In this article, the necessary and sufficient conditions for the existence and uniqueness of the mild solutions for nonlinear neutral implicit integro-differential equations of non-integer order 0<α<1 in the sense of ABC derivative with impulses, delay, and integro initial conditions were established. The existence results were derived using the semi-group theory, measures of non-compactness, and the fixed-point theory in the sense of Arzelˊa–Ascoli theorem and Schauder's fixed-point theorem. We analyzed the controllability results of the proposed problem by incorporating the ideas of semi-group theory and fixed-point techniques. The Banach contraction principle was used to derive the uniqueness and controllability of the proposed problem. We provide an example to support the theoretical results.
Citation: Sivaranjani Ramasamy, Thangavelu Senthilprabu, Kulandhaivel Karthikeyan, Palanisamy Geetha, Saowaluck Chasreechai, Thanin Sitthiwirattham. Existence, uniqueness and controllability results of nonlinear neutral implicit ABC fractional integro-differential equations with delay and impulses[J]. AIMS Mathematics, 2025, 10(2): 4326-4354. doi: 10.3934/math.2025200
[1] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861 |
[2] | Ahmed Morsy, Kottakkaran Sooppy Nisar, Chokkalingam Ravichandran, Chandran Anusha . Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces. AIMS Mathematics, 2023, 8(3): 5934-5949. doi: 10.3934/math.2023299 |
[3] | H. H. G. Hashem, Hessah O. Alrashidi . Qualitative analysis of nonlinear implicit neutral differential equation of fractional order. AIMS Mathematics, 2021, 6(4): 3703-3719. doi: 10.3934/math.2021220 |
[4] | Prabakaran Raghavendran, Tharmalingam Gunasekar, Irshad Ayoob, Nabil Mlaiki . AI-driven controllability analysis of fractional impulsive neutral Volterra-Fredholm integro-differential equations with state-dependent delay. AIMS Mathematics, 2025, 10(4): 9342-9368. doi: 10.3934/math.2025432 |
[5] | Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani . Existence and data dependence results for neutral fractional order integro-differential equations. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052 |
[6] | Qi Wang, Chenxi Xie, Qianqian Deng, Yuting Hu . Controllability results of neutral Caputo fractional functional differential equations. AIMS Mathematics, 2023, 8(12): 30353-30373. doi: 10.3934/math.20231550 |
[7] | Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316 |
[8] | Hasanen A. Hammad, Hassen Aydi, Hüseyin Işık, Manuel De la Sen . Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives. AIMS Mathematics, 2023, 8(3): 6913-6941. doi: 10.3934/math.2023350 |
[9] | Sabri T. M. Thabet, Sa'ud Al-Sa'di, Imed Kedim, Ava Sh. Rafeeq, Shahram Rezapour . Analysis study on multi-order $ \varrho $-Hilfer fractional pantograph implicit differential equation on unbounded domains. AIMS Mathematics, 2023, 8(8): 18455-18473. doi: 10.3934/math.2023938 |
[10] | Thanin Sitthiwirattham, Rozi Gul, Kamal Shah, Ibrahim Mahariq, Jarunee Soontharanon, Khursheed J. Ansari . Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2022, 7(3): 4017-4037. doi: 10.3934/math.2022222 |
In this article, the necessary and sufficient conditions for the existence and uniqueness of the mild solutions for nonlinear neutral implicit integro-differential equations of non-integer order 0<α<1 in the sense of ABC derivative with impulses, delay, and integro initial conditions were established. The existence results were derived using the semi-group theory, measures of non-compactness, and the fixed-point theory in the sense of Arzelˊa–Ascoli theorem and Schauder's fixed-point theorem. We analyzed the controllability results of the proposed problem by incorporating the ideas of semi-group theory and fixed-point techniques. The Banach contraction principle was used to derive the uniqueness and controllability of the proposed problem. We provide an example to support the theoretical results.
Fractional calculus presents numerous applications in modeling complex problems, and analyses using fixed-point techniques are highly effective in fractional integro-differential equations (FIDEs). Models using FIDEs are better for real-world problems compared to those using local derivatives [2,3,4]. The results obtained from these FIDEs, with various definitions of non-local (fractional) derivatives, demonstrate their unique applications in scientific and non-scientific fields. Among these derivatives, Atangana and Baleanu introduced a non-local derivative with a non-singular kernel based on the Mittag-Leffler function in the sense of Caputo [6,7,8]. This definition highlights the importance of the Mittag-Leffler function, and together, they present numerous applications in different areas. The ABC derivative involves the Mittag-Leffler kernel; as such, it is not affected by the singularities of FIDEs compared to other fractional derivatives. Also, it effectively captures the memory effect of the system, performing better than classical derivatives. The ultimate merit of the ABC derivative is to maintain physical phenomena while evaluating the existence and uniqueness of mild solutions for fractional differential equations.
Numerous problems in the biomedical field involve sudden state changes. Impulsive differential equations of non-integer orderprovide a clear frameworks for addressing such problems in future investigation. Many research works have been conducted in this area [9,10], and remarkable results have been obtained. In particular, researchers have analyzed impulsive fractional integro-differential equations (IFIDEs) [9,10,11] using semigroup theory and fixed-point techniques (FPTs). The study of impulsive problems involving non-integer order derivatives is particularly noteworthy due to their distinctiveness.
Several models for physical phenomena completely rely on historical data. In such cases, delay differential equations (DDEs) [7,12,13] are used to model scenarios in fields such as control systems, oceanography, and geography. Researchers have investigated the approximate mild solution of the multi-pantograph DDE of second order with singularity [14,15]. Models involving DDEs account only for past states but not past rates [12,13,14,15].
Many researchers are working on coupled delayed fractional systems [16]. For the first time, the fractional adaptive sliding mode control method is being used to study the projective synchronization of uncertain fractional-order reaction-diffusion systems. Adaptive sliding mode control laws are derived by creating a fractional-order integral-type switching function, which makes the fractional-order sliding mode surface reachable in a finite amount of time. In [17], the Lyapunov functional approach and Fillipov's theory were used to derive a novel algebraic necessary condition for the global ML synchronization of fractional-order memristor neural networks (FOMNNs) with leakage delay via a hybrid adaptive controller. In [18], researchers investigated global Mittag-Leffler synchronization by designing a new fractional integral sliding mode surface and its associated control law. In [19,20], authors examined the well-posedness of systems of incommensurate delay fractional differential equations (DFDEs) of retarded type with non-vanishing constant delay in the space of continuous functions. The behavior of dynamical systems can occasionally vary due to impulses and abrupt process changes. These changes can be modeled [21] using short-memory fractional differential equations
The existence of mild solutions for the given problem and their stability was discussed by Reunsumrit et al. [11]:
ABC0Dαt[s(t)−N(t,s(t))]=I(t,s(t),Ls(t)),0<α≤1,t∈[0,⊤]=J′,Δ(s)|t=tk=Ii(s(t−i)),s(0)=∫ϱ0(ϱ−ν)α−1Γ(α)S(ν,s(ν))dν, |
where ABC0Dαt- is the ABC fractional derivative of order α and U,S:J′×R→R and V,g:J′×R2→R is a continuous function.
Here, Ls(t)=∫t0g(t,τ,ϕ(τ))dτ, and Ii:R→R, i=1,2,...q, 0=t0<t1<t2<...<tq=⊤, Δs|t=ti=s(t+i)−s(t−i), and s(t+i)=limh→0+s(ti+h) and s(t−i)=limh→0−s(ti−h) represents the limits from the left and right sides of s(t) at t=ti.
Benchohra et al. [12] inspected the existence and stability of the mild solution for the below implicit fractional differential equations (FDEs) involving neutrality and impulses
cDαtq[s(t)−N(t,st)]=I(t,st,cDαtqs(t)), for each t∈(tq,tq+1], q=0,1,...n, 0<α≤1,Δ(s)|t=tq=Iq(ϕt−q), q=1,...n,s(t)=φ(t), t∈[−r,0], r>0, |
where cDαtq represents the fractional derivative in Caputo sense, I:[0,⊤]×PC([−r,0],ℜ)×ℜ→ℜ, N:[0,⊤]×PC([−r,0],ℜ)→ℜ are the given functions with I(0,φ)=0, Iq:PC([−r,0],ℜ)→ℜ, φ∈PC([−r,0],ℜ), 0=t0<t1<⋯<tn<tn+1=⊤. Δs|t=tq=s(t+q)−s(t−q), where s(t+q)=limh→0+s(tq+h) and s(t−q)=limh→0−s(tq−h) denote the limit values approaching from the right and left side of s at t=tq, respectively. Here, st(θ)=s(t+θ).
Gul et al. [1] researched the existence of the mild solution for BVPs, using the ABC non-integer order derivative
ABC0Dαt[s(t)−N(t,s(t))]=I(t,s(t)),0<α≤1, t∈[0,⊤]=J′,s(0)=∫ϱ0(ϱ−ν)α−1Γ(α)U(ν,s(ν))dν. |
Here, ABC0Dαt- is the ABC derivative of non-integer order α and N,U,I:J′×ℜ→ℜ.
Karthikeyan et al. [14] studied the existence of the mild solution for implicit FIDEs using ABC derivatives as mentioned below:
{ABC0Dαt[s(t)−N(t,s(t))]=I(t,st,ABC0Dαts(t)), t∈[0,⊤]=J, 0<α≤1,Δ(s)|t=ti=Ii(st−i),s(t)=φ(t), t∈[−r,0],s(0)=∫⊤0(⊤−z)α−1Γ(α)E(z,sz)dz, |
where ABC0Dαt- is the ABC fractional derivative of order α, P,E:J×ℜ→ℜ and I:J×ℜ2→ℜ are continuous functions. Where Ii:ℜ→ℜ, z=1,2,...ℓ,0=t0<t1<t2<...<tn=⊤,Δs|t=ti=s(t+i)−s(t−i), s(t−i)=limr→0−s(ti)−r) and s(t+i)=limr→0+s(ti+r) represent the limit of s(t) from right and left respectively, at t=ti. For any t∈J, we represent st by st(θ)=s(t+θ) and −r≤s≤0.
Nowadays, many researchers are analyzing the exact and approximate controllability of the above mentioned systems involving different non-local derivatives. Aimene et al. [7] verified the controllability for semi-linear FDEs involving the ABC derivative and delay.
{ABC0Dαt[s(t)]=As(t)+Bc(t)+G(t,st,χ(Ψ(t))), t∈[0,⊤]=J, 0<α≤1,Δ(s)|t=ti=Ii(st−i),s(t)=φ(t), t∈[−r,0]. |
Here, ABC0Dαt- denotes the ABC non-integer derivative with order α and A:D(A)⊂Ω→Ω is an infinitesimal generator of α− resolvent family Tα&Sα for t≥0 forming the solution operator on the Banach space (Ω,‖.‖). Let c∈L2([0,⊤];∁), here ∁ is also a Banach space and B is a bounded linear operator such that B={g:[−r,0]↦Ω}, g is continuous everywhere except for a finite number of points r at which g(r−),g(r+) exists and g(r−)=g(r),g∈∁(JxBxΩ,Ω),χ∈∁(J,J+) where J={t1,...tℓ},J+=[−r,⊤] and t−r<χ(t)<t,r>0.t∈Jandti<χ(t)<t,t∈(ti,ti+1],I∈∁(Ω,Ω),Δ(s)|t=ti=s(t+i)−s(t−i),0=t0<t1<t2<...<tn=⊤,forn=1,2,...,ℓ, with respect to the right and left side approach, respectively, at t=ti is s(t+i)ands(t−i).st∈B satisfies st(θ)=s(t+θ),θ∈[−r,0].st(.) is the history of the state from t−r to t.
The controllability of the above defined system has been derived by researchers with the help of k-set contraction mapping.
