a bounded set of Ω as in Step 2, and let sB. Then

    |Ψ1(s)(t)Ψ1(s)(t1)|=|QP(1α)N(α)Γ(α)tjtj1(tz)α1[B(cs(z))+q(z)]dz+ij=1QP(1α)N(α)Γ(α)tjtj1(tz)α1×[B(cs(z))+q(z)]+αP2N(α)ij=1tjtj1Sα(tz)[B(cs(z))+q(z)]dz+αP2N(α)ttiSα(tz)×[B(cs(z))+q(z)]dz+PTα(t)ij=1Ij(s(t))QP(1α)N(α)Γ(α)tjtj1(t1z)α1[B(cs(z))+q(z)]dzij=1QP(1α)N(α)Γ(α)tjtj1(t1z)α1[B(cs(z))+q(z)]αP2N(α)ij=1tjtj1Sα(t1z)×[B(cs(z))+q(z)]dzαP2N(α)ttiSα(t1z)[B(cs(z))+q(z)]dzPTα(t)ij=1Ij(s(t1))|.

    As tt1, the RHS of the above inequality converges to 0. Hence, Ψ1 is completely continuous.

    Step 4: A priori estimates. We show that

    ={sΩ:s=κΨ1(s) for some κ(0,1)}

    is bounded. Consider s, then s=κΨ1(s) for some κ(0,1). Now let, for each tJ,

    s=κN(t,st)+κPTα0(z)α1Γ(α)E(z,s(z))dz+κQP(1α)N(α)Γ(α)tjtj1(tz)α1[B(cs(z))+q(z)]dz+κij=1QP(1α)N(α)Γ(α)tjtj1(tjz)α1×[B(cs(z))+q(z)]dz+καP2N(α)ij=1tjtj1Sα(tjz)[B(cs(z))+q(z)]dz+καP2N(α)ttiSα(tz)×[B(cs(z))+q(z)]dz+PTα(t)κij=1Ij(s(tj)). (3.4)

    Hence, for each tJ and from (P5), we get,

    |q(t)|=|I(t,st,q(t),c(t))|c1(t)+c2(t)st`PC+c3(t)|q(t)|+c4(t)|c(t)|c1(t)+c2(t)st`PC+c3(t)|q(t)|+c4(t)c(t)`PCc1+c2st`PC+c3|q(t)|+c4c(t)`PC,|q(t)|11c3(c1+c2st`PC+c4c(t)`PC).

    For each tJ and by (3.4), (P6), and (P7), we have

    |s|p1st`PC+p2+ζ1ˆR0(z)α1Γ(α)(f1st`PC+f2)dz+ζ1ζ21α(1c3)(N(α))Γα(c1+c2s`PC+c4c(t)`PC)+ζ1ζ2(1α)(1c3)(N(α))Γα(c1+c2s`PC+c4c(t)`PC)+αˆR2(1c3)N(α)ii=1titi1(tiz)α1(c1+c2s`PC+c4c(t)`PC)dz+αˆR2(1c3)N(α)tti(tz)α1(c1+c2s`PC+c4c(t)`PC)dz+ζ1ˆR(1sti`PC+2).

    Define ν by

    ν(t)=sup{|s(z)|:z[r,t]}, t[0,],c(t)=sup{|c(z)|:z[r,t]}, t[0,].

    Then there exists t[r,] such that ν(t)=|s(t)|. If t[0,], then by the previous inequality, we have for tJ

    ν(t)p1ν(t)+p2+ζ1ˆR0(z)α1Γ(α)(f1ν(z)+f2)dz+ζ1ζ2(+1)(1α)(1c3)(N(α))Γ(α)[c1+c2ν(t)+c4c(t)]+αˆR2(1c3)N(α)ij=1tjtj1Sα(tz)α1[c1+c2ν(z)+c4c(z)]dz+αˆR2(1c3)N(α)ttiSα(tz)α1[c1+c2ν(z)+c4c(z)]dz+ζ1ˆR[1ν(t)+2](p1+ζ1ζ2(+1)(1α)(1c3)N(α)Γ(α)c2+ζ1ˆR1)ν(t)+(p2+ζ1ζ2(+1)(1α)(1c3)N(α)Γ(α)c1+ζ1ˆR2)+ζ1ζ2(+1)(1α)(1c3)N(α)Γ(α)c4c(t)+αˆR2c1N(α)(1c3)(α1)ˆR1+αˆR2(1c3)N(α)ij=1tjtj1Sα(tz)α1×[c2ν(z)+c4c(z)]dz+αˆR2c1N(α)(1c3)(α1)ˆR1+αˆR2(1c3)N(α)ttiSα(tz)α1[c2ν(z)+c4c(z)]dz1(1[p1+ζ1ζ2(+1)(1α)(1c3)N(α)Γ(α)c2+ζ1ˆR1])(p2+ζ1ζ2(+1)(1α)(1c3)N(α)Γ(α)c1+ζ1ˆR2+αˆR2(+1)c1N(α)(1c3)(α1)ˆR1)+1(1[p1+ζ1ζ2(+1)(1α)(1c3)N(α)Γ(α)c2+ζ1ˆR1])ζ1ζ2(+1)(1α)(1c3)N(α)Γ(α)c4c(t)+1(1[p1+ζ1ζ2(+1)(1α)(1c3)N(α)Γ(α)c2+ζ1ˆR1])(α(+1)c2ˆR21(1c3)N(α)ttiSα(tz)α1ν(z)dz)+1(1[p1+ζ1ζ2(+1)(1α)(1c3)N(α)Γ(α)c2+ζ1ˆR1])(α(+1)c4ˆR21(1c3)N(α)ttiSα(tz)α1c(z)dz).