Inspired by the above mentioned research articles, we aim to investigate nonlinear implicit fractional systems involving impulses and delay in terms of ABC, the non-local derivative of the form,
{ABC0Dαt[s(t)−N(t,s(t))]=As(t)+Bc(t)+I(t,st,ABC0Dαts(t),c(t)), t∈[0,⊤]=J, 0<α≤1,Δ(s)|t=ti=Ii(st−i),s(t)=φ(t), t∈[−r,0],s(0)=∫⊤0(⊤−z)α−1Γ(α)G(z,sz)dz, | (1.1) |
where ABC0Dαt- denotes the ABC non-integer derivative with order α and A:D(A)⊂Ω→Ω is an infinitesimal generator of α− resolvent family Tα&Sα for t≥0 forming the solution operator on the Banach space (Ω,‖.‖). Let c∈L2([0,⊤];∁), here ∁ is also a Banach space and B is a bounded linear operator such that B:∁↦Ω. The functions N,G:J×ℜ→ℜ and I:J×ℜ3→ℜ are continuous. Also, ABC0Dαt- denotes the ABC non-integer derivative with order α, and N,G:J×ℜ→ℜ are continuous functions. Also, Ii:ℜ→ℜ, i=1,2,...n,0=t0<t1<t2<...<tn=⊤,Δs|t=ti=s(t+i)−s(t−i), s(t−i)=limr→0−s(ti)−r) and s(t+i)=limr→0+s(ti+r) denotes the limit of s(t) with respect to the right and left side approach, respectively, at t=ti. For any t∈J, we represent st by st(h)=s(t+h) and −r≤s≤0.
The remaining of this paper is organized as follows: rudimentary concepts, like definitions and lemmas, are given in Section 2. The existence of the mild solution for nonlinear neutral implicit impulsive FIDEs involving ABC fractional derivative with delay is verified in Section 3. The controllability of the nonlinear neutral implicit impulsive FIDEs involving ABC with delay is examined in Section 4. An example is provided in Section 5 to demonstrate the applicability of the proposed problem.
Let us define `PC([−r,0],ℜ)={s:[−r,0]→ℜ:s∈ˊC((ti,ti+1],ℜ), i=0,1,...ℓ, and ∃ s(t−i) and s(t+i), i=1....ℓ, with s(t−i)=s(t+i)}.
`PC([−r,0],ℜ) denotes the Banach space, having norm ‖s‖`PC=supt∈[−r,0]‖s(t)‖.
`PC1([0,⊤],ℜ)={s:[0,⊤]→ℜ:s∈ˊC((ti,ti+1],ℜ), i=0,1,...ℓ, and ∃ s(t−i) and s(t+i), i=1,...,ℓ, with s(t−i)=s(t+i)}.`PC1([0,⊤],ℜ) represents the Banach space, having norm ‖s‖`PC1=supt∈[0,⊤]‖s(t)‖,
Ω={s:[−r,⊤]→ℜ:s|[−r,0]∈`PC([−r,0],ℜ) and s|[0,⊤]∈`PC1([0,⊤],ℜ)}. |
Ω holds the properties of Banach space with norm ‖s‖Ω=supt∈[−r,⊤]‖s(t)‖.
Remark 1 ([[7,8,10,12]]). `PC([0,⊤],ℜ) is the Banach space, which is a complete normed vector space (`PC,‖.‖) with the following properties:
(1) ‖f‖≥0 and ‖f‖=0 if and only if f=0,∀f∈`PC([0,⊤],ℜ).
(2) ‖βf‖=|β|‖f‖,whereβ is a scalar, ∀f∈`PC([0,⊤],ℜ)andβ∈ℜ.
(3) ‖f+g‖≤‖f‖+‖g‖,∀fandg∈`PC([0,⊤],ℜ).
Definition 1 ([[7,8,10,12]]). The non-integer order ABC derivative of f(t) is
ABC0Dαtf(t)=N(α)1−α∫⊤0f′(z)Eα[−α(t−z)1−α]dz, |
where, α∈(0,1] and α∈E1(0,⊤).N(α) is the normalization function satisfying N(0)=N(1)=1 and Eα=∞∑i=0tiα(αi+1) is a special function, introduced by Mittag-Leffler.
Definition 2 ([[7,8,10,12]]). The non-integer order ABC integral of f is
ABC0Iαtf(t)=1−αN(α)f(t)+αN(α)∫t0(t−z)α−1Γ(α)f(z)dz, |
where Iα represents the R-L fractional integral.
Remark 2 ([[7,8,10,12]]). Some important properties of ABC derivative and the generalized Mittag-Leffler function during the implementation of Laplace transform are as follows:
(1)L[ABCDαa+f(t)](s)=Nα1−αL[Eα(−λtα)(s)[sL(f(t))(s)−f(0)]].
(2)L[t(α−1)Eα,α(−λtα)(s)]=sα−αsα+λ.
(3)L[t(α)](s)=Γ(α+1)sα+1.
(4)L[f(t)∗Ψ(t)](s)=L[f(t)](s)L[Ψ(t)](s).
Definition 3 ([[7,8,10,12]]). The Kurtawoski measure of non-compactness Υ on a bounded set B⊂Y is considered as follows:
Υ(ˊL)=inf{ϵ>0impliesˊL⊂m⋃j=1Mjalsodiam(Mj)≤ϵ}, |
with the following properties:
(1) ˊL1⊂ˊL2 gives Υ(ˊL1)≤Υ(ˊL2) where ˊL1,ˊL2 are bounded subsets of Y.
(2) Υ(ˊL)=0 iff ˊL is relatively compact in Y.
(3) Υ({z}⋃ˊL)=Υ(ˊL) for all z∈Y,ˊL⊆Y.
(4) Υ(ˊL1⋃ˊL2)≤max{Υ(ˊL1),Υ(ˊL2)}.
(5) Υ(ˊL1+ˊL2)≤Υ(ˊL1)+Υ(ˊL2).
(6) Υ((z)ˊL)≤|(z)|Υ(ˊL) for (z)∈R.
Let ˊM⊂C(I,Y) and ˊM((z))={υ(r)∈Y|υ∈ˊM}. We define
∫t0ˊM((z))dz={∫t0υ((z))dz|υ∈ˊM},t∈ˊJ. |
Proposition 1 ([7,8,12]). If ˊM⊂C(ˊJ,Y) is equi-continuous and bounded, then t→Υ(ˊM(t)) is continuous on I, also
Υ(ˊM)=maxΥ(ˊM(t)),Υ(∫t0υ(z)dz)≤∫t0Υ(υ(z))dz,fort∈I. |
Proposition 2 ([7,8,12]). Let the functions {υn:ˊJ→Y,n∈N} be Bochner integrable. For n∈N,‖υn‖≤m(t) a.e m∈L1(I,R+) and ξ(t)=Υ({υn(t)}∞n=1)∈L1(I,R+), then it satisfies
Υ({∫t0υn(z)dz:n∈N})≤2∫t0ξ(z)dz. |
Proposition 3 ([7,8,12]). Let ˊM be a bounded set. Then, for each ζ>0, there exists a sequence {υn}∞n=1⊂ˊM, such that
Υ(ˊM)≤2Υ{υn}∞n=1 +ζ. |
Definition 4 ([[7,8,12]]). Let 0<μ<π and −1<β<0. We define S0μ={ˊυ∈C∖{0} that is|argˊυ|<μ} and the closure of the form Sμ, that is
Sμ={υ∈C∖{0}|argˊυ|<μ}⋃{0}. |
Definition 5 ([7,8,12]). For −1<β<0,0<ω<π2, we define {⊙βω} as a family of all closed linear operators A:D(A)⊂Ω→Ω; this implies
(1) σ(A)∈Sω, where σ(A) is the spectrum, which is a complement of the resolvent set.
(2) For all μ∈(ω,π),∃Mμ implies ‖R(z,A)‖L(X)≤Mμ|z|β, where R(z,A)=(zI−A)−1 is the resolvent operator and A∈⊙βω is said to be an Almost Sectorial operator on Ω.
Proposition 4 ([7,8,12]). Let A∈⊙βω for −1<β<0 and 0<ω<π2 and we define {⊙βω} as a family of all closed linear operators A:D(A)⊂Ω→Ω. Then, the following properties are fulfilled:
(1) ˊ℧(t) is analytic and dndtnˊ℧(t)=(−Anˊ℧(t)(t∈S0π2);
(2) ˊ℧(t+s)=ˊ℧(t)ˊ℧(s)∀t,s∈S0π2;
(3) ‖ˊ℧(t)‖L(Ω)≤C0t−β−1(t>0); where C0=C0(β)>0 is a constant;
(4) Let ∑ˊ℧={x∈Ω:limt→0+ˊ℧(t)x=x}. Then D(AΥ)⊂∑ˊ℧ if Υ>1+β;
(5) R(z,−A)=∫∞0e−zsˊ℧(s)ds, z∈C with Re(z)>0;
(6) The range R(ˊ℧(t)) of ˊ℧(t), t∈S0π2−ω is contained in D(A)∞. Particularly, R(ˊ℧(t) is contained in D(A)β for all β∈C with Reβ>0,
Aβˊ℧(t)x=12πi∫Γθzβe−tzR(z:A)xdz |
for all x∈X, and hence there exists a constant C′=C′(φ,β)>0, such that
‖Aβˊ℧(t)‖≤C′t−φ−Reβ−1 |
for all t>0.
Remark 3. ˊ℧(t) is a C0 semi-group operator of an infinitesimal generator A.
Definition 6 ([[7,8,12]]). Observe the system represented by the problem given below:
ABC0Dαts(t)=f(t),s(0)=s0. |
The mild solution of the given problem is of the form,
s(0)=s0+1−αN(α)f(t)+αN(α)Γ(α)∫t0(t−z)α−1f(z)dz. |
Proof. From Definition 2, we obtain
s(t)=s0+ABC0Iαtf(t)=s0++1−αN(α)f(t)+αN(α)Γ(α)∫t0(t−z)α−1f(z)dz. |
Theorem 1 ([7,8,12]). Let (Ω,d) be a complete metric space. Then, a function Ψ:Ω→Ω is said to be a contraction mapping if there is a constant α with 0≤α<1 such that for all x,y∈Ω, d(Ψ(x),Ψ(y))≤αd(x,y).
Theorem 2 (Banach contraction principle). Let Ψ:Ω→Ω represent the completely continuous operator on the Banach space Ω. Consider that the set Ⅎ={s∈Ω:s=λΞs,for some λ∈(0,1)} is bounded, then Ψ has fixed points.
Theorem 3 (Arzelˊa–Ascoli theorem). Let Ω,d be a compact space. A subset Ωμb of ∁(Ω) is relatively compact if and only if Ωμbis uniformly bounded and equi-continuous.
Theorem 4 (Schauder's fixed-point theorem). Let Ω,d be a complete metric space. Let Ωμb be a closed convex subset of Ω and let Ψ:Ωμb→Ωμb be a mapping such that the set {Ψs:s∈Ωμb} is relatively compact in Ω, then Ψ has at least one fixed point.
Lemma 1 ([12]). Let the real function ν(.):[0,⊤]↦(0,∞) and ρ(t) be a non-negative, locally integrable on [0,⊤], and assume the constants c1>0 & 0<c2≤1 such that
ν(t)≤ρ(t)+c1∫t0(t−z)−c2ν(z)dz, |
which implies a constant ∁=∁(c2) such that
ν(t)≤ρ(t)+∁c1∫t0(t−z)−c2ν(z)dz, for every t∈[0,⊤]. |
Lemma 2 ([7,8,12]). Let the BVP with nonlinear integral boundary conditions, if f∈L(J),
ABC0Dαts(t)=f(t), o<α<1, t∈J,s(0)=∫⊤0(⊤−z)α−1Γ(α)E(z,s(z))dz, |
then, the mild solution s∈AC(J) is,
s(t)=PTα∫⊤0(⊤−z)α−1Γ(α)E(z,s(z))dz+QP(1−α)N(α)Γ(α)∫t0(t−z)α−1f(z)dz+αP2N(α)∫t0Sα(t−z)f(z)dz. | (2.1) |
Here, P and Q represents the linear operators, P=κ(κI−A)−1 and Q=−ηA(κI−A)−1, where κ=N(α)1−α,
Tα=ˆEα(−Q(t)α)=12πi∫Γeνtνα−1(ναI−Q)−1dν,Sα=tα−1ˆEα,α(−Q(t)α)=12πi∫Γeνt(ναI−Q)−1dν. |
Proof. We easily prove result (2.1) through Lemma 2 directly by substituting s0 as the boundary condition.
Definition 7 ([[7,8,12]]). Let the BVP with nonlinear integral boundary conditions, if f∈L(J),
{ABC0Dαt[s(t)]=As(t)+Bc(t)+G(t,st,χ(Ψ(t))), t∈[0,⊤]=J, 0<α≤1,Δ(s)|t=ti=Ii(st−i),s(t)=φ(t), t∈[−k,0], | (2.2) |
then, the mild solution s∈`PC(J) is,
s(t)={φ(t), t∈[−k,0]PTαs0+QP(1−α)N(α)Γ(α)∫t0(t−z)α−1×[B(cs(z))+G(z,sz,χ(Ψ(z)))]dz+αP2N(α)∫t0Sα(t−z)[B(cs(z))+G(z,sz,χ(Ψ(z)))]dz, if t∈[0,t1],PTα(t−tj)s(t−1j))+QP(1−α)N(α)Γ(α)∫ttj(t−z)α−1[B(cs(z))+G(z,sz,χ(Ψ(z)))]dz+αP2N(α)∫ttjSα(t−z)[B(cs(z))+G(z,sz,χ(Ψ(z)))]dz+Ij(s(t−j)), if t∈(tj,tj+1],j=1,2,...m. | (2.3) |
Here, P and Q represents the linear operators. P=κ(κI−A)−1 and Q=−ηA(κI−A)−1 where κ=N(α)1−α and
Tα=ˆEα(−Q(t)α)=12πi∫Γeνtνα−1(ναI−Q)−1dν,Sα=tα−1ˆEα,α(−Q(t)α)=12πi∫Γeνt(ναI−Q)−1dν. |
Definition 8 ([[7,8,12]]). The equivalent fractional solution integral for the prescribed system (1.1) is
s(t)={φ(t), t∈[−r,0],N(t,st)+PTα∫⊤0(⊤−z)α−1Γ(α)E(z,s(z))dz+QP(1−α)N(α)Γ(α)∫t0(t−z)α−1×[B(cs(z))+q∗(z)]dz+αP2N(α)∫t0Sα(t−z)[B(cs(z))+q∗(z)]dz, if t∈[0,t1],N(t,st)+PTα(tj−tj−1)s(t−1j−1))+QP(1−α)N(α)Γ(α)∫tti(t−z)α−1[B(cs(z))+q∗(z)]dz+i∑j=1QP(1−α)N(α)Γ(α)∫tjtj−1(tj−z)α−1[B(cs(z))+q∗(z)]dz+αP2N(α)i∑j=1∫tjtj−1Sα(tj−z)[B(cs(z))+q∗(z)]dz+αP2N(α)∫ttiSα(t−z)[B(cs(z))+q∗(z)]dz+PTα(t)i∑j=1Ij(s(t−j)), if t∈(ti,ti+1]. | (2.4) |
Definition 9 ([[7,8,12]]). Let ϕ∈Ω be an initial function and sa∈`PC([0,⊤],ℜ)⊂Ω, then there exists a control c∈L2(J,∁), corresponding to the mild solution s(t) of (1.1), that fulfills s(⊤)=sa; then the system is controllable on [0,⊤].
Remark 4 ([[7,8,10,12]]). The readers may verify the mild solution and the solution operator in [7,8,12].
Remark 5 ([[7,8,10,12]]). If A∈Aα(α0,β0), then ‖Tα(t)‖≤Reβt and ‖Sα(t)≤Qeβt(1+tα−1)‖ for all t>0,β>β0. Therefore, we get ˆR=supt≥0‖Tα(t)‖,ˆR1=supt≥0Qeβt(1+tα−1) and so ‖Tα(t)‖≤ˆR;‖Sα(t)‖≤tα−1ˆR1.
We examine the existence and uniqueness of the mild solutions of the proposed system by assuming that
(P1) For ˊKu>0 and for any s,ρ∈Ω
|N(t,s(t))−N(t,ρ(t))|≤ˊKu‖s(t)−ρ(t)‖`PC |
and
‖N(t,s(t))‖≤ˆRn. |
(P2) For ˊKv,ˊLv&ˊMv and for any s1,s2,s3,ρ1,ρ2,ρ3(t)∈Ω
|I(t,s1(t),s2(t),s3(t))−I(t,ρ1(t),ρ2(t),ρ3(t))|≤ˊKv‖s1(t)−ρ1(t)‖`PC+ˊLv|s2(t)−ρ2(t)+ˊMv|s3(t)−ρ3(t)| |
and
‖I(t,s1(t),s2(t),s3(t))‖≤ˆRq. |
(P3) For ˊKt>0 and for any s,ρ∈Ω
|Iis(t)−Ijρ(t)|≤ˊKt‖s1(t)−ρ1(t)‖`PC |
and
‖Iis(t)≤ω. |
(P4) For ˊKs>0 and for any s,ρ∈Ω
|G(t,s(t))−G(t,ρ(t))|≤ˊKs‖s(t)−ρ(t)‖`PC |
and
‖G(t,s(t))‖≤Kg. |
(P5) There exists c1,c2,c3,c4∈∁(J,ℜ+) with c∗3=supt∈Jc3(t)<1 and c∗4=supt∈Jc4(t)<1 such that
|I(t,s,ρ,μ)|≤c1(t)+c2(t)‖s‖`PC+c3(t)|ρ|+c4(t)‖μ‖`PC |
for t∈J,s∈`PC([−r,0],ℜ) and ρ,μ∈ℜ.
(P6) There are constants ∁∗1,∁∗2>0 such that
|Ii(s)|≤∁∗1‖s‖`PC+∁∗2 |
for each s∈`PC([−r,0],ℜ), i=1,...,ℓ.
(P7) Let the completely continuous function be N, and for each bounded set B⊤∗ in Ω, the set t→N(t,st):s∈B⊤∗ is equi-continuous in `PC(J,ℜ) and hence, there are constants p1>0, p2>0 with ℓ∁∗1+p1<1 such that
|N(t,s)|≤p1‖s‖`PC+p2,t∈J,s∈`PC([−r,0],ℜ). |
(P8) The control operator is a bounded linear operator, and for each bounded set B⊤∗ in Ω,
‖cs(t)−cρ(t)‖≤ˆRc‖s(t)−ρ(t)‖`PC. |
(P9) The linear operator W:`PC(J)↦ℜ is
W(c(.))={QP(1−α)N(α)Γ(α)∫⊤0(⊤−z)α−1B(cs(t))dz+αP2N(α)∫⊤0Sα(⊤−z)B(cs(t))dz, if t∈[0,t1],QP(1−α)N(α)Γ(α)∫⊤tj(⊤−z)α−1B(cs(t))dz+αP2N(α)∫⊤tjSα(⊤−z)B(cs(t))dz, if t∈[tj,tj+1]. |
Here, we get an invertible operator W−1:B↦L2((0,⊤],C)/ker(W),W−1 is also bounded and hence we have ‖B‖≤ˉRand‖W−1‖≤ˉR1.
(P10) P&Q are linear operators that are bounded on B and hence ‖P‖≤ζ1&‖Q‖≤ζ2.
Theorem 5. Let us consider that hypotheses (P1)–(P8) hold, then the proposed problem (1.1) has at least one mild solution.
Proof. Consider the set,
Ω={s:[−r,⊤]→ℜ:s|[−r,0]∈`PC([−r,0],ℜ) and s|[0,⊤]∈`PC1([0,⊤],ℜ)}. |
Ω holds the properties of Banach space with norm
‖s‖Ω=supt∈[−r,⊤]‖s(t)‖. |
We define the operator Ψ1:Ω→Ω defined by
Ψ1(s(t))={φ(t);t∈[−r,0]PTα(t)∫⊤0(⊤−z)α−1Γ(α)G(z,sz)dz+QP(1−α)N(α)Γ(α)∫tti(t−z)α−1[B(cs(z))+q∗(z)]dz+i∑j=1QP(1−α)N(α)Γ(α)∫tjtj−1(tj−z)α−1[B(cs(z))+q∗(z)]+αP2N(α)i∑j=1∫tjtj−1Sα(tj−z)×[B(cs(z))+q∗(z)]dz+αP2N(α)∫ttiSα(t−z)[B(cs(z))+q∗(z)]dz+PTα(t)i∑j=1Ij(s(t−j)),[ti,ti+1). | (3.1) |
The operator Ψ1 represented in (3.1) can be formed as Ψ=N(t,s(t))+Ψ1, for all t∈J.
With the help of Schauder's FPT, we derive the existence of a fixed point of Ψ. First, we show that Ψ is completely continuous. Due to the postulate (P7) of N, it is enough to show that Ψ1 is completely continuous.
Step 1: Ψ1 is continuous. Consider the sequence {sℓ} such that sℓ→s in Ω. If t∈[−r,0], then
|Ψ1(s)−Ψ1(ρ)|=0. |
For t∈J, we have
|Ψ1(s)−Ψ1(ρ)|≤PTα(t)∫⊤0(⊤−z)α−1Γ(α)|G(z,sℓz)−G(z,sz)|dz+QP(1−α)N(α)Γ(α)∫tjtj−1(t−z)α−1|[B(cs(z))+q∗ℓ(z)]−[B(cs(z))+q∗(z)]|dz+i∑j=1QP(1−α)N(α)Γ(α)∫tjtj−1(tj−z)α−1|[B(cs(z))+q∗−ℓ(z)]−[B(cs(z))+q∗ℓ(z)]|d(z)+αP2N(α)∫ttiSα(t−z)|[B(cs(z))+q∗ℓ(z)]−[B(cs(z))+q∗(z)]|dz+αP2N(α)i∑j=1∫tjtj−1Sα(tj−z)|[B(cs(z))+q∗ℓ(z)]−[B(cs(z))+q∗(z)]|dz+PTα(t)i∑j=1|Ij(s(t−j))−Ij(ρ(t−j))|, | (3.2) |
here, q∗,q∗ℓ∈∁(J,ℜ) such that
q∗ℓ(t)=I(t,sℓt,q∗ℓ(t),cℓ(t)), |
and
q∗(t)=I(t,st,q∗(t),c(t)). |
By (P2), we have
|q∗ℓ(t)−q∗(t)|=|I(t,sℓt),q∗ℓ(t),cℓ(t))−I(t,st,q∗(t),ct)|≤ˊKv‖sℓt−st‖`PC+ˊLv|q∗ℓ(t)−q∗(t)|+ˊMw‖cℓ(t)−c(t)‖`PC,|q∗ℓ(t)−q∗(t)|≤ˊKv‖sℓt−st‖`PC+ˊMw‖cℓ(t)−c(t)‖`PC1−ˊLv. |
Due to the result sℓ→s, it gives q∗ℓ(t)→q∗(t) as ℓ→∞ for all t∈J.
Now, consider ν>0, for each t∈J, we write |q∗ℓ(t)|≤ν and |q∗(t)|≤ν.