    Applying Lemma 1, we get

    ν(t)11[p1+ζ1ζ2(+1)(1α)(1c3)N(α)Γ(α)c2+ζ1ˆR1]×[(p2+ζ1ζ2(+1)(1α)(1c3)N(α)Γ(α)c1+ζ1ˆR2)+(αˆR2(+1)c1N(α)(1c3)(α1)ˆR1)+(ζ1ζ2(+1)(1α)(1c3)N(α)Γ(α)c4ˉR)]+11[p1+ζ1ζ2(+1)(1α)(1c3)N(α)Γ(α)c2+ζ1ˆR1][(α(+1)c2ˆR21(1c3)N(α)(c2))+(α(+1)c4ˆR21(1c3)N(α)ˉR)],

    where (c2) is a constant. If t[r,0], then ν(t)=ϕ`PC, thus for any tJ, sΩν(t), we get

    sΩmax{z`PC,A}.

    Hence the set is bounded. By Theorems 3 and 4, Ψ has at least one fixed point in Ω which is a mild solution of the problem (1.1).

    Theorem 6. Under hypotheses (P1)–(P8), the considered problem (1.1) has a unique mild solution if

    Θa=ˊKu+ζ1ˆRαΓ(α+1)ˊKs+ζ1ζ2(1α)αN(α)Γ(α+1)(+1)(ˉRˆRc+ˊKv+ˊMvˆRc1ˊLv)+αζ21N(α)^R1(+1)(ˉRˆRc+ˊKv+ˊMvˆRc1ˊLv)+ζ1ˆRˊKt<1.

    Proof. Define a set,

    Ω={s:[r,]:s|[r,0]`PC([r,0],) and s|[0,]`PC1([0,],)}.

    Ω holds the properties of Banach space with the norm

    sΩ=supt[r,]s(t).

    Consider the operator Ψ1:ΩΩ by

    Ψ1(s(t))={φ(t);t[r,0]N(t,st)+PTα(t)0(z)α1Γ(α)G(z,sz)dz+QP(1α)N(α)Γ(α)tti(tz)α1×[B(cs(z))+q(z)]dz+ij=1QP(1α)N(α)Γ(α)tjtj1(tjz)α1[B(cs(z))+q(z)]dz+αP2N(α)ij=1tjtj1Sα(tjz)[B(cs(z))+q(z)]dz+αP2N(α)ttiSα(tz)[B(cs(z))+q(z)]dz+PTα(t)ij=1Ij(s(tj)) (3.5)

    where q(t)C(J,) and

    q(t)=I(t,st,ABC0Dαt,c(t)).

    If s,ρΩ, for t[r,0], which implies

    Ψ(s)Ψ(ρ)=0.

    For tJ and from (3.5), we have

    Ψ(s)Ψ(ρ)Ω=maxtJ|Ψs(t)Ψρ(t)|maxtJ|N(t,st)+PTα(t)0(z)α1Γ(α)G(z,sz)dz+QP(1α)N(α)Γ(α)tjtj1(tz)α1×[B(cs(z))+q(z)]dz+ij=1QP(1α)N(α)Γ(α)tjtj1(tjz)α1[B(cs(z))+q(z)]dz+αP2N(α)ij=1tjtj1Sα(tjz)[B(cs(z))+q(z)]dz+αP2N(α)ttiSα(tz)×[B(cs(z))+q(z)]dz+PTα(t)ij=1Ij(s(tj)){N(t,ρt)+PTα(t)0(z)α1Γ(α)×G(z,ρz)dz+QP(1α)N(α)Γ(α)tjtj1(tz)α1[B(cρ(z))+¯q(z)]dz+ij=1QP(1α)N(α)Γ(α)×tjtj1(tjz)α1[B(cρ(z))+¯q(z)]dz+αP2N(α)ij=1tjtj1Sα(tjz)[B(cρ(z))+¯q(z)]dz+αP2N(α)ttiSα(tz)[B(cρ(z))+¯q(z)]dz+PTα(t)ij=1Ij(ρ(tj))}|maxtJ|N(t,s(t))N(t,ρ(t))|+PTα(t)0(z)α1Γ(α)|G(z,sz)G(z,ρz)|dz+QP(1α)N(α)Γ(α)|[B(cs(t))+q(t)][B(cρ(t))+¯q(t)]|+ij=1QP(1α)N(α)Γ(α)×|[B(cs(t))+q(tj)][B(cρ(t))+ˉq(tj))]|+αP2N(α)ij=1tjtj1Sα(tjz)α1×|[B(cs(z))+q(z)][B(cρ(z))+ˉq(z)]|dz+αP2N(α)ttiSα(tz)α1×|[B(cs(z))+q(z)][B(cρ(z))+ˉq(z)]|dz+PTα(t)ij=1|Ij(s(tj))Ij(ρ(tj))|,

    here, q,ˉqC(J,) is

    q(t)=I(t,st,q(t),cs(t)),

    and

    ˉq(t)=I(t,ρt,ˉq(t),cρ(t)).

    By (P2), we prove

    |q(t)ˉq(t)|=|I(t,st,q(t),cs(t))I(t,ρt,ˉq(t),cρ(t))|ˊKvstρt`PC+ˊLv|q(t)ˉq(t)|+ˊMvcs(t))cρ(t),|q(t)ˉq(t)|ˊKv1ˊLvstρt`PC+ˊMv1ˊLvcs(t))cρ(t)ˊKv1ˊLvstρt`PC+ˊMvˆRc1ˊLvstρt`PC[ˊKv+ˊMvˆRc1ˊLv]stρt`PC,Ψ(s)Ψ(ρ)ΩˊKustρt`PC+ζ1ˆRαΓ(α+1)ˊKsstρt`PC+ζ1ζ2(1α)αN(α)Γ(α+1)ˉRˆRcstρt`PC+ζ1ζ2(1α)αN(α)Γ(α+1)[ˊKv+ˊMvˆRc1ˊLv]stρt`PC+ζ1ζ2(1α)αN(α)Γ(α+1)ˉRˆRcstρt`PC+ζ1ζ2(1α)αN(α)Γ(α+1)[ˊKv+ˊMvˆRc1ˊLv]stρt`PC+αζ21N(α)^R1ˉRˆRcstρt`PC+αζ21N(α)^R1ˉRˆRcstρt`PC+αζ21N(α)^R1[ˊKv+ˊMvˆRc1ˊLv]stρt`PC+αζ21N(α)^R1[ˊKv+ˊMvˆRc1ˊLv]stρt`PC+ζ1ˆRˊKtstρt`PC[ζ1ˆRαΓ(α+1)ˊKs+ζ1ζ2(1α)αN(α)Γ(α+1)(+1)(ˉRˆRc+ˊKv+ˊMvˆRc1ˊLv)]stρt`PC+[αζ21N(α)^R1(+1)(ˉRˆRc+ˊKv+ˊMvˆRc1ˊLv)+ˊKu+ζ1ˆRˊKt]stρt`PC.