Hence, we get
(t−z)β−1|q∗ℓ(z)−q∗(t)|≤(t−z)β−1[|q∗ℓ(z)|+|q∗(t)|]≤2ν(t−z)β−1, |
and
(tk−z)β−1|q∗ℓ(z)−q∗(t)|≤(tk−z)β−1[|q∗ℓ(z)|+|q∗(t)|]≤2ν(tk−z)β−1. |
For all t∈J, the maps z→2ν(t−z)β−1 and z→2ν(tk−z)β−1 are integrable on [0,t]; hence, by applying the Lebesgue dominated convergence theorem and (3.2), we get
|Ψ1(sℓ)(t)−Ψ1(s)(t)|→0as ℓ→∞, |
which results in the continuity of Ψ1.
Step 2: The bounded sets of Ω will be mapped in to bounded sets of Ω by the function Ψ1. To show this, it is sufficient to prove that for any ⊤∗>0,∃℘ such that for each s∈B⊤∗={s∈Ω:‖s‖Ω≤⊤∗}, we have ‖Ψ1(s)|Ω≤℘.
For each t∈J, we get
Ψ1(s(t))=PTα(t)∫⊤0(⊤−z)α−1Γ(α)G(z,sz)dz+QP(1−α)N(α)Γ(α)∫tjtj−1(t−z)α−1[B(cs(z))+q∗(z)]dz+i∑j=1QP(1−α)N(α)Γ(α)∫tjtj−1(tj−z)α−1[B(cs(z))+q∗(z)]+αP2N(α)i∑j=1∫tjtj−1Sα(tj−z)×[B(cs(z))+q∗(z)]dz+αP2N(α)∫ttiSα(t−z)[B(cs(z))+q∗(z)]dz+PTα(t)i∑j=1Ij(s(t−j)), | (3.3) |
here, q∗∈∁(J,ℜ) such that q∗(t)=I(t,st,q∗(t),c(t)). From (P5), for each t∈J, we can write
|q∗(t)|=|I(t,st,q∗(t),ct|≤c1(t)+c2(t)‖st‖`PC+c3(t)|q∗(t)|+c4‖c(t)‖`PC≤c1(t)+c2(t)‖st‖`PC+c3(t)|q∗(t)|+c4‖c(t)‖`PC≤c1(t)+c2(t)⊤∗+c3(t)|q∗(t)|+c4‖c(t)‖`PC≤c∗1+c∗2⊤∗+c∗3|q∗(t)|+c∗4‖c(t)‖`PC, |
where c∗1=supt∈Jc1(t), and c∗2=supt∈Jc2(t). Then
|q∗(t)|≤c∗1+c∗2⊤∗+c∗4‖c(t)‖1−c∗3:=R. |
Thus from (3.3),
|Ψ1(s)(t)|≤|PTα(t)∫⊤0(⊤−z)α−1Γ(α)G(z,sz)dz+QP(1−α)N(α)Γ(α)∫tjtj−1(t−z)α−1[B(cs(z))+q∗(z)]dz+i∑j=1QP(1−α)N(α)Γ(α)∫tjtj−1(tj−z)α−1×[B(cs(z))+q∗(z)]+αP2N(α)i∑j=1∫tjtj−1Sα(tj−z)[B(cs(z))+q∗(z)]dz+αP2N(α)∫ttiSα(t−z)[B(cs(z))+q∗(z)]dz+PTα(t)i∑j=1Ij(s(t−j))|≤ζ1ˆR⊤αΓ(α+1)(f1‖s‖+f2)+ζ1ζ21−αN(α)Γ(α)(ˉRM∗+R)+ζ1ζ21−αN(α)Γ(α)ℓ(ˉRM∗+R)+αζ21N(α)(⊤−z)α−1ˆR1ℓ(ˉRM∗+R)+αζ21N(α)(⊤−z)α−1ˆR1(ˉRM∗+R)+ζ1ˆRℓ∑i=1(∁∗1‖st−k‖+∁∗2)≤ζ1ˆR⊤αΓ(α+1)(f1ν∗+f2)+ζ1ζ21−αN(α)Γ(α)(ℓ+1)(ˉRM∗+R)+αζ21N(α)(⊤−z)α−1ˆR1(ℓ+1)(ˉRM∗+R)+ζ1ˆRℓ(C∗1ν∗+C∗2):=S. |
For t∈[−r,0], then
|Ψ1(s)(t)|≤‖φ‖`PC, |
Hence,
‖Ψ1(s)‖Ω≤max{S,‖φ‖`PC}:=℘. |
Step 3: The function Ψ1 maps the bounded sets of Ω into equi-continuous sets of Ω.
Let ti−1,ti∈(0,⊤], ti−1<ti, B⊤∗ be a bounded set of Ω as in Step 2, and let s∈B⊤∗. Then
|Ψ1(s)(tℓ)−Ψ1(s)(tℓ−1)|=|QP(1−α)N(α)Γ(α)∫tjtj−1(tℓ−z)α−1[B(cs(z))+q∗(z)]dz+i∑j=1QP(1−α)N(α)Γ(α)∫tjtj−1(tℓ−z)α−1×[B(cs(z))+q∗(z)]+αP2N(α)i∑j=1∫tjtj−1Sα(tℓ−z)[B(cs(z))+q∗(z)]dz+αP2N(α)∫ttiSα(tℓ−z)×[B(cs(z))+q∗(z)]dz+PTα(t)i∑j=1Ij(s(t−ℓ))−QP(1−α)N(α)Γ(α)∫tjtj−1(tℓ−1−z)α−1[B(cs(z))+q∗(z)]dz−i∑j=1QP(1−α)N(α)Γ(α)∫tjtj−1(tℓ−1−z)α−1[B(cs(z))+q∗(z)]−αP2N(α)i∑j=1∫tjtj−1Sα(tℓ−1−z)×[B(cs(z))+q∗(z)]dz−αP2N(α)∫ttiSα(tℓ−1−z)[B(cs(z))+q∗(z)]dz−PTα(t)i∑j=1Ij(s(t−ℓ−1))|. |
As tℓ→tℓ−1, the RHS of the above inequality converges to 0. Hence, Ψ1 is completely continuous.
Step 4: A priori estimates. We show that
Ⅎ={s∈Ω:s=κΨ1(s) for some κ∈(0,1)} |
is bounded. Consider s∈Ⅎ, then s=κΨ1(s) for some κ∈(0,1). Now let, for each t∈J,
s=κN(t,st)+κPTα∫⊤0(⊤−z)α−1Γ(α)E(z,s(z))dz+κQP(1−α)N(α)Γ(α)∫tjtj−1(t−z)α−1[B(cs(z))+q∗(z)]dz+κi∑j=1QP(1−α)N(α)Γ(α)∫tjtj−1(tj−z)α−1×[B(cs(z))+q∗(z)]dz+καP2N(α)i∑j=1∫tjtj−1Sα(tj−z)[B(cs(z))+q∗(z)]dz+καP2N(α)∫ttiSα(t−z)×[B(cs(z))+q∗(z)]dz+PTα(t)κi∑j=1Ij(s(t−j)). | (3.4) |
Hence, for each t∈J and from (P5), we get,
|q∗(t)|=|I(t,st,q∗(t),c(t))|≤c1(t)+c2(t)‖st‖`PC+c3(t)|q∗(t)|+c4(t)|c(t)|≤c1(t)+c2(t)‖st‖`PC+c3(t)|q∗(t)|+c4(t)‖c(t)‖`PC≤c∗1+c∗2‖st‖`PC+c∗3|q∗(t)|+c∗4‖c(t)‖`PC,|q∗(t)|≤11−c∗3(c∗1+c∗2‖st‖`PC+c∗4‖c(t)‖`PC). |
For each t∈J and by (3.4), (P6), and (P7), we have
|s|≤p1‖st‖`PC+p2+ζ1ˆR∫⊤0(⊤−z)α−1Γ(α)(f1‖st‖`PC+f2)dz+ζ1ζ21−α(1−c∗3)(N(α))Γα(c∗1+c∗2‖s‖`PC+c∗4‖c(t)‖`PC)+ℓζ1ζ2(1−α)(1−c∗3)(N(α))Γα(c∗1+c∗2‖s‖`PC+c∗4‖c(t)‖`PC)+ℓαˆR2(1−c∗3)N(α)i∑i=1∫titi−1(ti−z)α−1(c∗1+c∗2‖s‖`PC+c∗4‖c(t)‖`PC)dz+αˆR2(1−c∗3)N(α)∫tti(t−z)α−1(c∗1+c∗2‖s‖`PC+c∗4‖c(t)‖`PC)dz+ζ1ˆRℓ(∁∗1‖st−i‖`PC+∁∗2). |
Define ν by
ν(t)=sup{|s(z)|:z∈[−r,t]}, t∈[0,⊤],c(t)=sup{|c(z)|:z∈[−r,t]}, t∈[0,⊤]. |
Then there exists t∗∈[−r,⊤] such that ν(t)=|s(t∗)|. If t∈[0,⊤], then by the previous inequality, we have for t∈J
ν(t)≤p1ν(t)+p2+ζ1ˆR∫⊤0(⊤−z)α−1Γ(α)(f1ν(z)+f2)dz+ζ1ζ2(ℓ+1)(1−α)(1−c∗3)(N(α))Γ(α)[c∗1+c∗2ν(t)+c∗4c(t)]+αˆR2(1−c∗3)N(α)i∑j=1∫tjtj−1Sα(t−z)α−1[c∗1+c∗2ν(z)+c∗4c(z)]dz+αˆR2(1−c∗3)N(α)∫ttiSα(t−z)α−1[c∗1+c∗2ν(z)+c∗4c(z)]dz+ζ1ˆRℓ[∁∗1ν(t)+∁∗2]≤(p1+ζ1ζ2(ℓ+1)(1−α)(1−c∗3)N(α)Γ(α)c∗2+ζ1ˆRℓ∁∗1)ν(t)+(p2+ζ1ζ2(ℓ+1)(1−α)(1−c∗3)N(α)Γ(α)c∗1+ζ1ˆRℓ∁∗2)+ζ1ζ2(ℓ+1)(1−α)(1−c∗3)N(α)Γ(α)c∗4c(t)+αˆR2ℓc∗1N(α)(1−c∗3)⊤(α−1)ˆR1+αˆR2(1−c∗3)N(α)i∑j=1∫tjtj−1Sα(t−z)α−1×[c∗2ν(z)+c∗4c(z)]dz+αˆR2c∗1N(α)(1−c∗3)⊤(α−1)ˆR1+αˆR2(1−c∗3)N(α)∫ttiSα(t−z)α−1[c∗2ν(z)+c∗4c(z)]dz≤1(1−[p1+ζ1ζ2(ℓ+1)(1−α)(1−c∗3)N(α)Γ(α)c∗2+ζ1ˆRℓ∁∗1])(p2+ζ1ζ2(ℓ+1)(1−α)(1−c∗3)N(α)Γ(α)c∗1+ζ1ˆRℓ∁∗2+αˆR2(ℓ+1)c∗1N(α)(1−c∗3)⊤(α−1)ˆR1)+1(1−[p1+ζ1ζ2(ℓ+1)(1−α)(1−c∗3)N(α)Γ(α)c∗2+ζ1ˆRℓ∁∗1])ζ1ζ2(ℓ+1)(1−α)(1−c∗3)N(α)Γ(α)c∗4c(t)+1(1−[p1+ζ1ζ2(ℓ+1)(1−α)(1−c∗3)N(α)Γ(α)c∗2+ζ1ˆRℓ∁∗1])(α(ℓ+1)c∗2ˆR21(1−c∗3)N(α)∫ttiSα(t−z)α−1ν(z)dz)+1(1−[p1+ζ1ζ2(ℓ+1)(1−α)(1−c∗3)N(α)Γ(α)c∗2+ℓζ1ˆR∁∗1])(α(ℓ+1)c∗4ˆR21(1−c∗3)N(α)∫ttiSα(t−z)α−1c(z)dz). |
Applying Lemma 1, we get
ν(t)≤11−[p1+ζ1ζ2(ℓ+1)(1−α)(1−c∗3)N(α)Γ(α)c∗2+ζ1ˆRℓ∁∗1]×[(p2+ζ1ζ2(ℓ+1)(1−α)(1−c∗3)N(α)Γ(α)c∗1+ζ1ˆRℓ∁∗2)+(αˆR2(ℓ+1)c∗1N(α)(1−c∗3)⊤(α−1)ˆR1)+(ζ1ζ2(ℓ+1)(1−α)(1−c∗3)N(α)Γ(α)c∗4ˉR)]+11−[p1+ζ1ζ2(ℓ+1)(1−α)(1−c∗3)N(α)Γ(α)c∗2+ζ1ˆRℓ∁∗1][(α(ℓ+1)c∗2ˆR21(1−c∗3)N(α)∁(c2))+(α(ℓ+1)c∗4ˆR21(1−c∗3)N(α)ˉR)], |
where ∁(c2) is a constant. If t∗∈[−r,0], then ν(t)=‖ϕ‖`PC, thus for any t∈J, ‖s‖Ω≤ν(t), we get
‖s‖Ω≤max{‖z‖`PC,A}. |
Hence the set Ⅎ is bounded. By Theorems 3 and 4, Ψ has at least one fixed point in Ω which is a mild solution of the problem (1.1).