    Hence, we obtain

    Ψ(s)Ψ(ρ)ΩΘasρΩ. (3.5)

    Therefore, Ψ is a contraction and (1.1) has a unique mild solution by Theorem 2 in Ω.

    Theorem 7. Let us consider that hypotheses (P1)–(P10) hold, then the proposed problem (1.1) is controllable if

    ζ1ˆRαKgΓ(α+1)+ζ1ˆRsj+ζ2ζ1(1α)N(α)Γ(α+1)(ˆRq+ˆRn)(α+η)+αζ2ˆR1αN(α)(ˆRq+ˆRn)(α+η)+1s+2<1. (4.1)

    Proof. Let us define the set

    Ωμb={sΩ;sΩμb}C:c]μb,

    where

    μb[12ζ1ˆRκηˉR¯R1(1+ζ1ˆR)][^Rn+ζ1ˆRKgαΓ(α+1)+κ(ˉR¯R1κa+^Rq)][(1κˉR¯R1)(^Rn+2κη(ˉR¯R1κb+^Rq))]2(1κˉR¯R1)[12ζ1ˆRκηˉR¯R1(1+ζ1ˆR)],
    κ=ζ1ζ2(1α)N(α)Γ(α+1)+^R1ζ21N(α).

    ΩμbΩ is closed, bounded, and convex. We observe that the fixed points of the operator Ψ1 are the mild solutions of the formulated problem (1.1) with Ψ1(s)()=s1. This implies that the system is controllable. Now, we derive the postulates of Theorem 2.

    We define the operator Ψ1:ΩΩ defined by,

    Ψ1(s(t))={φ(t);t[r,0]PTα(t)t0(z)α1Γ(α)G(z,sz)dz+QP(1α)N(α)Γ(α)t0(tz)α1[B(cs(z))+q(z)]dz+αP2N(α)t0Sα(tz)[B(cs(z))+q(z)]dz,t(0,t1]PTα(tjtj1)s(t1j1))+QP(1α)N(α)Γ(α)tjtj1(tz)α1[B(cs(z))+q(z)]dz+αP2N(α)tjtj1Sα(tz)[B(cs(z))+q(z)]dz+PTα(t)ij=1Ij1(s(tj1)),(tj1,tj]. (4.2)

    By (P2), we define the control, cs(t)

    cs(t)=W1{sPTα(t)0(z)α1Γ(α)G(z,sz)dzQP(1α)N(α)Γ(α)0(z)α1q(z)dzαP2N(α)0Sα(z)(q(z))dzQP(1α)N(α)Γ(α)0(z)α1N((z),s(z))dzαP2N(α)0Sα(z)N((z),s(z))dz,t(0,t1]sPTα(tj)s(t1j)QP(1α)N(α)Γ(α)tj(z)α1q(z)dzαP2N(α)ttiSα(tz)(q(z))dzQP(1α)N(α)Γ(α)tj(z)α1N((z),s(z))dzαP2N(α)ttiSα(tz)N((z),s(z))dz+PTα(t)ij=1Ij(s(tj))(ti,ti+1]. (4.3)

    Step 1: Ψ1 is continuous.

    Ψ1(sr)Ψ1(s)QP(1α)N(α)Γ(α)×t0(tz)α1[Bcsr(z)cs(z)+q(z)¯q(z)]dz+αP2N(α)t0Sα(tz)[Bcsr(z)cs(z)+q(z¯q(z)]dzζ1ζ2(1α)N(α)Γ(α)ˉRt0(tz)α1{ˉR{ζ1ζ2(1α)N(α)Γ(α)0(φ)α1×q(φ)q(φ)dφ+αζ21N(α)^R10(φ)α1q(φ)q(φ)dφ}+q(z)¯q(z)}dz+αζ21N(α)^R1t0(tz)α1×{ˉR{ζ1ζ2(1α)N(α)Γ(α)0(φ)α1q(φ)q(φ)dφ+αζ21N(α)^R1×0(φ)α1q(φ)q(φ)dφ}+q(z)¯q(z)}dz.

    For, t(tj1,tj], we get

    Ψ1(sr)Ψ1(s)PTα(tj1tj)(sr(tj)(s(tj))+QP(1α)N(α)Γ(α)tj(tz)α1[Bcsr(z)cs(z)+q(z)¯q(z)]dz+αP2N(α)tjSα(tz)[Bcsr(z)cs(z)+q(z¯q(z)]dz+PTα(t)ij=1Ij(sr(tj))Ij(s(tj))ζ1ˆR(sr(tj)(s(tj))+ζ1ζ2(1α)N(α)Γ(α)ˉRtj(tz)α1×{ˉR{ζ1ζ2(1α)N(α)Γ(α)tj(φ)α1q(φ)q(φ)dφ+αζ21N(α)^R1tj(φ)α1q(φ)q(φ)dφ}+q(z)¯q(z)}dz+αζ21N(α)^R1t0(tz)α1{ˉR{ζ1ζ2(1α)N(α)Γ(α)tj(φ)α1q(φ)q(φ)dφ+αζ21N(α)^R1tj(φ)α1q(φ)q(φ)dφ}+q(z)¯q(z)}dz+ζ1ˆRij=1Ij(sr(tj))Ij(s(tj)).