Theorem 6. Under hypotheses (P1)–(P8), the considered problem (1.1) has a unique mild solution if
Θa=ˊKu+ζ1ˆR⊤αΓ(α+1)ˊKs+ζ1ζ2(1−α)⊤αN(α)Γ(α+1)(ℓ+1)(ˉRˆRc+ˊKv+ˊMvˆRc1−ˊLv)+αζ21N(α)^R1(ℓ+1)(ˉRˆRc+ˊKv+ˊMvˆRc1−ˊLv)+ζ1ˆRℓˊKt<1. |
Proof. Define a set,
Ω={s:[−r,⊤]→ℜ:s|[−r,0]∈`PC([−r,0],ℜ) and s|[0,⊤]∈`PC1([0,⊤],ℜ)}. |
Ω holds the properties of Banach space with the norm
‖s‖Ω=supt∈[−r,⊤]‖s(t)‖. |
Consider the operator Ψ1:Ω→Ω by
Ψ1(s(t))={φ(t);t∈[−r,0]N(t,st)+PTα(t)∫⊤0(⊤−z)α−1Γ(α)G(z,sz)dz+QP(1−α)N(α)Γ(α)∫tti(t−z)α−1×[B(cs(z))+q∗(z)]dz+i∑j=1QP(1−α)N(α)Γ(α)∫tjtj−1(tj−z)α−1[B(cs(z))+q∗(z)]dz+αP2N(α)i∑j=1∫tjtj−1Sα(tj−z)[B(cs(z))+q∗(z)]dz+αP2N(α)∫ttiSα(t−z)[B(cs(z))+q∗(z)]dz+PTα(t)i∑j=1Ij(s(t−j)) | (3.5) |
where q∗(t)∈C(J,ℜ) and
q∗(t)=I(t,st,ABC0Dαt,c(t)). |
If s,ρ∈Ω, for t∈[−r,0], which implies
‖Ψ(s)−Ψ(ρ)‖=0. |
For t∈J and from (3.5), we have
‖Ψ(s)−Ψ(ρ)‖Ω=maxt∈J|Ψs(t)−Ψρ(t)|≤maxt∈J|N(t,st)+PTα(t)∫⊤0(⊤−z)α−1Γ(α)G(z,sz)dz+QP(1−α)N(α)Γ(α)∫tjtj−1(t−z)α−1×[B(cs(z))+q∗(z)]dz+i∑j=1QP(1−α)N(α)Γ(α)∫tjtj−1(tj−z)α−1[B(cs(z))+q∗(z)]dz+αP2N(α)i∑j=1∫tjtj−1Sα(tj−z)[B(cs(z))+q∗(z)]dz+αP2N(α)∫ttiSα(t−z)×[B(cs(z))+q∗(z)]dz+PTα(t)i∑j=1Ij(s(t−j))−{N(t,ρt)+PTα(t)∫⊤0(⊤−z)α−1Γ(α)×G(z,ρz)dz+QP(1−α)N(α)Γ(α)∫tjtj−1(t−z)α−1[B(cρ(z))+¯q∗(z)]dz+i∑j=1QP(1−α)N(α)Γ(α)×∫tjtj−1(tj−z)α−1[B(cρ(z))+¯q∗(z)]dz+αP2N(α)i∑j=1∫tjtj−1Sα(tj−z)[B(cρ(z))+¯q∗(z)]dz+αP2N(α)∫ttiSα(t−z)[B(cρ(z))+¯q∗(z)]dz+PTα(t)i∑j=1Ij(ρ(t−j))}|≤maxt∈J|N(t,s(t))−N(t,ρ(t))|+PTα(t)∫⊤0(⊤−z)α−1Γ(α)|G(z,sz)−G(z,ρz)|dz+QP(1−α)N(α)Γ(α)|[B(cs(t))+q∗(t)]−[B(cρ(t))+¯q∗(t)]|+i∑j=1QP(1−α)N(α)Γ(α)×|[B(cs(t))+q∗(tj)]−[B(cρ(t))+ˉq∗(tj))]|+αP2N(α)i∑j=1∫tjtj−1Sα(tj−z)α−1×|[B(cs(z))+q∗(z)]−[B(cρ(z))+ˉq∗(z)]|dz+αP2N(α)∫ttiSα(t−z)α−1×|[B(cs(z))+q∗(z)]−[B(cρ(z))+ˉq∗(z)]|dz+PTα(t)i∑j=1|Ij(s(t−j))−Ij(ρ(t−j))|, |
here, q∗,ˉq∗∈C(J,ℜ) is
q∗(t)=I(t,st,q∗(t),cs(t)), |
and
ˉq∗(t)=I(t,ρt,ˉq∗(t),cρ(t)). |
By (P2), we prove
|q∗(t)−ˉq∗(t)|=|I(t,st,q∗(t),cs(t))−I(t,ρt,ˉq∗(t),cρ(t))|≤ˊKv‖st−ρt‖`PC+ˊLv|q∗(t)−ˉq∗(t)|+ˊMv‖cs(t))−cρ(t)‖,|q∗(t)−ˉq∗(t)|≤ˊKv1−ˊLv‖st−ρt‖`PC+ˊMv1−ˊLv‖cs(t))−cρ(t)‖≤ˊKv1−ˊLv‖st−ρt‖`PC+ˊMvˆRc1−ˊLv‖st−ρt‖`PC≤[ˊKv+ˊMvˆRc1−ˊLv]‖st−ρt‖`PC,‖Ψ(s)−Ψ(ρ)‖Ω≤ˊKu‖st−ρt‖`PC+ζ1ˆR⊤αΓ(α+1)ˊKs‖st−ρt‖`PC+ζ1ζ2(1−α)⊤αN(α)Γ(α+1)ˉRˆRc‖st−ρt‖`PC+ζ1ζ2(1−α)⊤αN(α)Γ(α+1)[ˊKv+ˊMvˆRc1−ˊLv]‖st−ρt‖`PC+ζ1ζ2(1−α)⊤αℓN(α)Γ(α+1)ˉRˆRc‖st−ρt‖`PC+ζ1ζ2(1−α)⊤αℓN(α)Γ(α+1)[ˊKv+ˊMvˆRc1−ˊLv]‖st−ρt‖`PC+αζ21ℓN(α)^R1ˉRˆRc‖st−ρt‖`PC+αζ21N(α)^R1ˉRˆRc‖st−ρt‖`PC+αζ21ℓN(α)^R1[ˊKv+ˊMvˆRc1−ˊLv]‖st−ρt‖`PC+αζ21N(α)^R1[ˊKv+ˊMvˆRc1−ˊLv]‖st−ρt‖`PC+ζ1ˆRℓˊKt‖st−ρt‖`PC≤[ζ1ˆR⊤αΓ(α+1)ˊKs+ζ1ζ2(1−α)⊤αN(α)Γ(α+1)(ℓ+1)(ˉRˆRc+ˊKv+ˊMvˆRc1−ˊLv)]‖st−ρt‖`PC+[αζ21N(α)^R1(ℓ+1)(ˉRˆRc+ˊKv+ˊMvˆRc1−ˊLv)+ˊKu+ζ1ˆRℓˊKt]‖st−ρt‖`PC. |
Hence, we obtain
‖Ψ(s)−Ψ(ρ)‖Ω≤Θa‖s−ρ‖Ω. | (3.5) |
Therefore, Ψ is a contraction and (1.1) has a unique mild solution by Theorem 2 in Ω.
Theorem 7. Let us consider that hypotheses (P1)–(P10) hold, then the proposed problem (1.1) is controllable if
ζ1ˆR⊤αKgΓ(α+1)+ζ1ˆR‖s−j‖+ζ2ζ1(1−α)N(α)Γ(α+1)(ˆRq+ˆRn)(⊤α+η)+αζ2ˆR1⊤αN(α)(ˆRq+ˆRn)(⊤α+η)+∁∗1‖s‖+∁∗2<1. | (4.1) |
Proof. Let us define the set
Ωμb={s∈Ω;‖s‖Ω≤μb}∈C:‖c‖]≤μb, |
where
μb≥[1−2ζ1ˆRκηˉR¯R1(1+ζ1ˆR)][^Rn+ζ1ˆRKg⊤αΓ(α+1)+κ(ˉR¯R1κa+^Rq)][(1−κˉR¯R1)(^Rn+2κη(ˉR¯R1κb+^Rq))]2(1−κˉR¯R1)[1−2ζ1ˆRκηˉR¯R1(1+ζ1ˆR)], |
κ=ζ1ζ2(1−α)N(α)Γ(α+1)+^R1ζ21N(α). |
Ωμb⊂Ω is closed, bounded, and convex. We observe that the fixed points of the operator Ψ1 are the mild solutions of the formulated problem (1.1) with Ψ1(s)(⊤)=s1. This implies that the system is controllable. Now, we derive the postulates of Theorem 2.
We define the operator Ψ1:Ω→Ω defined by,
Ψ1(s(t))={φ(t);t∈[−r,0]PTα(t)∫t0(⊤−z)α−1Γ(α)G(z,sz)dz+QP(1−α)N(α)Γ(α)∫t0(t−z)α−1[B(cs(z))+q∗(z)]dz+αP2N(α)∫t0Sα(t−z)[B(cs(z))+q∗(z)]dz,t∈(0,t1]PTα(tj−tj−1)s(t−1j−1))+QP(1−α)N(α)Γ(α)∫tjtj−1(t−z)α−1[B(cs(z))+q∗(z)]dz+αP2N(α)∫tjtj−1Sα(t−z)[B(cs(z))+q∗(z)]dz+PTα(t)i∑j=1Ij−1(s(t−j−1)),(tj−1,tj]. | (4.2) |
By (P2), we define the control, cs(t)
cs(t)=W−1{s⊤−PTα(t)∫⊤0(⊤−z)α−1Γ(α)G(z,sz)dz−QP(1−α)N(α)Γ(α)∫⊤0(⊤−z)α−1q∗(z)dz−αP2N(α)∫⊤0Sα(⊤−z)(q∗(z))dz−QP(1−α)N(α)Γ(α)∫⊤0(⊤−z)α−1N((z),s(z))dz−αP2N(α)∫⊤0Sα(⊤−z)N((z),s(z))dz,t∈(0,t1]s⊤−PTα(⊤−tj)s(t−1j)−QP(1−α)N(α)Γ(α)∫⊤tj(⊤−z)α−1q∗(z)dz−αP2N(α)∫ttiSα(t−z)(q∗(z))dz−QP(1−α)N(α)Γ(α)∫⊤tj(⊤−z)α−1N((z),s(z))dz−αP2N(α)∫ttiSα(t−z)N((z),s(z))dz+PTα(t)i∑j=1Ij(s(t−j))(ti,ti+1]. | (4.3) |
Step 1: Ψ1 is continuous.