    We easily observe that Ψ1(sr)Ψ1(s) in Ωμb due to the continuity of the functions qandI. This implies the proof of continuity of Ψ1.

    Step 2: Ψ1 maps the bounded sets into bounded sets.

    cs(t)=W1{s+PTα(t)s0+QP(1α)N(α)Γ(α)0(tz)α1q(z)dz+αP2N(α)t0Sα(tz)q(z)dz+QP(1α)N(α)Γ(α)×0(z)α1N((z),s(z))dz+αP2N(α)0Sα(z)N((z),s(z))dzs+PTα(tj)sj+QP(1α)N(α)Γ(α)×tj(tz)α1q(z)dz+αP2N(α)ttjSα(tz)q(z)dz+Ij(s(tj))+QP(1α)N(α)Γ(α)tj(z)α1N((z),s(z))dz+αP2N(α)tjSα(z)N((z),s(z))dz+PTα(t)ij=1Ij(s(tj)).

    By the postulates (P1)–(P10),

    cs(t)ˉR1{s+ζ1ˆRαKgΓ(α+1)+ζ2ζ1(1α)ˆRqαN(α)Γ(α+1)+αζ2ˆR1ˆRqαN(α)+ζ2ζ1(1α)ˆRnαN(α)Γ(α+1)+αζ2ˆR1ˆRnαN(α)s+ζ1ˆRsj+ζ2ζ1(1α)(tj)αˆRqN(α)Γ(α+1)+ζ1ˆR(tj)αΓα+1+ζ2ζ1(1α)ˆRn(tj)αN(α)Γ(α+1)+αζ2ˆR1ˆRn(tj)αN(α)+ζ1ˆRω,
    cs(t)ˉR1{s+ζ1ˆRαKgΓ(α+1)+ζ2ζ1(1α)αN(α)Γ(α+1)(ˆRq+ˆRn)+αζ2ˆR1αN(α)(ˆRq+ˆRn)s+ζ1ˆRsj+ζ2ζ1(1α)(tj)αN(α)Γ(α+1)(ˆRq+ˆRn)+αζ2ˆR1(tj)αN(α)(ˆRq+ˆRn)+ζ1ˆRω.

    Let the two constants be

    cs(t)ˉR1[s+ζ1ˆRαKgΓ(α+1)+ζ2ζ1(1α)αN(α)Γ(α+1)(ˆRq+ˆRn)+αζ2ˆR1αN(α)(ˆRq+ˆRn)]ˉR1s+ˉR1κa,

    for all t(0,t1], where

    κa=ζ1ˆRαKgΓ(α+1)+ζ2ζ1(1α)αN(α)Γ(α+1)(ˆRq+ˆRn)+αζ2ˆR1αN(α)(ˆRq+ˆRn),
    cs(t)ˉR1[s+ζ1ˆRsj+ζ2ζ1(1α)ηN(α)Γ(α+1)(ˆRq+ˆRn)+αζ2ˆR1ηN(α)(ˆRq+ˆRn)+ζ1ˆRω]ˉR1s+ˉR1ζ1ˆRs+ˉR1κb,

    where

    κb=ζ2ζ1(1α)ηN(α)Γ(α+1)(ˆRq+ˆRn)+αζ2ˆR1ηN(α)(ˆRq+ˆRn)+ζ1ˆRω

    for all t(tj,tj1], where η=max(tj)α.

    And therefore, for t(0,t1]

    Ψ1(cs(t))ζ1ˆRαKgΓ(α+1)+ζ2ζ1(1α)αN(α)Γ(α+1)(ˆRq+ˆRn)+αζ2ˆR1αN(α)(ˆRq+ˆRn)

    for t(tj,tj1],

    Ψ1(cs(t))ζ1ˆRsj+ζ2ζ1(1α)ηN(α)Γ(α+1)(ˆRq+ˆRn)+αζ2ˆR1ηN(α)(ˆRq+ˆRn)+ζ1ˆRω.

    Hence we have,

    Ψ1(cs(t))ζ1ˆRαKgΓ(α+1)+ζ1ˆRsj+ζ2ζ1(1α)N(α)Γ(α+1)(ˆRq+ˆRn)(α+η)+αζ2ˆR1αN(α)(ˆRq+ˆRn)(α+η)+ζ1ˆRωμb.

    This implies that, Ψ1(s)μb. So, Ψ1(Ωμb)Ωμb.

    Step 3: Verify the equi-continuity of Ψ1. Consider sΩμb and ρ1,ρ2(tj1,tj]. Here, ζ1<ζ2,j=1,2,...,

    Ψ1(s)(ρ2)Ψ1(s)(ρ1)=PTα(ρ2)ρ10(z)α1Γ(α)G(z,sz)dz+QP(1α)N(α)Γ(α)ρ10(ρ2z)α1×[B(cs(z))+q(z)]dz+αP2N(α)ρ10Sα(ρ2z)[B(cs(z))+q(z)]dzPTα(ρ1)ρ10(z)α1Γ(α)G(z,sz)dzQP(1α)N(α)Γ(α)ρ10(ρ1z)α1×[B(cs(z))+q(z)]dz+αP2N(α)ρ10Sα(ρ1z)[B(cs(z))+q(z)]dzζ1[(ρ1)ααKg]Γ(α+1)Tα(ρ2)Tα(ρ1)+ζ2ζ1(1α)N(α)Γ(α)(ˉRg1+ˆRq)×ρ10(ρ2z)α1(ρ1z)α1dz+αζ21N(α)(ˉRg1+ˆRq)×ρ10Sα(ρ2z)Sα(ρ1z)dz+ζ2ζ1(1α)N(α)Γ(α)(ˉRg1+ˆRq)×ρ2ρ1(ρ2z)α1dz+αζ21N(α)(ˉRg1+ˆRq)ρ2ρ1Sα(ρ2z)dz.ρ1,ρ2(0,t1].