‖Ψ1(sr)−Ψ1(s)‖≤‖Q‖‖P‖(1−α)N(α)Γ(α)×∫t0(t−z)α−1[‖B‖‖csr(z)−cs(z)‖+‖q∗(z)−¯q∗(z)‖]dz+α‖P2‖N(α)∫t0‖Sα(t−z)‖[‖B‖‖csr(z)−cs(z)‖+‖q∗(z−¯q∗(z)‖]dz≤ζ1ζ2(1−α)N(α)Γ(α)ˉR∫t0(t−z)α−1{ˉR{ζ1ζ2(1−α)N(α)Γ(α)∫⊤0(⊤−φ)α−1×‖q∗(φ)−q∗(φ)‖dφ+αζ21N(α)^R1∫⊤0(⊤−φ)α−1‖q∗(φ)−q∗(φ)‖dφ}+‖q∗(z)−¯q∗(z)‖}dz+αζ21N(α)^R1∫t0(t−z)α−1×{ˉR{ζ1ζ2(1−α)N(α)Γ(α)∫⊤0(⊤−φ)α−1‖q∗(φ)−q∗(φ)‖dφ+αζ21N(α)^R1×∫⊤0(⊤−φ)α−1‖q∗(φ)−q∗(φ)‖dφ}+‖q∗(z)−¯q∗(z)‖}dz. |
For, t∈(tj−1,tj], we get
‖Ψ1(sr)−Ψ1(s)‖≤‖P‖‖Tα(tj−1−tj)‖‖(sr(t−j)−(s(t−j))‖+Q‖‖P‖(1−α)N(α)Γ(α)∫⊤tj(t−z)α−1[‖B‖‖csr(z)−cs(z)‖+‖q∗(z)−¯q∗(z)‖]dz+α‖P2‖N(α)∫⊤tj‖Sα(t−z)‖[‖B‖‖csr(z)−cs(z)‖+‖q∗(z−¯q∗(z)‖]dz+PTα(t)‖i∑j=1Ij(sr(t−j))−Ij(s(t−j))‖≤ζ1ˆR‖(sr(t−j)−(s(t−j))‖+ζ1ζ2(1−α)N(α)Γ(α)ˉR∫⊤tj(t−z)α−1×{ˉR{ζ1ζ2(1−α)N(α)Γ(α)∫⊤tj(⊤−φ)α−1‖q∗(φ)−q∗(φ)‖dφ+αζ21N(α)^R1∫⊤tj(⊤−φ)α−1‖q∗(φ)−q∗(φ)‖dφ}+‖q∗(z)−¯q∗(z)‖}dz+αζ21N(α)^R1∫t0(t−z)α−1{ˉR{ζ1ζ2(1−α)N(α)Γ(α)∫⊤tj(⊤−φ)α−1‖q∗(φ)−q∗(φ)‖dφ+αζ21N(α)^R1∫⊤tj(⊤−φ)α−1‖q∗(φ)−q∗(φ)‖dφ}+‖q∗(z)−¯q∗(z)‖}dz+ζ1ˆRi∑j=1‖Ij(sr(t−j))−Ij(s(t−j))‖. |
We easily observe that Ψ1(sr)↦Ψ1(s) in Ωμb due to the continuity of the functions q∗andI. This implies the proof of continuity of Ψ1.
Step 2: Ψ1 maps the bounded sets into bounded sets.
‖cs(t)‖=‖W−1‖{‖s⊤‖+‖P‖‖Tα(t)‖s0+‖Q‖‖P‖(1−α)N(α)Γ(α)∫⊤0(t−z)α−1‖q∗(z)‖dz+α‖P2‖N(α)∫t0‖Sα(t−z)‖‖q∗(z)‖dz+‖Q‖‖P‖(1−α)N(α)Γ(α)×∫⊤0(⊤−z)α−1‖N((z),s(z))‖dz+α‖P2‖N(α)∫⊤0‖Sα(⊤−z)‖‖N((z),s(z))‖dz‖s⊤‖+‖P‖‖Tα(⊤−tj)‖‖s−j‖+‖Q‖‖P‖(1−α)N(α)Γ(α)×∫⊤tj(t−z)α−1‖q∗(z)‖dz+α‖P2‖N(α)∫ttj‖Sα(t−z)‖‖q∗(z)‖dz+‖Ij(s(t−j))‖+‖Q‖‖P‖(1−α)N(α)Γ(α)∫⊤tj(⊤−z)α−1‖N((z),s(z))‖dz+α‖P2‖N(α)∫⊤tj‖Sα(⊤−z)‖‖N((z),s(z))‖dz+‖P‖‖Tα(t)‖‖i∑j=1Ij(s(t−j))‖. |
By the postulates (P1)–(P10),
‖cs(t)‖≤ˉR1{s⊤+ζ1ˆR⊤αKgΓ(α+1)+ζ2ζ1(1−α)ˆRq⊤αN(α)Γ(α+1)+αζ2ˆR1ˆRq⊤αN(α)+ζ2ζ1(1−α)ˆRn⊤αN(α)Γ(α+1)+αζ2ˆR1ˆRn⊤αN(α)‖s⊤‖+ζ1ˆR‖s−j‖+ζ2ζ1(1−α)(⊤−tj)αˆRqN(α)Γ(α+1)+ζ1ˆR(⊤−tj)αΓα+1+ζ2ζ1(1−α)ˆRn(⊤−tj)αN(α)Γ(α+1)+αζ2ˆR1ˆRn(⊤−tj)αN(α)+ζ1ˆRω, |
‖cs(t)‖≤ˉR1{s⊤+ζ1ˆR⊤αKgΓ(α+1)+ζ2ζ1(1−α)⊤αN(α)Γ(α+1)(ˆRq+ˆRn)+αζ2ˆR1⊤αN(α)(ˆRq+ˆRn)s⊤+ζ1ˆR‖s−j‖+ζ2ζ1(1−α)(⊤−tj)αN(α)Γ(α+1)(ˆRq+ˆRn)+αζ2ˆR1(⊤−tj)αN(α)(ˆRq+ˆRn)+ζ1ˆRω. |
Let the two constants be
‖cs(t)‖≤ˉR1[s⊤+ζ1ˆR⊤αKgΓ(α+1)+ζ2ζ1(1−α)⊤αN(α)Γ(α+1)(ˆRq+ˆRn)+αζ2ˆR1⊤αN(α)(ˆRq+ˆRn)]≤ˉR1s⊤+ˉR1κa, |
for all t∈(0,t1], where
κa=ζ1ˆR⊤αKgΓ(α+1)+ζ2ζ1(1−α)⊤αN(α)Γ(α+1)(ˆRq+ˆRn)+αζ2ˆR1⊤αN(α)(ˆRq+ˆRn), |
‖cs(t)‖≤ˉR1[s⊤+ζ1ˆR‖s−j‖+ζ2ζ1(1−α)ηN(α)Γ(α+1)(ˆRq+ˆRn)+αζ2ˆR1ηN(α)(ˆRq+ˆRn)+ζ1ˆRω]≤ˉR1s⊤+ˉR1ζ1ˆRs⊤+ˉR1κb, |
where
κb=ζ2ζ1(1−α)ηN(α)Γ(α+1)(ˆRq+ˆRn)+αζ2ˆR1ηN(α)(ˆRq+ˆRn)+ζ1ˆRω |
for all t∈(tj,tj−1], where η=max(⊤−tj)α.
And therefore, for t∈(0,t1]
Ψ1(cs(t))≤ζ1ˆR⊤αKgΓ(α+1)+ζ2ζ1(1−α)⊤αN(α)Γ(α+1)(ˆRq+ˆRn)+αζ2ˆR1⊤αN(α)(ˆRq+ˆRn) |
for t∈(tj,tj−1],
Ψ1(cs(t))≤ζ1ˆR‖s−j‖+ζ2ζ1(1−α)ηN(α)Γ(α+1)(ˆRq+ˆRn)+αζ2ˆR1ηN(α)(ˆRq+ˆRn)+ζ1ˆRω. |
Hence we have,
Ψ1(cs(t))≤ζ1ˆR⊤αKgΓ(α+1)+ζ1ˆR‖s−j‖+ζ2ζ1(1−α)N(α)Γ(α+1)(ˆRq+ˆRn)(⊤α+η)+αζ2ˆR1⊤αN(α)(ˆRq+ˆRn)(⊤α+η)+ζ1ˆRω≤μb. |
This implies that, ‖Ψ1(s)‖≤μb. So, Ψ1(Ωμb)⊂Ωμb.
Step 3: Verify the equi-continuity of Ψ1. Consider s∈Ωμb and ρ1,ρ2∈(tj−1,tj]. Here, ζ1<ζ2,j=1,2,...ℓ,
‖Ψ1(s)(ρ2)−Ψ1(s)(ρ1)‖=‖PTα(ρ2)∫ρ10(⊤−z)α−1Γ(α)G(z,sz)dz+QP(1−α)N(α)Γ(α)∫ρ10(ρ2−z)α−1×[B(cs(z))+q∗(z)]dz+αP2N(α)∫ρ10Sα(ρ2−z)[B(cs(z))+q∗(z)]dz−PTα(ρ1)∫ρ10(⊤−z)α−1Γ(α)G(z,sz)dz−QP(1−α)N(α)Γ(α)∫ρ10(ρ1−z)α−1×[B(cs(z))+q∗(z)]dz+αP2N(α)∫ρ10Sα(ρ1−z)[B(cs(z))+q∗(z)]dz‖≤ζ1[(⊤−ρ1)α−⊤αKg]Γ(α+1)‖Tα(ρ2)−Tα(ρ1)+ζ2ζ1(1−α)N(α)Γ(α)(ˉRg1+ˆRq)×∫ρ10(ρ2−z)α−1−(ρ1−z)α−1dz+αζ21N(α)(ˉRg1+ˆRq)×∫ρ10‖Sα(ρ2−z)−Sα(ρ1−z)‖dz+ζ2ζ1(1−α)N(α)Γ(α)(ˉRg1+ˆRq)×∫ρ2ρ1(ρ2−z)α−1dz+αζ21N(α)(ˉRg1+ˆRq)∫ρ2ρ1‖Sα(ρ2−z)‖dz.ρ1,ρ2∈(0,t1]. |
Now,
‖Ψ1(s)(ρ2)−Ψ1(s)(ρ1)‖=‖PTα(ρ2−tj−1)s(tj−1)+QP(1−α)N(α)Γ(α)∫ρ10(ρ2−z)α−1×[B(cs(z))+q∗(z)]dz+αP2N(α)∫ρ10Sα(ρ2−z)[B(cs(z))+q∗(z)]dz−PTα(ρ1)∫ρ10(⊤−z)α−1Γ(α)G(z,sz)dz−QP(1−α)N(α)Γ(α)∫ρ10(ρ1−z)α−1×[B(cs(z))+q∗(z)]dz+αP2N(α)∫ρ10Sα(ρ1−z)[B(cs(z))+q∗(z)]dz+P(Tα(ρ2−tj−1)−Tα(ρ1−tj−1))Ij−1(s(t−j−1))‖≤ζ1‖Tα(ρ2−tj−1)−Tα(ρ1−tj−1)‖+ζ2ζ1(1−α)N(α)Γ(α)(ˉRg1)+ˆRq)×∫ρ10(ρ2−z)α−1−(ρ1−z)α−1dz+αζ21N(α)(ˉRg1)+ˆRq)×∫ρ10‖Sα(ρ2−z)−Sα(ρ1−z)‖dz+ζ2ζ1(1−α)N(α)Γ(α)(ˉRg1+ˆRq)×∫ρ2ρ1(ρ2−z)α−1dz+αζ21N(α)(ˉRg1+ˆRq)×∫ρ2ρ1‖Sα(ρ2−z)‖dz+ζ1ˆR(ρ2−ρ1)‖Ij−1(s(t−j−1))‖ρ1,ρ2∈(tj−1,tj],j=1,2...ℓ. |
This result converges to 0 during \rho_{1}\; \; \text{tending to}\; \; \rho_{2} . By the compactness and the strong continuity of the operators T_{\alpha}(t) and \mathcal{S}_{\alpha}(t) , we easily get that \Psi_{1} is continuous in uniform operator topology. Hence, \Psi(\Omega_{\mu_{b}}) satisfies the condition of equi-continuous.