    Now,

    Ψ1(s)(ρ2)Ψ1(s)(ρ1)=PTα(ρ2tj1)s(tj1)+QP(1α)N(α)Γ(α)ρ10(ρ2z)α1×[B(cs(z))+q(z)]dz+αP2N(α)ρ10Sα(ρ2z)[B(cs(z))+q(z)]dzPTα(ρ1)ρ10(z)α1Γ(α)G(z,sz)dzQP(1α)N(α)Γ(α)ρ10(ρ1z)α1×[B(cs(z))+q(z)]dz+αP2N(α)ρ10Sα(ρ1z)[B(cs(z))+q(z)]dz+P(Tα(ρ2tj1)Tα(ρ1tj1))Ij1(s(tj1))ζ1Tα(ρ2tj1)Tα(ρ1tj1)+ζ2ζ1(1α)N(α)Γ(α)(ˉRg1)+ˆRq)×ρ10(ρ2z)α1(ρ1z)α1dz+αζ21N(α)(ˉRg1)+ˆRq)×ρ10Sα(ρ2z)Sα(ρ1z)dz+ζ2ζ1(1α)N(α)Γ(α)(ˉRg1+ˆRq)×ρ2ρ1(ρ2z)α1dz+αζ21N(α)(ˉRg1+ˆRq)×ρ2ρ1Sα(ρ2z)dz+ζ1ˆR(ρ2ρ1)Ij1(s(tj1))ρ1,ρ2(tj1,tj],j=1,2....

    This result converges to 0 during \rho_{1}\; \; \text{tending to}\; \; \rho_{2} . By the compactness and the strong continuity of the operators T_{\alpha}(t) and \mathcal{S}_{\alpha}(t) , we easily get that \Psi_{1} is continuous in uniform operator topology. Hence, \Psi(\Omega_{\mu_{b}}) satisfies the condition of equi-continuous.

    Step 4: \Psi_{1} is a contraction on \Omega_{\mu_{b}} . For t \in (0, t_{1}] ,

    \begin{align*} \Vert \Psi_{1}( {s})-\Psi_{1}(\rho)\Vert = & \Vert PT_{\alpha}(t) \int_{0}^{t}{\frac{(\top-\mathfrak{z})^{\alpha-1}}{\Gamma(\alpha)}}G(\mathfrak{z}, {s}_{\mathfrak{z}})d\mathfrak{z} +QP\frac{(1-\alpha)}{\mathbb{N}(\alpha)\Gamma(\alpha) }\int_{0}^{t}(t-\mathfrak{z})^{\alpha-1}\\ &\times[B(c_{ {s}}(\mathfrak{z}))+\mathfrak{q^{*}}(\mathfrak{z})]d\mathfrak{z} + \frac{\alpha P^{2}}{\mathbb{N}(\alpha)} \int_{0}^{t}\mathcal{S}_{\alpha}(t-\mathfrak{z})[B(c_{ {s}}(\mathfrak{z}))+\mathfrak{q^{*}}(\mathfrak{z})]d\mathfrak{z}\\ &-PT_{\alpha}(t)\int_{0}^{t}{\frac{(\top-\mathfrak{z})^{\alpha-1}}{\Gamma(\alpha)}}G(\mathfrak{z},\rho_{\mathfrak{z}})d\mathfrak{z} -QP\frac{(1-\alpha)}{\mathbb{N}(\alpha)\Gamma(\alpha) }\int_{0}^{t}(t-\mathfrak{z})^{\alpha-1}\\ &\times [B(c_{\rho}(\mathfrak{z}))+\mathfrak{q^{*}}(\mathfrak{z})]d\mathfrak{z} - \frac{\alpha P^{2}}{\mathbb{N}(\alpha)} \int_{0}^{t}\mathcal{S}_{\alpha}(t-\mathfrak{z})[B(c_{\rho}(\mathfrak{z}))+\mathfrak{q^{*}}(\mathfrak{z})]d\mathfrak{z}\Vert, t \in (0,t_{1}]\\ & \leq \frac{\zeta_{1}\hat{R} \top^{\alpha}}{\Gamma{(\alpha+1)}}\grave{\mathcal{K}}_{s}\Vert {s}_{t}-\rho_{t} \Vert_{\grave{\mathcal{PC}}}+\frac{\zeta_{2}\zeta_{1}(1-\alpha)\top^{\alpha}}{\mathbb{N}(\alpha)\Gamma(\alpha+1)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right] \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}} \\ &+ \frac{\alpha \zeta_{1}^{2}\hat{R}_{1}}{\mathbb{N}(\alpha)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right] \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}}+\frac{\zeta_{2}\zeta_{1}(1-\alpha)\bar{R}\top^{\alpha}}{\mathbb{N}(\alpha)\Gamma(\alpha+1)}\hat{R}_{c} \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}} \\ &+ \frac{\alpha \zeta_{1}^{2}\hat{R}_{1}\bar{R}}{\mathbb{N}(\alpha)}\hat{R}_{c} \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}} \\ &\leq \frac{\zeta_{1}\hat{R} \top^{\alpha}}{\Gamma{(\alpha+1)}}\grave{\mathcal{K}}_{s}\Vert {s}_{t}-\rho_{t} \Vert_{\grave{\mathcal{PC}}}+\frac{\zeta_{2}\zeta_{1}(1-\alpha)\top^{\alpha}}{\mathbb{N}(\alpha)\Gamma(\alpha+1)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}+(1-\grave{\mathfrak {L}}_{v})\bar{R}\hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right]\\&\times \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}} + \frac{\alpha \zeta_{1}^{2}\hat{R}_{1}}{\mathbb{N}(\alpha)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}+(1-\grave{\mathfrak {L}}_{v})\bar{R}\hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right] \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}}\\ &\leq \left(\frac{\zeta_{1}\hat{R} \top^{\alpha}}{\Gamma{(\alpha+1)}}\grave{\mathcal{K}}_{s}+\frac{\zeta_{2}\zeta_{1}(1-\alpha)\top^{\alpha}}{\mathbb{N}(\alpha)\Gamma(\alpha+1)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}+(1-\grave{\mathfrak {L}}_{v})\bar{R}\hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right]\right) \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}}\\ &+\left(\frac{\alpha \zeta_{1}^{2}\hat{R}_{1}}{\mathbb{N}(\alpha)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}+(1-\grave{\mathfrak {L}}_{v})\bar{R}\hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right]\right) \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}}. \end{align*}