Step 4: \Psi_{1} is a contraction on \Omega_{\mu_{b}} . For t \in (0, t_{1}] ,
\begin{align*} \Vert \Psi_{1}( {s})-\Psi_{1}(\rho)\Vert = & \Vert PT_{\alpha}(t) \int_{0}^{t}{\frac{(\top-\mathfrak{z})^{\alpha-1}}{\Gamma(\alpha)}}G(\mathfrak{z}, {s}_{\mathfrak{z}})d\mathfrak{z} +QP\frac{(1-\alpha)}{\mathbb{N}(\alpha)\Gamma(\alpha) }\int_{0}^{t}(t-\mathfrak{z})^{\alpha-1}\\ &\times[B(c_{ {s}}(\mathfrak{z}))+\mathfrak{q^{*}}(\mathfrak{z})]d\mathfrak{z} + \frac{\alpha P^{2}}{\mathbb{N}(\alpha)} \int_{0}^{t}\mathcal{S}_{\alpha}(t-\mathfrak{z})[B(c_{ {s}}(\mathfrak{z}))+\mathfrak{q^{*}}(\mathfrak{z})]d\mathfrak{z}\\ &-PT_{\alpha}(t)\int_{0}^{t}{\frac{(\top-\mathfrak{z})^{\alpha-1}}{\Gamma(\alpha)}}G(\mathfrak{z},\rho_{\mathfrak{z}})d\mathfrak{z} -QP\frac{(1-\alpha)}{\mathbb{N}(\alpha)\Gamma(\alpha) }\int_{0}^{t}(t-\mathfrak{z})^{\alpha-1}\\ &\times [B(c_{\rho}(\mathfrak{z}))+\mathfrak{q^{*}}(\mathfrak{z})]d\mathfrak{z} - \frac{\alpha P^{2}}{\mathbb{N}(\alpha)} \int_{0}^{t}\mathcal{S}_{\alpha}(t-\mathfrak{z})[B(c_{\rho}(\mathfrak{z}))+\mathfrak{q^{*}}(\mathfrak{z})]d\mathfrak{z}\Vert, t \in (0,t_{1}]\\ & \leq \frac{\zeta_{1}\hat{R} \top^{\alpha}}{\Gamma{(\alpha+1)}}\grave{\mathcal{K}}_{s}\Vert {s}_{t}-\rho_{t} \Vert_{\grave{\mathcal{PC}}}+\frac{\zeta_{2}\zeta_{1}(1-\alpha)\top^{\alpha}}{\mathbb{N}(\alpha)\Gamma(\alpha+1)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right] \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}} \\ &+ \frac{\alpha \zeta_{1}^{2}\hat{R}_{1}}{\mathbb{N}(\alpha)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right] \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}}+\frac{\zeta_{2}\zeta_{1}(1-\alpha)\bar{R}\top^{\alpha}}{\mathbb{N}(\alpha)\Gamma(\alpha+1)}\hat{R}_{c} \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}} \\ &+ \frac{\alpha \zeta_{1}^{2}\hat{R}_{1}\bar{R}}{\mathbb{N}(\alpha)}\hat{R}_{c} \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}} \\ &\leq \frac{\zeta_{1}\hat{R} \top^{\alpha}}{\Gamma{(\alpha+1)}}\grave{\mathcal{K}}_{s}\Vert {s}_{t}-\rho_{t} \Vert_{\grave{\mathcal{PC}}}+\frac{\zeta_{2}\zeta_{1}(1-\alpha)\top^{\alpha}}{\mathbb{N}(\alpha)\Gamma(\alpha+1)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}+(1-\grave{\mathfrak {L}}_{v})\bar{R}\hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right]\\&\times \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}} + \frac{\alpha \zeta_{1}^{2}\hat{R}_{1}}{\mathbb{N}(\alpha)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}+(1-\grave{\mathfrak {L}}_{v})\bar{R}\hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right] \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}}\\ &\leq \left(\frac{\zeta_{1}\hat{R} \top^{\alpha}}{\Gamma{(\alpha+1)}}\grave{\mathcal{K}}_{s}+\frac{\zeta_{2}\zeta_{1}(1-\alpha)\top^{\alpha}}{\mathbb{N}(\alpha)\Gamma(\alpha+1)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}+(1-\grave{\mathfrak {L}}_{v})\bar{R}\hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right]\right) \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}}\\ &+\left(\frac{\alpha \zeta_{1}^{2}\hat{R}_{1}}{\mathbb{N}(\alpha)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}+(1-\grave{\mathfrak {L}}_{v})\bar{R}\hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right]\right) \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}}. \end{align*} |
For t \in (t_{j-1}, t_{j}] ,
\begin{align*} \Vert \Psi_{1}( {s})-\Psi_{1}(\rho)\Vert = & \Vert PT_{\alpha}(t_{j}-t_{j-1}) {s}(t_{j-1}^{-1})) +QP\frac{(1-\alpha)}{\mathbb{N}(\alpha)\Gamma(\alpha) }\int_{t_{j-1}}^{t_{j}}(t_{j}-\mathfrak{z})^{\alpha-1}[B(c_{ {s}}(\mathfrak{z}))+\mathfrak{q^{*}}(\mathfrak{z})]d\mathfrak{z} \\ &+ \frac{\alpha P^{2}}{\mathbb{N}(\alpha)} \int_{t_{j-1}}^{t_{j}}\mathcal{S}_{\alpha}(t_{j}-\mathfrak{z})[B(c_{ {s}}(\mathfrak{z}))+\mathfrak{q^{*}}(\mathfrak{z})]d\mathfrak{z}+P(T_{\alpha} \sum\limits_{j = 1}^{i}I_{j-1}( {s}(t_{j-1}^{-}))\\ &-PT_{\alpha}(t_{j}-t_{j-1})\rho(t_{j-1}^{-1})) -QP\frac{(1-\alpha)}{\mathbb{N}(\alpha)\Gamma(\alpha) }\int_{t_{j-1}}^{t_{j}}(t_{j}-\mathfrak{z})^{\alpha-1}[B(c_{\rho}(\mathfrak{z}))+\mathfrak{q^{*}}(\mathfrak{z})]d\mathfrak{z} \\ &- \frac{\alpha P^{2}}{\mathbb{N}(\alpha)} \int_{t_{j-1}}^{t_{j}}\mathcal{S}_{\alpha}(t_{j}-\mathfrak{z})[B(c_{\rho}(\mathfrak{z}))+\mathfrak{q^{*}}(\mathfrak{z})]d\mathfrak{z}-P(T_{\alpha} \sum\limits_{j = 1}^{i}I_{j-1}( {s}(t_{j-1}^{-}))\Vert, t \in (t_{j-1},t_{j}]\\ & \leq \frac{\zeta_{2}\zeta_{1}(1-\alpha)(t_{j}-t_{j-1})^{\alpha}}{\mathbb{N}(\alpha)\Gamma(\alpha+1)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right] \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}} \\ &+ \frac{\alpha \zeta^{2}\hat{R}_{1}}{\mathbb{N}(\alpha)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right] \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}}+\frac{\zeta_{2}\zeta_{1}(1-\alpha)\bar{R}(t_{j}-t_{j-1})^{\alpha}}{\mathbb{N}(\alpha)\Gamma(\alpha+1)}\hat{R}_{c} \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}} \\ &+ \frac{\alpha \zeta^{2}\hat{R}_{1}\bar{R}}{\mathbb{N}(\alpha)}\hat{R}_{c} \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}} \\ &\leq \frac{\zeta_{2}\zeta_{1}(1-\alpha)(t_{j}-t_{j-1})^{\alpha}}{\mathbb{N}(\alpha)\Gamma(\alpha+1)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}+(1-\grave{\mathfrak {L}}_{v})\bar{R}\hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right] \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}} \\ &+ \frac{\alpha \zeta^{2}\hat{R}_{1}}{\mathbb{N}(\alpha)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}+(1-\grave{\mathfrak {L}}_{v})\bar{R}\hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right] \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}}\\ &\leq \left(\frac{\zeta_{2}\zeta_{1}(1-\alpha)(t_{j}-t_{j-1})^{\alpha}}{\mathbb{N}(\alpha)\Gamma(\alpha+1)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}+(1-\grave{\mathfrak {L}}_{v})\bar{R}\hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right]\right) \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}}\\ &+\left(\frac{\alpha \zeta^{2}\hat{R}_{1}}{\mathbb{N}(\alpha)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}+(1-\grave{\mathfrak {L}}_{v})\bar{R}\hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right]\right) \Vert {s}_{t} - \rho_{t} \Vert_{\grave{\mathcal{PC}}}. \end{align*} |
This implies that \Psi_{1} is a contraction on \Omega_{\mu_{b}} for
\begin{align*} \left(\frac{\zeta_{1}\hat{R} \top^{\alpha}}{\Gamma{(\alpha+1)}}\grave{\mathcal{K}}_{s}+\frac{\zeta_{2}\zeta_{1}(1-\alpha)\top^{\alpha}}{\mathbb{N}(\alpha)\Gamma(\alpha+1)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}+(1-\grave{\mathfrak {L}}_{v})\bar{R}\hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right]+\frac{\alpha \zeta^{2}\hat{R}_{1}}{\mathbb{N}(\alpha)}\left[\frac{\grave{\mathfrak {K}}_{v}+\grave{\mathfrak{M}}_{v} \hat{R}_{c}+(1-\grave{\mathfrak {L}}_{v})\bar{R}\hat{R}_{c}}{1-\grave{\mathfrak {L}}_{v}}\right]\right) < 1. \end{align*} |
Hence, \Psi_{1} possesses a fixed point and so it is a mild solution of the proposed system (1.1) based on the defined control function c_{s}(t) given in (4.3) by Theorem 2. By the definition of controllability (Definition 9), the proposed problem is controllable.
The following application is provided for evidencing the theoretical results:
\begin{align} \begin{cases} ^{\mathcal{ABC}}_{0}{D}^{\frac{1}{10}}_{t} \left[ {s}(t,\kappa)- {\frac{\cos| {s}(t,\kappa)|}{45}}\right] = \frac{\partial^{2} { {s}(t,\kappa)}}{\partial \kappa^{2}}+c(t,\kappa)+\frac{t+\sin| {s}(t,\kappa)|}{45}\\+\frac{e^{t}}{11+e^{t}}\frac{\vert ^{\mathcal{ABC}}_{0}{D}^{\frac{1}{10}}_{t} {s}(t,\kappa)\vert}{1+\vert ^{\mathcal{ABC}}_{0}{D}^{\frac{1}{10}}_{t} {s}(t,\kappa)\vert}+c({t},\kappa), t \in [0,1], t \neq \frac{1}{10}, \\ \Delta {s}(t,\kappa) = \frac{ {s}(\frac{1}{10}^{-},\kappa)}{28+ {s}(\frac{1}{10}^{-},\kappa)}, \\ {s}(t,\kappa) = \varphi(t,\kappa), \; t\in [-\mathfrak{r},0], \kappa \in [0,\pi] \; \mathfrak{r} > 0, \\ {s}(t,0) = \int_{0}^{1}{\frac{(1-\mathfrak{z})^{\alpha-1}}{\Gamma(\alpha)}} \frac{1}{25}\exp(- {s}(t,\mathfrak{z}))d\mathfrak{z}, {s}(t,\pi) = 0. \end{cases} \end{align} | (5.1) |
Here, A:D(A) \subset \Omega \mapsto \Omega is an infinitesimal generator A\chi = \chi^{\ell} where, \Omega = \mathcal{L}^{2}[0, \pi] and the domain is defined by D(A) = \{ \chi \in \Omega:\chi \text{ and }\; \chi' are absolutely continuous, \chi'' \in \Omega, \chi(0) = 1 = \chi(1) \},
A\chi = \sum\limits_{\ell = 1}^{\infty}{\ell^{2}} < \chi, \chi \in D(A). |
Whence the eigenvectors that are orthogonal are
\chi_{\ell}(\wp) = \sqrt{\frac{2}{\pi}}sin(\ell\wp), \ell \in \mathcal{N}. |
Hence, the corresponding analytic semi-group \mathcal{S}(t) related to A in \Omega is \mathcal{S}(t)\chi = \sum_{\ell = 1}^{\infty}{e^-{\ell^{2}}} < \chi, \chi \in \Omega \text{ and }\; \Vert (\mathcal{S}(t) \Vert \leq 1. The resolvent operator Q(\grave{\mu}, A) = (\grave{\mu}\mathcal{I}-A)^{-1} where \grave{\mu} \in \rho(A). So the proposed system (5.1) will take the form of (1.1) by replacing
{s}(t,\kappa) = {s}(t),\; \; c(t,\kappa) = c(t), |
\mathfrak{N}(t, {s}(t)) = \frac{\cos| {s}(t)|}{45}, |
\mathcal{I}(t, {s},\rho,c) = \frac{t+\sin| {s}(t)|}{45}+\frac{e^{t}}{11+e^{t}}\frac{\vert \rho \vert}{1+\vert \rho \vert} + \vert c({t}) \vert, |
where
\rho = ^{\mathcal{ABC}}_{0}{D}^{\frac{1}{10}}_{t} {s}(t),\; \; \mathbb{E}(t, {s}(t)) = \frac{1}{25}\exp(- {s}(t)). |
We can easily verify that (5.1) fulfills the postulates (P1)–(P10) and so the proposed system is controllable by (4.1) on [0, \pi] .
This research article gathers the results of existence, uniqueness, and controllability. In previous studies, authors either developed the results of existence and uniqueness or controllability. However, this article verifies the controllability results, being sufficient to verify the existence of a mild solution for the proposed system. Additionally, we have shown the uniqueness results using the Banach contraction principle to some extent. Due to this uniqueness, a single trajectory can be obtained for a unique control input. Also, researchers can design control strategies according to the system due to the uniqueness of the mild solution of the problem. We can ensure the well-defined controls, making the study of controllability results more straightforward. A new researcher can improve the system or include some delays in state space or control, obtaining new results. Highlighting the stability results of the problem is a key focus in current research scenarios. The comparative analysis of numerical solutions and theoretical results are gaining significant attention among researchers.
This work has successfully investigated the existence results for the nonlinear neutral fractional implicit impulsive differential equation with impulses, delay, and integro initial conditions by means of semi-group theory and fixed-point techniques. These types of problems have numerous applications, namely to the mathematical modeling of human diseases and complex problems. Based on Arzel \grave{a} Ascoli theorem and Schauder's fixed-point theorem, we established the adequate results for at least one mild solution. Banach contraction principle helped to derive the uniqueness and controllability results of the defined system. The derived results were justified by providing a suitable illustration. Researchers can establish the stability results of the given problem as a future work. Also, changing the initial condition and including state delay, control delay, or both will obtain innovative results. Future work may be extended to non-instantaneous impulses and comparative analysis with numerical techniques.
Sivaranjani Ramasamy: Writing original draft, Conceptualization and Methodology, and Validation; Thangavelu Senthilprabu: Writing original draft, Validation and Resources; Kulandhaivel Kathikeyan: Investigation and Validation; Palanisamy Geetha: Investigation and Validation; Saowaluck Chasreechai: Writing original draft, Conceptualization and Methodology, and Investigation; Thanin Sitthiwirattham: Investigation and Validation. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research was funded by National Science, Research and Innovation Fund (NSRF), and King Mongkut's University of Technology North Bangkok with Contract No. KMUTNB-FF-68-B-25. Moreover, we would like to thank for our management to provide KPR Pride Fellowship for conducting the research.
The authors declare that there is no conflict of interest.
[1] |
R. Gul, K. Shah, Z. A. Khan, F. Jarad, On a class of boundary value problems under ABC fractional derivatives, Adv. Differ. Equ., 2021 (2021), 437. https://doi.org/10.1186/s13662-021-03595-3 doi: 10.1186/s13662-021-03595-3
![]() |
[2] |
Q. Tul Ain, T. Sathiyaraj, S. Karim, M. Nadeem, P. K. Mwanakatwe, ABC fractional derivative for the Alcohol drinking model using two-scale fractal dimension, Complexity, 2022 (2022), 8531858. https://doi.org/10.1155/2022/8531858 doi: 10.1155/2022/8531858
![]() |
[3] |
Gulalai, S. Ahmad, F. A. Rihan, A. Ullah, Q. M. Al-Mdallal, Ali Akgül, Nonlinear analysis of a nonlinear modified KdV equation under Atangana Baleanu Caputo derivative, AIMS Math., 7 (2021), 7847–7865. https://doi.org/10.3934/math.2022439 doi: 10.3934/math.2022439
![]() |
[4] |
A. S. Alnahdi, M. B. Jeelani, M. S. Abdo, S. M. Ali, S. Saleh, On a nonlocal implicit problem under Atangana-Baleanu-Caputo fractional derivative, Bound. Value Probl., 2021 (2021), 104. https://doi.org/10.1186/s13661-021-01579-6 doi: 10.1186/s13661-021-01579-6
![]() |
[5] |
F. S. Khan, M. Khalid, O. Bazighifan, A. El-Mesady, Euler's numerical method on fractional DSEK model under ABC derivative, Complexity, 2022 (2022), 4475491. https://doi.org/10.1155/2022/4475491 doi: 10.1155/2022/4475491
![]() |
[6] |
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and nonsingular kernel: theory and application to heat transfer model, Therm Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI16011108A doi: 10.2298/TSCI16011108A
![]() |
[7] |
D. Aimene, D. Baleanu, D. Seba, Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay, Chaos Soliton. Fract., 128 (2019), 51–57. https://doi.org/10.1016/j.chaos.2019.07.027 doi: 10.1016/j.chaos.2019.07.027
![]() |
[8] |
D. Baleanu, A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 444–462. https://doi.org/10.1016/j.cnsns.2017.12.003 doi: 10.1016/j.cnsns.2017.12.003
![]() |
[9] |
K. Karthikeyan, J. Reunsumrit, P. Karthikeyan, S. Poornima, D. Tamizharasan, T. Sitthiwirattham, Existence results for impulsive fractional integrodifferential equations involving integral boundary conditions, Math. Probl. Eng., 2022 (2022), 6599849. https://doi.org/10.1155/2022/6599849 doi: 10.1155/2022/6599849
![]() |
[10] |
P. Bedi, A. Kumar, A. Khan, Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives, Chaos Soliton. Fract., 150 (2021), 111153. https://doi.org/10.1016/j.chaos.2021.111153 doi: 10.1016/j.chaos.2021.111153
![]() |
[11] |
J. Reunsumrit, P. Karthikeyann, S. Poornima, K. Karthikeyan, T. Sitthiwirattham, Analysis of existence and stability results for impulsive fractional integro-differential equations involving the Atangana-Baleanu-Caputo derivative under integral boundary conditions, Math. Probl. Eng., 2022 (2022), 5449680. https://doi.org/10.1155/2022/5449680 doi: 10.1155/2022/5449680
![]() |
[12] |
M. Benchohra, S. Bouriah, J. Henderson, Existence and stability results for nonlinear implicit neutral fractional differential equations with finite delay and impulses, Commun. Appl. Nonlinear Anal., 22 (2015), 46–67. https://doi.org/10.7153/dea-08-14 doi: 10.7153/dea-08-14
![]() |
[13] |
V. Wattanakejorn, P. Karthikeyann, S. Poornima, K. Karthikeyan, T. Sitthiwirattham, Existence solutions for implicit fractional relaxation differential equations with impulsive delay boundary conditions, Axioms, 11 (2022), 611. https://doi.org/10.3390/axioms11110611 doi: 10.3390/axioms11110611
![]() |
[14] |
P. Karthikeyann, S. Poornima, K. Karthikeyan, C. Promsakon, T. Sitthiwirattham, On implicit Atangana-Baleanu-Caputo fractional integro-differential equations with delay and impulses, J. Math., 2024 (2024), 5531984. https://doi.org/10.1155/2024/5531984 doi: 10.1155/2024/5531984
![]() |
[15] |
S. W. Yao, Y. Sughra, ASMA, M. A. Inc, K. J. Ansari, Qualitative analysis of implicit delay Mittag-Leffler-Type fractional differential equations, Fractals, 30 (2022), 2240208. https://doi.org/10.1142/S0218348X22402083 doi: 10.1142/S0218348X22402083
![]() |
[16] | Y. Kao, C. Wang, H. Xia, Y. Cao, Projective synchronization for uncertain fractional reaction-diffusion systems via adaptive sliding mode control based on finite-time scheme, In: Analysis and control for fractional-order systems, Springer, 2024,141–163. https://doi.org/10.1007/978-981-99-6054-5_8 |
[17] |
Y. Kao, Y. Li, J. H. Park, X. Chen, Mittag-Leffler synchronization of delayed fractional memristor neural networks via adaptive control, IEEE Trans. Neur. Net. Lear. Syst., 32 (2021), 2279–2284. https://doi.org/10.1109/TNNLS.2020.2995718 doi: 10.1109/TNNLS.2020.2995718
![]() |
[18] | Y. Kao, C. Wang, H. Xia, Y. Cao, Global Mittag-Leffler synchronization of coupled delayed fractional reaction-diffusion Cohen-Grossberg neural networks via sliding mode control, In: Analysis and control for fractional-order systems, Springer, 2024,121–140. https://doi.org/10.1007/978-981-99-6054-5_7 |
[19] |
B. Shiri, Well-Posedness of the mild solutions for incommensurate systems of delay fractional differential equations, Fractal Fract., 9 (2025), 60. https://doi.org/10.3390/fractalfract9020060 doi: 10.3390/fractalfract9020060
![]() |
[20] |
B. Shiri, Y. G. Shi, D. Baleanu, The Well-Posedness of incommensurate FDEs in the space of continuous functions, Symmetry, 16 (2024), 1058. https://doi.org/10.3390/sym16081058 doi: 10.3390/sym16081058
![]() |
[21] |
B. Shiri, G. C. Wu, D. Baleanu, Applications of short memory fractional differential equations with impulses, Discontinuity Nonlinearity Complexity, 12 (2023), 167–182. https://doi.org/10.5890/DNC.2023.03.012 doi: 10.5890/DNC.2023.03.012
![]() |