    For t \in (t_{j-1}, t_{j}] ,

    \begin{align*} \Vert \Psi_{1}( {s})-\Psi_{1}(\rho)\Vert = & \Vert PT_{\alpha}(t_{j}-t_{j-1}) {s}(t_{j-1}^{-1})) +QP\frac{(1-\alpha)}{\mathbb{N}(\alpha)\Gamma(\alpha) }\int_{t_{j-1}}^{t_{j}}(t_{j}-\mathfrak{z})^{\alpha-1}[B(c_{ {s}}(\mathfrak{z}))+\mathfrak{q^{*}}(\mathfrak{z})]d\mathfrak{z} \\ &+ \frac{\alpha P^{2}}{\mathbb{N}(\alpha)} \int_{t_{j-1}}^{t_{j}}\mathcal{S}_{\alpha}(t_{j}-\mathfrak{z})[B(c_{ {s}}(\mathfrak{z}))+\mathfrak{q^{*}}(\mathfrak{z})]d\mathfrak{z}+P(T_{\alpha} \sum\limits_{j = 1}^{i}I_{j-1}( {s}(t_{j-1}^{-}))\\ &-PT_{\alpha}(t_{j}-t_{j-1})\rho(t_{j-1}^{-1})) -QP\frac{(1-\alpha)}{\mathbb{N}(\alpha)\Gamma(\alpha) }\int_{t_{j-1}}^{t_{j}}(t_{j}-\mathfrak{z})^{\alpha-1}[B(c_{\rho}(\mathfrak{z}))+\mathfrak{q^{*}}(\mathfrak{z})]d\mathfrak{z} \\ &- \frac{\alpha P^{2}}{\mathbb{N}(\alpha)} \int_{t_{j-1}}^{t_{j}}\mathcal{S}_{\alpha}(t_{j}-\mathfrak{z})[B(c_{\rho}(\mathfrak{z}))+\mathfrak{q^{*}}(\mathfrak{z})]d\mathfrak{z}-P(T_{\alpha} \sum\limits_{j = 1}^{i}I_{j-1}( {s}(t_{j-1}^{-}))\Vert, t \in (t_{j-1},t_{j}]\\ & \leq \frac{\zeta_{2}\zeta_{1}(1-\alpha)(t_{j}-t_{j-1})^{\alpha}}{\mathbb{N}(\alpha)\Gamma(\alpha+1)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right] \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}} \\ &+ \frac{\alpha \zeta^{2}\hat{R}_{1}}{\mathbb{N}(\alpha)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right] \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}}+\frac{\zeta_{2}\zeta_{1}(1-\alpha)\bar{R}(t_{j}-t_{j-1})^{\alpha}}{\mathbb{N}(\alpha)\Gamma(\alpha+1)}\hat{R}_{c} \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}} \\ &+ \frac{\alpha \zeta^{2}\hat{R}_{1}\bar{R}}{\mathbb{N}(\alpha)}\hat{R}_{c} \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}} \\ &\leq \frac{\zeta_{2}\zeta_{1}(1-\alpha)(t_{j}-t_{j-1})^{\alpha}}{\mathbb{N}(\alpha)\Gamma(\alpha+1)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}+(1-\grave{\mathfrak {L}}_{v})\bar{R}\hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right] \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}} \\ &+ \frac{\alpha \zeta^{2}\hat{R}_{1}}{\mathbb{N}(\alpha)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}+(1-\grave{\mathfrak {L}}_{v})\bar{R}\hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right] \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}}\\ &\leq \left(\frac{\zeta_{2}\zeta_{1}(1-\alpha)(t_{j}-t_{j-1})^{\alpha}}{\mathbb{N}(\alpha)\Gamma(\alpha+1)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}+(1-\grave{\mathfrak {L}}_{v})\bar{R}\hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right]\right) \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}}\\ &+\left(\frac{\alpha \zeta^{2}\hat{R}_{1}}{\mathbb{N}(\alpha)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}+(1-\grave{\mathfrak {L}}_{v})\bar{R}\hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right]\right) \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}}. \end{align*}

    This implies that \Psi_{1} is a contraction on \Omega_{\mu_{b}} for

    \begin{align*} \left(\frac{\zeta_{1}\hat{R} \top^{\alpha}}{\Gamma{(\alpha+1)}}\grave{\mathcal{K}}_{s}+\frac{\zeta_{2}\zeta_{1}(1-\alpha)\top^{\alpha}}{\mathbb{N}(\alpha)\Gamma(\alpha+1)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}+(1-\grave{\mathfrak {L}}_{v})\bar{R}\hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right]+\frac{\alpha \zeta^{2}\hat{R}_{1}}{\mathbb{N}(\alpha)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}+(1-\grave{\mathfrak {L}}_{v})\bar{R}\hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right]\right) < 1. \end{align*}

    Hence, \Psi_{1} possesses a fixed point and so it is a mild solution of the proposed system (1.1) based on the defined control function c_{s}(t) given in (4.3) by Theorem 2. By the definition of controllability (Definition 9), the proposed problem is controllable.

    The following application is provided for evidencing the theoretical results:

    \begin{align} \begin{cases} ^{\mathcal{ABC}}_{0}{D}^{\frac{1}{10}}_{t} \left[ {s}(t,\kappa)- {\frac{\cos| {s}(t,\kappa)|}{45}}\right] = \frac{\partial^{2} { {s}(t,\kappa)}}{\partial \kappa^{2}}+c(t,\kappa)+\frac{t+\sin| {s}(t,\kappa)|}{45}\\+\frac{e^{t}}{11+e^{t}}\frac{\vert ^{\mathcal{ABC}}_{0}{D}^{\frac{1}{10}}_{t} {s}(t,\kappa)\vert}{1+\vert ^{\mathcal{ABC}}_{0}{D}^{\frac{1}{10}}_{t} {s}(t,\kappa)\vert}+c({t},\kappa), t \in [0,1], t \neq \frac{1}{10}, \\ \Delta {s}(t,\kappa) = \frac{ {s}(\frac{1}{10}^{-},\kappa)}{28+ {s}(\frac{1}{10}^{-},\kappa)}, \\ {s}(t,\kappa) = \varphi(t,\kappa), \; t\in [-\mathfrak{r},0], \kappa \in [0,\pi] \; \mathfrak{r} > 0, \\ {s}(t,0) = \int_{0}^{1}{\frac{(1-\mathfrak{z})^{\alpha-1}}{\Gamma(\alpha)}} \frac{1}{25}\exp(- {s}(t,\mathfrak{z}))d\mathfrak{z}, {s}(t,\pi) = 0. \end{cases} \end{align} (5.1)

    Here, A:D(A) \subset \Omega \mapsto \Omega is an infinitesimal generator A\chi = \chi^{\ell} where, \Omega = \mathcal{L}^{2}[0, \pi] and the domain is defined by D(A) = \{ \chi \in \Omega:\chi \text{ and }\; \chi' are absolutely continuous, \chi'' \in \Omega, \chi(0) = 1 = \chi(1) \},

    A\chi = \sum\limits_{\ell = 1}^{\infty}{\ell^{2}} < \chi, \chi \in D(A).

    Whence the eigenvectors that are orthogonal are

    \chi_{\ell}(\wp) = \sqrt{\frac{2}{\pi}}sin(\ell\wp), \ell \in \mathcal{N}.

    Hence, the corresponding analytic semi-group \mathcal{S}(t) related to A in \Omega is \mathcal{S}(t)\chi = \sum_{\ell = 1}^{\infty}{e^-{\ell^{2}}} < \chi, \chi \in \Omega \text{ and }\; \Vert (\mathcal{S}(t) \Vert \leq 1. The resolvent operator Q(\grave{\mu}, A) = (\grave{\mu}\mathcal{I}-A)^{-1} where \grave{\mu} \in \rho(A). So the proposed system (5.1) will take the form of (1.1) by replacing

    {s}(t,\kappa) = {s}(t),\; \; c(t,\kappa) = c(t),
    \mathfrak{N}(t, {s}(t)) = \frac{\cos| {s}(t)|}{45},
    \mathcal{I}(t, {s},\rho,c) = \frac{t+\sin| {s}(t)|}{45}+\frac{e^{t}}{11+e^{t}}\frac{\vert \rho \vert}{1+\vert \rho \vert} + \vert c({t}) \vert,

    where

    \rho = ^{\mathcal{ABC}}_{0}{D}^{\frac{1}{10}}_{t} {s}(t),\; \; \mathbb{E}(t, {s}(t)) = \frac{1}{25}\exp(- {s}(t)).

    We can easily verify that (5.1) fulfills the postulates (P1)–(P10) and so the proposed system is controllable by (4.1) on [0, \pi] .

    This research article gathers the results of existence, uniqueness, and controllability. In previous studies, authors either developed the results of existence and uniqueness or controllability. However, this article verifies the controllability results, being sufficient to verify the existence of a mild solution for the proposed system. Additionally, we have shown the uniqueness results using the Banach contraction principle to some extent. Due to this uniqueness, a single trajectory can be obtained for a unique control input. Also, researchers can design control strategies according to the system due to the uniqueness of the mild solution of the problem. We can ensure the well-defined controls, making the study of controllability results more straightforward. A new researcher can improve the system or include some delays in state space or control, obtaining new results. Highlighting the stability results of the problem is a key focus in current research scenarios. The comparative analysis of numerical solutions and theoretical results are gaining significant attention among researchers.

    This work has successfully investigated the existence results for the nonlinear neutral fractional implicit impulsive differential equation with impulses, delay, and integro initial conditions by means of semi-group theory and fixed-point techniques. These types of problems have numerous applications, namely to the mathematical modeling of human diseases and complex problems. Based on Arzel \grave{a} Ascoli theorem and Schauder's fixed-point theorem, we established the adequate results for at least one mild solution. Banach contraction principle helped to derive the uniqueness and controllability results of the defined system. The derived results were justified by providing a suitable illustration. Researchers can establish the stability results of the given problem as a future work. Also, changing the initial condition and including state delay, control delay, or both will obtain innovative results. Future work may be extended to non-instantaneous impulses and comparative analysis with numerical techniques.

    Sivaranjani Ramasamy: Writing original draft, Conceptualization and Methodology, and Validation; Thangavelu Senthilprabu: Writing original draft, Validation and Resources; Kulandhaivel Kathikeyan: Investigation and Validation; Palanisamy Geetha: Investigation and Validation; Saowaluck Chasreechai: Writing original draft, Conceptualization and Methodology, and Investigation; Thanin Sitthiwirattham: Investigation and Validation. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research was funded by National Science, Research and Innovation Fund (NSRF), and King Mongkut's University of Technology North Bangkok with Contract No. KMUTNB-FF-68-B-25. Moreover, we would like to thank for our management to provide KPR Pride Fellowship for conducting the research.

    The authors declare that there is no conflict of interest.



    [1] R. Gul, K. Shah, Z. A. Khan, F. Jarad, On a class of boundary value problems under ABC fractional derivatives, Adv. Differ. Equ., 2021 (2021), 437. https://doi.org/10.1186/s13662-021-03595-3 doi: 10.1186/s13662-021-03595-3
    [2] Q. Tul Ain, T. Sathiyaraj, S. Karim, M. Nadeem, P. K. Mwanakatwe, ABC fractional derivative for the Alcohol drinking model using two-scale fractal dimension, Complexity, 2022 (2022), 8531858. https://doi.org/10.1155/2022/8531858 doi: 10.1155/2022/8531858
    [3] Gulalai, S. Ahmad, F. A. Rihan, A. Ullah, Q. M. Al-Mdallal, Ali Akgül, Nonlinear analysis of a nonlinear modified KdV equation under Atangana Baleanu Caputo derivative, AIMS Math., 7 (2021), 7847–7865. https://doi.org/10.3934/math.2022439 doi: 10.3934/math.2022439
    [4] A. S. Alnahdi, M. B. Jeelani, M. S. Abdo, S. M. Ali, S. Saleh, On a nonlocal implicit problem under Atangana-Baleanu-Caputo fractional derivative, Bound. Value Probl., 2021 (2021), 104. https://doi.org/10.1186/s13661-021-01579-6 doi: 10.1186/s13661-021-01579-6
    [5] F. S. Khan, M. Khalid, O. Bazighifan, A. El-Mesady, Euler's numerical method on fractional DSEK model under ABC derivative, Complexity, 2022 (2022), 4475491. https://doi.org/10.1155/2022/4475491 doi: 10.1155/2022/4475491
    [6] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and nonsingular kernel: theory and application to heat transfer model, Therm Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI16011108A doi: 10.2298/TSCI16011108A
    [7] D. Aimene, D. Baleanu, D. Seba, Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay, Chaos Soliton. Fract., 128 (2019), 51–57. https://doi.org/10.1016/j.chaos.2019.07.027 doi: 10.1016/j.chaos.2019.07.027
    [8] D. Baleanu, A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 444–462. https://doi.org/10.1016/j.cnsns.2017.12.003 doi: 10.1016/j.cnsns.2017.12.003
    [9] K. Karthikeyan, J. Reunsumrit, P. Karthikeyan, S. Poornima, D. Tamizharasan, T. Sitthiwirattham, Existence results for impulsive fractional integrodifferential equations involving integral boundary conditions, Math. Probl. Eng., 2022 (2022), 6599849. https://doi.org/10.1155/2022/6599849 doi: 10.1155/2022/6599849
    [10] P. Bedi, A. Kumar, A. Khan, Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives, Chaos Soliton. Fract., 150 (2021), 111153. https://doi.org/10.1016/j.chaos.2021.111153 doi: 10.1016/j.chaos.2021.111153
    [11] J. Reunsumrit, P. Karthikeyann, S. Poornima, K. Karthikeyan, T. Sitthiwirattham, Analysis of existence and stability results for impulsive fractional integro-differential equations involving the Atangana-Baleanu-Caputo derivative under integral boundary conditions, Math. Probl. Eng., 2022 (2022), 5449680. https://doi.org/10.1155/2022/5449680 doi: 10.1155/2022/5449680
    [12] M. Benchohra, S. Bouriah, J. Henderson, Existence and stability results for nonlinear implicit neutral fractional differential equations with finite delay and impulses, Commun. Appl. Nonlinear Anal., 22 (2015), 46–67. https://doi.org/10.7153/dea-08-14 doi: 10.7153/dea-08-14
    [13] V. Wattanakejorn, P. Karthikeyann, S. Poornima, K. Karthikeyan, T. Sitthiwirattham, Existence solutions for implicit fractional relaxation differential equations with impulsive delay boundary conditions, Axioms, 11 (2022), 611. https://doi.org/10.3390/axioms11110611 doi: 10.3390/axioms11110611
    [14] P. Karthikeyann, S. Poornima, K. Karthikeyan, C. Promsakon, T. Sitthiwirattham, On implicit Atangana-Baleanu-Caputo fractional integro-differential equations with delay and impulses, J. Math., 2024 (2024), 5531984. https://doi.org/10.1155/2024/5531984 doi: 10.1155/2024/5531984
    [15] S. W. Yao, Y. Sughra, ASMA, M. A. Inc, K. J. Ansari, Qualitative analysis of implicit delay Mittag-Leffler-Type fractional differential equations, Fractals, 30 (2022), 2240208. https://doi.org/10.1142/S0218348X22402083 doi: 10.1142/S0218348X22402083
    [16] Y. Kao, C. Wang, H. Xia, Y. Cao, Projective synchronization for uncertain fractional reaction-diffusion systems via adaptive sliding mode control based on finite-time scheme, In: Analysis and control for fractional-order systems, Springer, 2024,141–163. https://doi.org/10.1007/978-981-99-6054-5_8
    [17] Y. Kao, Y. Li, J. H. Park, X. Chen, Mittag-Leffler synchronization of delayed fractional memristor neural networks via adaptive control, IEEE Trans. Neur. Net. Lear. Syst., 32 (2021), 2279–2284. https://doi.org/10.1109/TNNLS.2020.2995718 doi: 10.1109/TNNLS.2020.2995718
    [18] Y. Kao, C. Wang, H. Xia, Y. Cao, Global Mittag-Leffler synchronization of coupled delayed fractional reaction-diffusion Cohen-Grossberg neural networks via sliding mode control, In: Analysis and control for fractional-order systems, Springer, 2024,121–140. https://doi.org/10.1007/978-981-99-6054-5_7
    [19] B. Shiri, Well-Posedness of the mild solutions for incommensurate systems of delay fractional differential equations, Fractal Fract., 9 (2025), 60. https://doi.org/10.3390/fractalfract9020060 doi: 10.3390/fractalfract9020060
    [20] B. Shiri, Y. G. Shi, D. Baleanu, The Well-Posedness of incommensurate FDEs in the space of continuous functions, Symmetry, 16 (2024), 1058. https://doi.org/10.3390/sym16081058 doi: 10.3390/sym16081058
    [21] B. Shiri, G. C. Wu, D. Baleanu, Applications of short memory fractional differential equations with impulses, Discontinuity Nonlinearity Complexity, 12 (2023), 167–182. https://doi.org/10.5890/DNC.2023.03.012 doi: 10.5890/DNC.2023.03.012
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(552) PDF downloads(46) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog