
Citation: Saima Rashid, Rehana Ashraf, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu. New weighted generalizations for differentiable exponentially convex mapping with application[J]. AIMS Mathematics, 2020, 5(4): 3525-3546. doi: 10.3934/math.2020229
[1] | István P. Sugár . Density of electric field energy around two surface-charged spheres surrounded by electrolyte II. The smaller sphere is inside the larger one. AIMS Biophysics, 2022, 9(1): 61-71. doi: 10.3934/biophy.2022006 |
[2] | István P. Sugár . Electric energies of a charged sphere surrounded by electrolyte. AIMS Biophysics, 2021, 8(2): 157-164. doi: 10.3934/biophy.2021012 |
[3] |
István P. Sugár .
A generalization of the Shell Theorem. Electric potential of charged spheres and charged vesicles surrounded by electrolyte. AIMS Biophysics, 2020, 7(2): 76-89. doi: 10.3934/biophy.2020007 |
[4] |
István P. Sugár .
A generalization of the Shell Theorem. Electric potential of charged spheres and charged vesicles surrounded by electrolyte. AIMS Biophysics, 2023, 10(1): 23-24. doi: 10.3934/biophy.2023003 |
[5] | Ganesh Prasad Tiwari, Santosh Adhikari, Hari Prasad Lamichhane, Dinesh Kumar Chaudhary . Natural bond orbital analysis of dication magnesium complexes [Mg(H2O)6]2+ and [[Mg(H2O)6](H2O)n]2+; n=1-4. AIMS Biophysics, 2023, 10(1): 121-131. doi: 10.3934/biophy.2023009 |
[6] | Hanieh Hadady, Doug Redelman, Sage R. Hiibel, Emil J. Geiger . Continuous-flow sorting of microalgae cells based on lipid content by high frequency dielectrophoresis. AIMS Biophysics, 2016, 3(3): 398-414. doi: 10.3934/biophy.2016.3.398 |
[7] | Klemen Bohinc, Leo Lue . On the electrostatics of DNA in chromatin. AIMS Biophysics, 2016, 3(1): 75-87. doi: 10.3934/biophy.2016.1.75 |
[8] | Piotr H. Pawłowski, Piotr Zielenkiewicz . The role of electric charge in SARS-CoV-2 and other viral infections. AIMS Biophysics, 2024, 11(2): 166-188. doi: 10.3934/biophy.2024011 |
[9] | Massimo Fioranelli, Maria Grazia Roccia, Aroonkumar Beesham, Dana Flavin, M. Ghaeni, Faissal AZIZ . A model for considering effects of extremely low frequency electromagnetic fields on quail embryonic cells. AIMS Biophysics, 2022, 9(3): 198-207. doi: 10.3934/biophy.2022017 |
[10] | David E. Shoup . Diffusion-controlled reaction rates for clusters of binding sites on a cell. AIMS Biophysics, 2016, 3(4): 522-528. doi: 10.3934/biophy.2016.4.522 |
Let A denote the class of functions of the normalized form
f(z)=z+∞∑k=2akzk, | (1.1) |
which are analytic in the unit open disk
D={z∈C:|z|<1} |
and all coefficients are complex numbers. Let Φ denote the set of analytic function with positive real part on D with
ϕ(0)=1, ϕ′(0)>0 |
and ϕ(z) maps D onto a region starlike with respect to 1 and symmetric with respect to the x-axis. And, the function ϕ(z) has a series expansion of the form
ϕ(z)=1+∞∑k=1Akzk, |
where all coefficients Ak(k≥1) are real number and A1>0. Also let U denote the class of Schwartz functions, which is analytic in D satisfying
u(0)=0 and|u(z)|<1. |
In 1970, Robertson [1] introduced the concept of quasi-subordination. For two analytic functions f1(z) and f2(z), the function f1(z) is quasi-subordinate to f2(z) in D, denoted by
f1(z)≺qf2(z),z∈D, |
if there exists a Schwarz function u(z)∈U and an analytic function h(z) with
|h(z)|≤1 |
such that
f1(z)=h(z)f2(u(z)). |
Observe that when
h(z)=1, |
then
f1(z)=f2(u(z)) |
and it is said that f1(z) is subordinate to f2(z) and written
f1(z)≺f2(z) |
in D. Also notice that if
u(z)=z, |
then
f1(z)=h(z)f2(z) |
and it is said that f1(z) is majorized by f2(z) and written
f1(z)≪f2(z) |
in D. Hence it is obvious that quasi-subordination is a generalization of subordination as well as majorization. For works related to early study of the quasi-subordination concept, see [2,3,4].
In order to further explore the concept of quasi-subordination, some researchers have extended the construction of function classes and obtained some geometric properties of function classes. In 2012, Mohd and Darus generalized Ma-Minda starlike and convex classes in [5] and defined the generalized starlike class S∗q(ϕ) and the generalized convex class Cq(ϕ) by using quasi-subordination, as below
S∗q(ϕ)={f(z)∈A:zf′(z)f(z)−1≺qϕ(z)−1,ϕ(z)∈Φ,z∈D},Cq(ϕ)={f(z)∈A:zf′′(z)f′(z)≺qϕ(z)−1,ϕ(z)∈Φ,z∈D}. |
And, they defined the following function class (also see [6])
Mq(α;ϕ)={f(z)∈A:(1−α)zf′(z)f(z)+α(1+zf′′(z)f′(z))−1≺qϕ(z)−1,ϕ(z)∈Φ,α≥0,z∈D}. |
In 2015, El-Ashwah et al. [7] introduced the generalized starlike class S∗q(μ;ϕ) of complex order and the generalized convex class Cq(μ;ϕ) of complex order as follows,
S∗q(μ;ϕ)={f(z)∈A:1+1μ(zf′(z)f(z)−1)≺qϕ(z),ϕ(z)∈Φ,μ∈C∖{0},z∈D},Cq(μ;ϕ)={f(z)∈A:1+1μzf′′(z)f′(z)≺qϕ(z),ϕ(z)∈Φ,μ∈C∖{0},z∈D}. |
In 2020, Ramachandran et al. [8] defined the class M∗q(α,β,λ;ψ) by using quasi-subordination. The function f(z)∈A is in the class M∗q(α,β,λ;ϕ) if
(zf′(z)f(z))α[(1−λ)zf′(z)f(z)+λ(1+zf′′(z)f(z))]β−1≺qϕ(z)−1, |
where ϕ(z)∈Φ and 0≤α,β,λ≤1. Many authors have studied various function subclasses defined by quasi-subordination. For example, Vays et al. [9], Altinkaya et al. [10], Goyal et al. [11] and Choi et al. [12] studied bi-univalent functions using quasi-subordination. Shah et al. [13] and Aoen et al. [14] introduced meromorphic functions using quasi-subordination. Karthikeyan et al. [15] studied Bazilević function using quasi-subordination. Shah et al. [16] studied non-Bazilević function using quasi-subordination. And, there are some function subclasses of linear and nonlinear operators (such as, hohlov operator [17], difference operator [18] and derivative operator [19]) using quasi-subordination.
Recently, some researchers have begun to generalize close-to-convex function classes by using quasi-subordination relationship. In 2019, Gurmeet Singh et al. [20] introduced the subclass of bi-close-to-convex function defined by quasi-subordination. In 2023, Aoen et al. [21] introduced the class of generalized close-to-convex function with complex order written as Kq(γ;ϕ,ψ). This class were defined as below
Kq(γ;ϕ,ψ)={f(z)∈A:1γ(zf′(z)g(z)−1)≺qψ(z)−1,g(z)∈S∗q(ϕ),ϕ(z),ψ(z)∈Φ,γ∈C∖{0},z∈D}. |
In order to denote a new function class, we need to introduce the following function subclasses.
Definition 1.1. Let
α∈[0,1], μ∈C∖{0}. |
Also let ϕ(z)∈Φ. A function f(z)∈A given by (1.1) is said to be in the class Mq(α,μ;ϕ) if the following condition is satisfied
1μ[(1−α)zf′(z)f(z)+α(zf′(z))′f′(z)−1]≺qϕ(z)−1, z∈D. |
Example 1.2. Let
α∈[0,1], μ∈C∖{0}, ϕ(z)∈Φ. |
The function
f(z):D→C |
defined by the following
1μ[(1−α)zf′(z)f(z)+α(zf′(z))′f′(z)−1]=z[ϕ(z)−1] |
belongs to the class Mq(α,μ;ϕ).
Remark 1.3. There are some suitable choices of α,μ which would provide some classical subclasses of analytic functions.
(1) By taking μ=1 in Definition 1.1, we have
Mq(α,1;ϕ)≡Mq(α;ϕ) |
which is introduced by Mohd et al. [5].
(2) By taking α=0 in Definition 1.1, we have
Mq(0,μ;ϕ)≡S∗q(μ;ϕ) |
which is introduced by El-Ashwah et al.[7]. Specially, for μ=1 we have
Mq(0,1;ϕ)≡S∗q(ϕ) |
which is introduced and studied by Mohd et al. [5].
(3) By taking α=1 in Definition 1.1, we have
Mq(1,μ;ϕ)≡Cq(μ;ϕ) |
which is introduced by El-Ashwah et al. [7]. Specially, for μ=1 we have
Mq(1,1;ϕ)≡Cq(ϕ) |
which is introduced and studied by Mohd et al. [5].
Now we define a generalization class of close-to-convex function by using quasi-subordination relationship.
Definition 1.4. Let
α∈[0,1],β∈[0,1], μ∈C∖{0},γ∈C∖{0}. |
Also let
ψ(z)∈Φ, g(z)∈Mq(α,μ;ϕ). |
A function f(z)∈A given by (1.1) is said to be in the class Cq(α,β,μ,γ;ϕ,ψ) if the following condition is satisfied
1γ[(1−β)zf′(z)g(z)+β(zf′(z))′g′(z)−1]≺qψ(z)−1, z∈D. |
Example 1.5. Let
α∈[0,1], β∈[0,1], μ∈C∖{0}, γ∈C∖{0}, ϕ(z)∈Φ, g(z)∈Mq(α,μ;ϕ). |
The function
f(z):D→C |
defined by the following
1γ[(1−β)zf′(z)g(z)+β(zf′(z))′g′(z)−1]=z[ψ(z)−1] |
belongs to the class Cq(α,β,μ,γ;ϕ,ψ).
Remark 1.6. There are some suitable choices of α,β,μ,γ which would provide the following subclasses of the class Cq(α,β,μ,γ;ϕ,ψ).
(1) By taking β=0 in Definition 1.4, the class Cq(α,β,μ,γ;ϕ,ψ) reduces to the new subclass Kq(α,μ,γ;ϕ,ψ) which is the class of generalized close-to-convex function satisfied by
1γ(zf′(z)g(z)−1)≺qψ(z)−1, g(z)∈Mq(α,μ;ϕ),ϕ(z),ψ(z)∈Φ,z∈D. |
Specially, for α=1,μ=1 in the class Kq(α,μ,γ;ϕ,ψ), we have
Hq(γ;ϕ,ψ)={f(z)∈A:1γ(zf′(z)g(z)−1)≺qψ(z)−1,g(z)∈Cq(ϕ),ϕ(z),ψ(z)∈Φ,z∈D}; |
for α=0,μ=1 in the class Kq(α,μ,γ;ϕ,ψ), we have
Kq(0,1,γ;ϕ,ψ)≡Kq(γ;ϕ,ψ) |
which is introduced and studied by Aoen et al. [21]. Also, for γ=1 in the class Kq(γ;ϕ,ψ), we have the class Kq(ϕ,ψ) which is introduced and studied by Aoen et al. [21].
(2) By taking β=1 in Definition 1.4, the class Cq(α,β,μ,γ;ϕ,ψ) reduces to the new subclass C∗q(α,μ,γ;ϕ,ψ) which is the class of generalized quasi-convex function satisfied by
1γ((zf′(z))′g′(z)−1)≺qϕ(z)−1, g(z)∈Mq(α,μ;ϕ),ϕ(z),ψ(z)∈Φ,z∈D. |
Specially, for α=1,μ=1 in the class C∗q(α,μ,γ;ϕ,ψ), we have
C∗q(γ;ϕ,ψ)={f(z)∈A:1γ((zf′(z))′g′(z)−1)≺qϕ(z)−1,g(z)∈Cq(ϕ),ϕ(z),ψ(z)∈Φ,z∈D}; |
for α=0,μ=1 in the class Kq(α,μ,γ;ϕ,ψ), we have
Lq(γ;ϕ,ψ)={f(z)∈A:1γ((zf′(z))′g′(z)−1)≺qϕ(z)−1,g(z)∈S∗q(ϕ),ϕ(z),ψ(z)∈Φ,z∈D}. |
Studying the theory of analytic functions has been an area of concern for many researchers. The study of coefficients estimate is a more special and important field in complex analysis. For example, the bound for the second coefficient a2 of normalized univalent functions readily yields the growth and distortion bounds for univalent functions. The coefficient functional |a3−μa22| (that is, Fekete-Szegö problem) also naturally arises in the investigation of univalency of analytic functions. There are now many results of this type in the literature, each of them dealing with coefficient estimate for various classes of functions. In particular, some authors start to study the coefficient estimates for various classes using quasi-subordination. For example, Arikan et al. [22] and Marut et al. [23] studied the Fekete-Szegö problem for some function subclasses using quasi-subordination. Aoen et al. [24] and Ahman et al. [25] obtained the results on coefficient estimates for various subclasses using quasi-subordination. The purpose of this paper is to study some properties of the class Cq(α,β,μ,γ;ϕ,ψ) and some of its subclasses, such as the integral expression, the first two coefficient estimate problems and Fekete-Szegö problem. Our results are new in this direction and they give birth to many corollaries.
In order to derive our main results, we have to recall here the following lemmas.
Lemma 1.7. Let f(z)∈Cq(ϕ), then
f(z)=∫z0exp(∫t0h(ξ)[ϕ(u(ξ))−1]ξdξ)dt, | (1.2) |
where
|h(z)|≤1, u(z)∈U, ϕ(z)∈Φ. |
Proof. Since
f(z)∈Cq(ϕ), |
then there exist two analytic functions h(z),u(z) with
|h(z)|≤1, |u(z)|<1, u(0)=0 |
such that
zf′′(z)f′(z)=h(z)[ϕ(u(z))−1]. | (1.3) |
By substitution, the Eq (1.3) can be reduced to a first-order differential equation. According to the method of solving the first-order differential equations, we can obtain the general solution of the equation. That is,
f′(z)=exp(∫z0h(t)[ϕ(u(t))−1]tdt). | (1.4) |
Integrating both sides of Eq (1.4), we get (1.2). Thus, the proof of Lemma 1.7 is complete.
Lemma 1.8. [21] Let f(z)∈S∗q(ϕ), then
f(z)=zexp(∫z0h(ξ)[ϕ(u(ξ))−1]ξdξ), |
where
|h(z)|≤1, u(z)∈U, ϕ(z)∈Φ. |
Lemma 1.9. [26] Let
φ(z)=c0+∞∑k=1ckzk |
be an analytic function in D with |φ(z)|≤1, then
|c0|≤1, |c1|≤1−|c0|2. |
Lemma 1.10. [27] Let
t(z)=∞∑k=1tkzk |
be an analytic function in D with |t(z)|<1, then
|t1|≤1,|t2−μt21|≤max{1,|μ|}, |
where μ∈C. The result is sharp for the functions
t(z)=zort(z)=z2. |
In this section, we discuss the integral expressions for the class Cq(α,β,μ,γ;ϕ,ψ) and some of its subclasses by using methods for solving differential equations.
Theorem 2.1. Let
α∈[0,1], β∈[0,1], μ∈C∖{0}, γ∈C∖{0}, |
the function f(z)∈Cq(α,β,μ,γ;ϕ,ψ) be given by (1.1). Then,
(ⅰ) If β≠0, then
f(z)=1β∫z0[g(t)]1−1βt(∫t0[g(ξ)]1β−1g′(ξ)[1+γh(ξ)(ψ(u(ξ))−1)]dξ)dt. | (2.1) |
(ⅱ) If β=0, then
f(z)=∫z0g(t)t[1+γh(t)(ψ(u(t))−1)]dt, |
where
|h(z)|≤1, u(z)∈U, ψ(z)∈Φ, g(z)∈Mq(α,μ;ϕ). |
Proof. Since f(z)∈Cq(α,β,μ,γ;ϕ,ψ), then there exist two analytic functions h(z),u(z) with
|h(z)|≤1, |u(z)|<1, u(0)=0 |
such that
1γ[(1−β)zf′(z)g(z)+β(zf′(z))′g′(z)−1]=h(z)[ψ(u(z))−1]. |
Then, we have
(zf′(z))′=(β−1)g′(z)βg(z)zf′(z)+[1+γh(z)(ψ(u(z))−1)]g′(z)β. |
Let
zf′(z)=F(z), |
then we have
F′(z)=(β−1)g′(z)βg(z)F(z)+[1+γh(z)(ψ(u(z))−1)]g′(z)β. |
Then, the above equation is a first-order nonhomogeneous linear differential equation. According to the method of solving first-order linear differential equations, we can obtain the general solution of the equation. That is,
f′(z)=1β[g(z)]1−1βz∫z0[g(t)]1β−1g′(t)[1+γh(t)(ψ(u(t))−1)]dt. | (2.2) |
Integrating both sides of Eq (2.2), we get (2.1). Thus, the proof of Theorem 2.1 is complete.
By taking β=1 in Theorem 2.1, we obtain the following result.
Corollary 2.2. Let the function f(z)∈C∗q(α,μ,γ;ϕ,ψ) be given by (1.1). Then
f(z)=∫z01t(∫t0g′(ξ)[1+γh(ξ)(ψ(u(ξ))−1)]dξ)dt, |
where
|h(z)|≤1, u(z)∈U, ψ(z)∈Φ, g(z)∈Mq(α,μ;ϕ). |
According to Lemmas 1.7 and 1.8 and Corollary 2.2, we can obtain the following two results.
Corollary 2.3. Let the function f(z)∈C∗q(γ;ϕ,ψ) be given by (1.1). Then
f(z)=∫z01t(∫t0[1+γh(ξ)(ψ(u(ξ))−1)]exp(∫ξ0h1(ζ)[ϕ(u1(ζ))−1]ζdζ)dξ)dt, |
where
|h(z)|≤1, |h1(z)|≤1,u(z), u1(z)∈U, ϕ(z),ψ(z)∈Φ. |
Corollary 2.4. Let the function f(z)∈Lq(γ;ϕ,ψ) be given by (1.1). Then
f(z)=∫z01t(∫t0[1+γh(ξ)(ψ(u(ξ))−1)][1+h1(ξ)(ϕ(u1(ξ))−1)]exp(∫ξ0h1(ζ)[ϕ(u1(ζ))−1]ζdζ)dξ)dt, |
where
|h(z)|≤1,|h1(z)|≤1, u(z),u1(z)∈U, ϕ(z),ψ(z)∈Φ. |
In this section, we obtain the first two coefficient estimate and Fekete-Szegö problem for the class Cq(α,β,μ,γ;ϕ,ψ) and some subclasses of this class by using algebraic operations, fundamental inequalities of analytic functions.
In addition to special statements, suppose the Taylor series expression for the following functions, as follows
f(z)=z+∞∑k=2akzk, g(z)=z+∞∑k=2bkzk,ϕ(z)=1+∞∑k=1Akzk(A1∈R,A1>0), ψ(z)=1+∞∑k=1Bkzk(B1∈R,B1>0),φ(z)=c0+∞∑k=1ckzk, h(z)=h0+∞∑k=1hkzk,u(z)=∞∑k=1ukzk, v(z)=∞∑k=1vkzk. |
In order to derive our main results, we have to discuss the first two coefficient estimates and Fekete-Szegö problem for the class Mq(α,μ;ϕ).
Theorem 3.1. Let α∈[0,1],μ∈C∖{0}, the function f(z)∈Mq(α,μ;ϕ) be given by (1.1). Then
|a2|≤|μ|A11+α, | (3.1) |
|a3|≤|μ|A12(1+2α)max{1,|μ(1+3α)(1+α)2A1+A2A1|}, | (3.2) |
and for any η∈C,
|a3−ηa22|≤|μ|A12(1+2α)max{1,|MA1−A2A1|}, | (3.3) |
where
M=μ[2η(1+2α)−(1+3α)](1+α)2. |
Proof. If f(z)∈Mq(α,μ;ϕ), according to Definition 1.1, there exist analytic functions φ(z) and u(z), with
|φ(z)|≤1, u(0)=0and|u(z)|<1 |
such that
1μ[(1−α)zf′(z)f(z)+α(zf′(z))′f′(z)−1]=φ(z)[ϕ(u(z))−1]. | (3.4) |
By substituting the Taylor series expression for the function f(z) to the left of the above expression, we have
zf′(z)f(z)=1+a2z+(2a3−a22)z2+⋯, |
(zf′(z))′f′(z)=1+2a2z+2(3a3−2a22)z2+⋯. |
Thus we get the following expression
1μ[(1−α)zf′(z)f(z)+α(zf′(z))′f′(z)−1]=1μ{(1+α)a2z+[2(1+2α)a3−(1+3α)a22]z2+⋯}. | (3.5) |
And by substituting the power series expression of the functions φ(z),ϕ(z),u(z) to the right of (3.4), we can get the following expression
φ(z)[ϕ(u(z))−1]=(c0+c1z+c2z2+⋯)[A1(u1z+u2z22+⋯)+A2(u1z+u2z22+⋯)2+⋯]=A1c0u1z+[A1c1u1+c0(A1u2+A2u21)]z2+⋯. | (3.6) |
By substituting (3.5) and (3.6) into (3.4) and comparing the coefficients of the same power terms on both sides, we can get
a2=μA1c0u11+α, | (3.7) |
a3=μA12(1+2α)[c1u1+c0(u2+A2A1u21)+(1+3α)μ(1+α)2A1c20u21]. |
Further,
a3−ηa22=μA12(1+2α)[c1u1+c0(u2+A2A1u21)−2η(1+2α)−(1+3α)(1+α)2μA1c20u21]. | (3.8) |
Applying Lemmas 1.9 and 1.10 to (3.7), we obtain
|a2|≤|μ|A11+α. |
Since φ(z) is analytic and bounded in D, using [28], for some
y,|y|<1:|c0|≤1,c1=(1−c20)y. |
Replacing the value of c1 as defined above, we get
a3−ηa22=μA12(1+2α)[yu1+c0(u2+A2A1u21)−(2η(1+2α)−(1+3α)(1+α)2μA1u21+yu1)c20]. | (3.9) |
If c0=0, then applying Lemmas 1.9 and 1.10 to (3.9), we obtain
|a3−ηa22|≤|μ|A12(1+2α). |
If c0≠0, let
G(c0)=yu1+c0(u2+A2A1u21)−(2η(1+2α)−(1+3α)(1+α)2μA1u21+yu1)c20, | (3.10) |
which is a polynomial in c0 and have analytic in |c0|≤1.
According to Maximum modulus principle, we get
max|G(c0)|=max0≤θ≤2π|G(eiθ)|=|G(1)|. |
Thus
|a3−ηa22|≤|μ|A12(1+2α)|u2−(2η(1+2α)−(1+3α)(1+α)2μA1−A2A1)u21|. | (3.11) |
Applying Lemma 1.10 to (3.11), we can conclude (3.3). For η=0 in (3.3), we have (3.2).
Let
1μ[(1−α)zf′(z)f(z)+α(zf′(z))′f′(z)−1]=ϕ(z)−1 |
or
1μ[(1−α)zf′(z)f(z)+α(zf′(z))′f′(z)−1]=z[ϕ(z2)−1]. |
then the results of (3.1)–(3.3) are sharp. Thus, the proof of Theorem 3.1 is complete.
Remark 3.2. (1) For μ=1 in Theorem 3.1, we can obtain the result which is Theorem 2.10 in [5].
(2) For μ=1,α=0 and μ=1,α=1 in Theorem 3.1, we can obtain the results which are Theorems 2.1 and 2.4 in [5], respectively.
(3) For α=0 and α=1 in Theorem 3.1, we improve the results which are Theorems 2.1 and 2.7 in [7], respectively.
Theorem 3.3. Let
α∈[0,1], β∈(0,1], μ∈C∖{0}, γ∈C∖{0}, |
the function f(z)∈Cq(α,β,μ,γ;ϕ,ψ) be given by (1.1). Then
|a2|≤|μ|A12(1+α)+|γ|B12(1+β), | (3.12) |
|a3|≤ |μ|A16(1+2α)max{1,|μ(1+3α)(1+α)2A1+A2A1|}+|γ|B13(1+2β)max{1,|B2|B1}+|μγ|(1+3β)3(1+α)(1+β)(1+2β)A1B1, | (3.13) |
and for any τ∈C
|a3−τa22|≤|μ|A16(1+2α)max{1,|PA1−A2A1|}+|γ|B13(1+2β)max{1,|QB1−B2B1|}+|μγ[2(1+3β)−3τ(1+2β)]|6(1+α)(1+β)(1+2β)A1B1, | (3.14) |
where
P=μ[3τ(1+2α)−2(1+3α)]2(1+α)2, Q=3τγ(1+2β)4(1+β)2. |
Proof. If f(z)∈Cq(α,β,μ,γ;ϕ,ψ), then there exist analytic functions h(z) and v(z), with
|φ(z)|≤1, v(0)=0and|v(z)|<1 |
such that
1γ[(1−β)zf′(z)g(z)+β(zf′(z))′g′(z)−1]=h(z)[ψ(v(z))−1]. | (3.15) |
By substituting the Taylor series expression for the functions f(z),g(z) to the left of the above expression, we have
zf′(z)g(z)=1+(2a2−b2)z+(3a3−b3+b22−2a2b2)z2+⋯,(zf′(z))′g′(z)=1+2(2a2−b2)z+2(9a3−3b3+4b22−8a2b2)z2+⋯. |
Thus we get the following expression
1γ[(1−β)zf′(z)g(z)+β(zf′(z))′g′(z)−1]=1γ{(1+β)(2a2−b2)z+[(1+2β)(3a3−b3)+(1+3β)(b22−2a2b2)]z2+⋯}. | (3.16) |
Similar to the proof of Theorem 3.1, by substituting the power series expression of the functions h(z),ψ(z),v(z) to the right of (3.15), we can get the following expression
h(z)[ψ(v(z))−1]=B1h0v1z+[B1h1v1+h0(B1v2+B2v21)]z2+⋯. | (3.17) |
By substituting (3.16) and (3.17) into (3.15) and comparing the coefficients of the same power terms on both sides, we can get
a2=12(γB1h0v11+β+b2) | (3.18) |
and
a3=13(1+2β){(1+2β)b3−(1+3β)(b22−2a2b2)+γ[B1h1v1+h0(B1v2+B2v21)]}. |
Further,
a3−τa22=13(b3−34τb22)+γ[2(1+3β)−3τ(1+2β)]6(1+β)(1+2β)B1h0v1b2+γB13(1+2β)[h1v1+h0(v2+B2B1v21)−3τγ(1+2β)4(1+β)2B1h20v21]. | (3.19) |
Applying Lemmas 1.9 and 1.10 to (3.18) and (3.19), we obtain
|a2|≤12(|γ|B11+β+|b2|) | (3.20) |
and
|a3−τa22|≤13|b3−34τb22|+|γ[2(1+3β)−3τ(1+2β)]|6(1+β)(1+2β)B1|b2|+|γ|B13(1+2β)|h1v1+h0(v2+B2B1v21)−3τγ(1+2β)4(1+β)2B1h20v21|. | (3.21) |
According to Theorem 3.1, it follows that
|b2|≤|μ|A11+α | (3.22) |
and, for any complex number τ, we have
|b3−34τb22|≤|μ|A12(1+2α)max{1,|PA1−A2A1|}, | (3.23) |
where
P=μ[3τ(1+2α)−2(1+3α)]2(1+α)2. |
Similar to the proof of Theorem 3.1, we can also get the following inequality
|h1v1+h0(v2+B2B1v21)−3τγ(1+2β)4(1+β)2B1h20v21|≤max{1,|QB1−B2B1|}, | (3.24) |
where
Q=3τγ(1+2β)4(1+β)2. |
By substituting (3.22) into (3.20), we get (3.12). And by substituting (3.22)–(3.24) into (3.21), we can conclude (3.14). For τ=0 in (3.14), we have (3.13).
The results of (3.12) and (3.13) are sharp for β≠0 if
f(z)=1β∫z0[g(t)]1−1βt(∫t0[g(ξ)]1β−1g′(ξ)[1+γ(ψ(ξ)−1)]dξ)dt |
or
f(z)=1β∫z0[g(t)]1−1βt(∫t0[g(ξ)]1β−1g′(ξ)[1+γ(ψ(ξ2)−1)]dξ)dt, |
and the results of (3.14) and (3.15) are sharp for β=0 if
f(z)=∫z0g(t)t[1+γ(ψ(t)−1)]dt |
or
f(z)=∫z0g(t)t[1+γ(ψ(t2)−1)]dt. |
Thus, the proof of Theorem 3.3 is complete.
By taking special values of parameters α,β,μ in Theorem 3.3, we can obtain coefficient estimates for functions belonging to some subclasses of the class Cq(α,β,μ,γ;ϕ,ψ).
Corollary 3.4. Let the function f(z)∈Kq(α,μ,γ;ϕ,ψ). Then
|a2|≤|μ|A12(1+α)+|γ|B12,|a3|≤ |μ|A16(1+2α)max{1,|μ(1+3α)(1+α)2A1+A2A1|}+|γ|B13max{1,|B2|B1}+|μγ|3(1+α)A1B1, |
and for any τ∈C,
|a3−τa22|≤|μ|A16(1+2α)max{1,|μ[3τ(1+2α)−2(1+3α)]2(1+α)2A1−A2A1|}+|γ|B13max{1,|3τγ4B1−B2B1|}+|μγ(2−3τ)|6(1+α)A1B1. |
Remark 3.5. For α=β=0,μ=1 in Theorem 3.3 or α=0,μ=1 in Corollary 3.4, we obtain the result which is Corollary 3 in [21].
Corollary 3.6. Let the function f(z)∈Hq(γ;ϕ,ψ). Then
|a2|≤A1+2|γ|B14,|a3|≤ A118max{1,|A1+A2A1|}+|γ|B13max{1,|B2|B1}+|γ|6A1B1, |
and for any τ∈C
|a3−τa22|≤A118max{1,|9τ−88A1−A2A1|}+|γ|B13max{1,|3τγ4B1−B2B1|}+|γ(2−3τ)|12A1B1. |
Especially, let
γ=1, ϕ(z)=ψ(z)=1+z1−z, |
we can obtain the following result.
Remark 3.7. Let the function
f(z)∈Hq(1;1+z1−z,1+z1−z). |
Then
|a2|≤32,|a3|≤ 53, |
and for any τ∈C
|a3−τa22|≤19max{1,|9τ−124|}+23max{1,|3τ2−1|}+|2−3τ|3. |
The sharpness of the estimates is demonstrated by the functions
f1(z)=2z1−z+log(1−z) |
or
f2(z)=z1−z+12log(1−z2), |
and the graph of the functions f1(z) and f1(z) are shown as follows,
In Figures 1 and 2, the three-dimensional coordinate system, coupled with color, is used to represent complex functions. Specifically, the x-axis corresponds to the real part of the variable z, the y-axis to the imaginary part of z, the z-axis indicates the real part of the function, and the color signifies the imaginary part of the function.
Corollary 3.8. Let the function f(z)∈C∗q(α,μ,γ;ϕ,ψ). Then
|a2|≤|μ|A12(1+α)+|γ|B14,|a3|≤ |μ|A16(1+2α)max{1,|μ(1+3α)(1+α)2A1+A2A1|}+|γ|B19max{1,|B2|B1}+2|μγ|9(1+α)A1B1, |
and for any τ∈C,
|a3−τa22|≤|μ|A16(1+2α)max{1,|μ[3τ(1+2α)−2(1+3α)]2(1+α)2A1−A2A1|}+|γ|B19max{1,|9τγ16B1−B2B1|}+|μγ(8−9τ)|36(1+α)A1B1. |
Corollary 3.9. Let the function f(z)∈C∗q(γ;ϕ,ψ). Then
|a2|≤A1+|γ|B14,|a3|≤ A118max{1,|A1+A2A1|}+|γ|B19max{1,|B2|B1}+|γ|9A1B1, |
and for any τ∈C,
|a3−τa22|≤A118max{1,|9τ−88A1−A2A1|}+|γ|B19max{1,|9τγ16B1−B2B1|}+|γ(8−9τ)|72A1B1. |
Corollary 3.10. Let the function f(z)∈Lq(γ;ϕ,ψ). Then
|a2|≤2A1+|γ|B14,|a3|≤ A16max{1,|A1+A2A1|}+|γ|B19max{1,|B2|B1}+2|γ|9A1B1, |
and for any τ∈C,
|a3−τa22|≤A16max{1,|3τ−22A1−A2A1|}+|γ|B19max{1,|9τγ16B1−B2B1|}+|γ(8−9τ)|36A1B1. |
In this paper, we introduce the new function class Cq(α,β,μ,γ;ϕ,ψ), which is a expanded close-to-convex functions defined by quasi-subordination. We mainly study the integral expression, the first two coefficient estimates and Fekete-Szegö problem for this class and some of its subclasses. In the future, we can consider to study other forms of coefficient estimation, such as Milin coefficient eatimate, Zal-cman functional estimate, high order Hankel Determinant estimate for these classes using the concepts dealt with in the paper.
Aoen: conceptualization, methodology, software, investigation, writing—original draft preparation, writing—review and editing, project administration, funding acquisition, visualization; Shuhai Li: conceptualization, methodology, formal analysis, resources; Tula: validation, data curation; Shuwen Li and Hang Gao: supervision. All authors have read and agreed to the published version of the manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The present investigation was supported by the Natural Science Foundation of Inner Mongolia Autonomous Region of China under Grant (No. 2025MS01034, 2024MS01014, 2020MS01010), the National Natural Science Foundation of China (Grant No.11561001) and the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region under Grant (No. NJYT-18-A14).
The authors declare no conflicts of interest.
[1] | J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Boston: Academic Press, 1992. |
[2] | C. P. Niculescu, L. E. Persson, Convex Functions and Their Applications, New York: Springer, 2006. |
[3] |
T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14. doi: 10.1007/s13398-019-00732-2
![]() |
[4] |
M. K. Wang, Z. Y. He, Y. M. Chu, Sharp Power Mean Inequalities for the Generalized Elliptic Integral of the First Kind, Comput. Meth. Funct. Th., 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
![]() |
[5] |
S. Saima, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions, AIMS Mathematics, 5 (2020), 2629-2645. doi: 10.3934/math.2020171
![]() |
[6] |
X. M. Hu, J. F. Tian, Y. M. Chu, et al. On Cauchy-Schwarz inequality for N-tuple diamond-alpha integral, J. Inequal. Appl., 2020 (2020), 1-15. doi: 10.1186/s13660-019-2265-6
![]() |
[7] | Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93. |
[8] |
I. Abbas Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-7. doi: 10.1155/2020/3075390
![]() |
[9] |
M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4
![]() |
[10] |
S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4
![]() |
[11] | M. K. Wang, H. H. Chu, Y. M. Chu, Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals, J. Math. Anal. Appl., 480 (2019). |
[12] |
M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
![]() |
[13] |
M. Adil Khan, S. Zaheer Ullah, Y. M. Chu, The concept of coordinate strongly convex functions and related inequalities, RACSAM, 113 (2019), 2235-2251. doi: 10.1007/s13398-018-0615-8
![]() |
[14] |
S. Zaheer Ullah, M. Adil Khan, Z. A. Khan, et al. Integral majorization type inequalities for the functions in the sense of strong convexity, J. Funct. Space., 2019 (2019), 1-11. doi: 10.1155/2019/9487823
![]() |
[15] |
S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, Majorization theorems for strongly convex functions, J. Inequal. Appl., 2019 (2019), 1-13. doi: 10.1186/s13660-019-1955-4
![]() |
[16] |
S. H. Wu, Y. M. Chu, Schur m-power convexity of generalized geometric Bonferroni mean involving three parameters, J. Inequal. Appl., 2019 (2019), 1-11. doi: 10.1186/s13660-019-1955-4
![]() |
[17] |
M. K. Wang, W. Zhang, Y. M. Chu, Monotonicity, convexity and inequalities involving the generalized elliptic integrals, Acta Math. Sci., 39 (2019), 1440-1450. doi: 10.1007/s10473-019-0520-z
![]() |
[18] |
M. Adil Khan, S. H. Wu, H. Ullah, et al. Discrete majorization type inequalities for convex functions on rectangles, J. Inequal. Appl., 2019 (2019), 1-18. doi: 10.1186/s13660-019-1955-4
![]() |
[19] | Y. Khurshid, M. Adil Khan, Y. M. Chu, Conformable integral inequalities of the Hermite-Hadamard type in terms of GG- and GA-convexities, J. Funct. Space., 2019 (2019), 1-9. |
[20] | Y. Khurshid, M. Adil Khan, Y. M. Chu, et al. Hermite-Hadamard-Fejér inequalities for conformable fractional integrals via preinvex functions, J. Funct. Space., 2019 (2019), 1-10. |
[21] | Z. H. Yang, W. M. Qian, Y. M. Chu, Monotonicity properties and bounds involving the complete elliptic integrals of the first kind, Math. Inequal. Appl., 21 (2018), 1185-1199. |
[22] |
T. H. Zhao, M. K. Wang, W. Zhang, et al. Quadratic transformation inequalities for Gaussian hypergeometric function, J. Inequal. Appl., 2018 (2018), 1-15. doi: 10.1186/s13660-017-1594-6
![]() |
[23] |
T. R. Huang, S. Y. Tan, X. Y. Ma, et al. Monotonicity properties and bounds for the complete p-elliptic integrals, J. Inequal. Appl., 2018 (2018), 1-11. doi: 10.1186/s13660-017-1594-6
![]() |
[24] | Y. Q. Song, M. Adil Khan, S. Zaheer Ullah, et al. Integral inequalities involving strongly convex functions, J. Funct. Space., 2018 (2018), 1-9. |
[25] | M. Adil Khan, Y. M. Chu, A. Kashuri, et al. Conformable fractional integrals versions of Hermite-Hadamard inequalities and their generalizations, J. Funct. Space., 2018 (2018), 1-9. |
[26] |
M. Adil Khan, Y. M. Chu, T. U. Khan, et al. Some new inequalities of Hermite-Hadamard type for s-convex functions with applications, Open Math., 15 (2017), 1414-1430. doi: 10.1515/math-2017-0121
![]() |
[27] | Z. H. Yang, W. Zhang, Y. M. Chu, Sharp Gautschi inequality for parameter 0 < p < 1 with applications, Math. Inequal. Appl., 20 (2017), 1107-1120. |
[28] |
Y. M. Chu, W. F. Xia, X. H. Zhang, The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications, J. Multivariate Anal., 105 (2012), 412-421. doi: 10.1016/j.jmva.2011.08.004
![]() |
[29] |
Y. M. Chu, G. D. Wang, X. H. Zhang, The Schur multiplicative and harmonic convexities of the complete symmetric function, Mathematische Nachrichten, 284 (2011), 653-663. doi: 10.1002/mana.200810197
![]() |
[30] |
M. K. Wang, Y. M. Chu, S. L. Qiu, et al. Convexity of the complete elliptic integrals of the first kind with respect to Hölder means, J. Math. Anal. Appl., 388 (2012), 1141-1146. doi: 10.1016/j.jmaa.2011.10.063
![]() |
[31] | J. L. W. V. Jensen, Om konvexe funktioner og uligheder mellem Middelvaerdier, Nyt tidsskrift for matematik, 16 (1905), 49-69. |
[32] | G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, 1988. |
[33] |
S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1-18. doi: 10.1186/s13662-019-2438-0
![]() |
[34] |
M. K. Wang, M. Y. Hong, Y. F. Xu, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., 14 (2020), 1-21. doi: 10.7153/jmi-2020-14-01
![]() |
[35] |
M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
![]() |
[36] |
W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166. doi: 10.18514/MMN.2019.2334
![]() |
[37] |
S. Khan, M. Adil Khan, Y. M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Method. Appl. Sci., 43 (2020), 2577-2587. doi: 10.1002/mma.6066
![]() |
[38] |
A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Space., 2020 (2020), 1-18. doi: 10.1155/2020/9845407
![]() |
[39] |
S. Rafeeq, H. Kalsoom, S. Hussain, et al. Delay dynamic double integral inequalities on time scales with applications, Adv. Differ. Equ., 2020 (2020), 1-32. doi: 10.1186/s13662-019-2438-0
![]() |
[40] |
M. K. Wang, Y. M. Chu, W. Zhang, Precise estimates for the solution of Ramanujan's generalized modular equation, Ramanujan J., 49 (2019), 653-668. doi: 10.1007/s11139-018-0130-8
![]() |
[41] | M. K. Wang, Y. M. Chu, W. Zhang, Monotonicity and inequalities involving zero-balanced hypergeometric function, Math. Inequal. Appl., 22 (2019), 601-617. |
[42] |
S. L. Qiu, X. Y. Ma, Y. M. Chu, Sharp Landen transformation inequalities for hypergeometric functions, with applications, J. Math. Anal. Appl., 474 (2019), 1306-1337. doi: 10.1016/j.jmaa.2019.02.018
![]() |
[43] | Z. H. Yang, Y. M. Chu, W. Zhang, High accuracy asymptotic bounds for the complete elliptic integral of the second kind, Appl. Math. Comput., 348 (2019), 552-564. |
[44] | M. Adil Khan, Y. Khurshid, T. S. Du, et al. Generalization of Hermite-Hadamard type inequalities via conformable fractional integrals, J. Funct. Space., 2018 (2018), 1-12. |
[45] |
M. Adil Khan, A. Iqbal, M. Suleman, et al. Hermite-Hadamard type inequalities for fractional integrals via Green's function, J. Inequal. Appl., 2018 (2018), 1-15. doi: 10.1186/s13660-017-1594-6
![]() |
[46] |
T. R. Huang, B. W. Han, X. Y. Ma, et al. Optimal bounds for the generalized Euler-Mascheroni constant, J. Inequal. Appl., 2018 (2018), 1-9. doi: 10.1186/s13660-017-1594-6
![]() |
[47] |
M. K. Wang, Y. M. Li, Y. M. Chu, Inequalities and infinite product formula for Ramanujan generalized modular equation function, Ramanujan J., 46 (2018), 189-200. doi: 10.1007/s11139-017-9888-3
![]() |
[48] |
M. Adil Khan, S. Begum, Y. Khurshid, et al. Ostrowski type inequalities involving conformable fractional integrals, J. Inequal. Appl., 2018 (2018), 1-14. doi: 10.1186/s13660-017-1594-6
![]() |
[49] | Z. H. Yang, W. M. Qian, Y. M. Chu, et al. On approximating the error function, Math. Inequal. Appl., 21 (2018), 469-479. |
[50] |
Z. H. Yang, W. M. Qian, Y. M. Chu, et al. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind, J. Math. Anal. Appl., 462 (2018), 1714-1726. doi: 10.1016/j.jmaa.2018.03.005
![]() |
[51] |
Z. H. Yang, W. M. Qian, Y. M. Chu, et al. On rational bounds for the gamma function, J. Inequal. Appl., 2017 (2017), 1-17. doi: 10.1186/s13660-016-1272-0
![]() |
[52] |
Z. H. Yang, W. M. Qian, Y. M. Chu, et al. Monotonicity rule for the quotient of two functions and its application, J. Inequal. Appl., 2017 (2017), 1-13. doi: 10.1186/s13660-016-1272-0
![]() |
[53] |
Y. M. Chu, M. Adil Khan, T. Ali, et al. Inequalities for α-fractional differentiable functions, J. Inequal. Appl., 2017 (2017), 1-12. doi: 10.1186/s13660-016-1272-0
![]() |
[54] |
M. K. Wang, Y. M. Chu, Refinements of transformation inequalities for zero-balanced hypergeometric functions, Acta Math. Sci., 37 (2017), 607-622. doi: 10.1016/S0252-9602(17)30026-7
![]() |
[55] |
M. K. Wang, Y. M. Chu, Y. P. Jiang, Ramanujan's cubic transformation inequalities for zero-balanced hypergeometric functions, Rocky MT. J. Math., 46 (2016), 679-691. doi: 10.1216/RMJ-2016-46-2-679
![]() |
[56] | T. H. Zhao, Y. M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 1-13. |
[57] |
G. D. Wang, X. H. Zhang, Y. M. Chu, A power mean inequality involving the complete elliptic integrals, Rocky MT. J. Math., 44 (2014), 1661-1667. doi: 10.1216/RMJ-2014-44-5-1661
![]() |
[58] |
Y. M. Chu, Y. F. Qiu, M. K. Wang, Hölder mean inequalities for the complete elliptic integrals, Integr. Transf. Spec. F., 23 (2012), 521-527. doi: 10.1080/10652469.2011.609482
![]() |
[59] |
Y. M. Chu, M. K. Wang, S. L. Qiu, et al. Bounds for complete elliptic integrals of the second kind with applications, Comput. Math. Appl., 63 (2012), 1177-1184. doi: 10.1016/j.camwa.2011.12.038
![]() |
[60] |
M. K. Wang, S. L. Qiu, Y. M. Chu, et al. Generalized Hersch-Pfluger distortion function and complete elliptic integrals, J. Math. Anal. Appl., 385 (2012), 221-229. doi: 10.1016/j.jmaa.2011.06.039
![]() |
[61] | M. A. Noor, Hermite-Hadamard integral inequalities for log-φ-convex functions, Nonl. Anal. Forum, 13 (2008), 119-124. |
[62] |
S. Rashid, F. Safdar, A. O. Akdemir, et al. Some new fractional integral inequalities for exponentially m-convex functions via extended generalized Mittag-Leffler function, J. Inequal. Appl., 2019 (2019), 1-17. doi: 10.1186/s13660-019-1955-4
![]() |
[63] |
S. Pal, Exponentially concave functions and high dimensional stochastic portfolio theory, Stoch. Proc. Appl., 129 (2019), 3116-3128. doi: 10.1016/j.spa.2018.09.004
![]() |
[64] |
S. Bernstein, Sur les fonctions absolument monotones, Acta Math., 52 (1929), 1-66. doi: 10.1007/BF02592679
![]() |
[65] |
T. Antczar, (p, r)-invex sets and functions, J. Math. Anal. Appl., 263 (2001), 355-379. doi: 10.1006/jmaa.2001.7574
![]() |
[66] | S. S. Dragomir, I. Gomm, Some Hermite-Hadamard type inequalities for functions whose exponentials are convex, Stud. Univ. Babeş-Bolyai Math., 60 (2015), 527-534. |
[67] | S. Rashid, M. A. Noor, K. I. Noor, Some generalize Reimann-Liouville fractional estimates involving functions having exponentially convexity property, Punjab Univ. J. Math., 51 (2019), 1-15. |
[68] |
M. U. Awan, M. A. Noor, K. I. Noor, Hermite-Hadamard inequalities for exponentiaaly convex functions, Appl. Math. Inf. Sci., 12 (2018), 405-409. doi: 10.18576/amis/120215
![]() |
[69] | D. M. Nie, S. Rashid, A. O. Akdemir, et al. On some weighted inequalities for differentiable exponentially convex and exponentially quasi-convex functions with applications, Mathematics, 7 (2019), 1-12. |
[70] | U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147 (2004), 137-146. |
[71] |
C. E. M. Pearce, J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13 (2000), 51-55. doi: 10.1016/S0893-9659(99)00164-0
![]() |
[72] | D. Y. Hwang, Some inequalities for differentiable convex mapping with application to weighted midpoint formula and higher moments of random variables, Appl. Math. Comput., 232 (2014), 68-75. |
[73] |
W. M. Qian, Z. Y. He, Y. M. Chu, Approximation for the complete elliptic integral of the first kind, RACSAM, 114 (2020), 1-12. doi: 10.1007/s13398-019-00732-2
![]() |
[74] |
W. M. Qian, Y. Y. Yang, H. W. Zhang, et al. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean, J. Inequal. Appl., 2019 (2019), 1-12. doi: 10.1186/s13660-019-1955-4
![]() |
[75] |
X. H. He, W. M. Qian, H. Z. Xu, et al. Sharp power mean bounds for two Sándor-Yang means, RACSAM, 113 (2019), 2627-2638. doi: 10.1007/s13398-019-00643-2
![]() |
[76] | J. L. Wang, W. M. Qian, Z. Y. He, et al. On approximating the Toader mean by other bivariate means, J. Funct. Space., 2019 (2019), 1-7. |
[77] |
H. Z. Xu, Y. M. Chu, W. M. Qian, Sharp bounds for the Sándor-Yang means in terms of arithmetic and contra-harmonic means, J. Inequal. Appl., 2018 (2018), 1-13. doi: 10.1186/s13660-017-1594-6
![]() |
[78] |
W. M. Qian, X. H. Zhang, Y. M. Chu, Sharp bounds for the Toader-Qi mean in terms of harmonic and geometric means, J. Math. Inequal., 11 (2017), 121-127. doi: 10.7153/jmi-11-11
![]() |
[79] |
Y. M. Chu, M. K. Wang, S. L. Qiu, Optimal combinations bounds of root-square and arithmetic means for Toader mean, Proc. Math. Sci., 122 (2012), 41-51. doi: 10.1007/s12044-012-0062-y
![]() |
[80] |
M. K. Wang, Y. M. Chu, S. L. Qiu, et al. Bounds for the perimeter of an ellipse, J. Approx. Theory, 164 (2012), 928-937. doi: 10.1016/j.jat.2012.03.011
![]() |
[81] | G. D. Wang, X. H. Zhang, Y. M. Chu, A power mean inequality for the Grötzsch ring function, Math. Inequal. Appl., 14 (2011), 833-837. |
[82] | Y. M. Chu, B. Y. Long, Sharp inequalities between means, Math. Inequal. Appl., 14 (2011), 647-655. |
[83] |
M. K. Wang, Y. M. Chu, Y. F. Qiu, et al. An optimal power mean inequality for the complete elliptic integrals, Appl. Math. Lett., 24 (2011), 887-890. doi: 10.1016/j.aml.2010.12.044
![]() |
[84] |
W. M. Qian, Y. M. Chu, Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters, J. Inequal. Appl., 2017 (2017), 1-10. doi: 10.1186/s13660-016-1272-0
![]() |
[85] |
T. H. Zhao, B. C. Zhou, M. K. Wang, et al. On approximating the quasi-arithmetic mean, J. Inequal. Appl., 2019 (2019), 1-12. doi: 10.1186/s13660-019-1955-4
![]() |
[86] |
B. Wang, C. L. Luo, S. H. Li, et al. Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, RACSAM, 114 (2020). doi: 10.1007/s13398-019-00734-0
![]() |
[87] |
W. M. Qian, Z. Y. He, H. W. Zhang, et al. Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean, J. Inequal. Appl., 2019 (2019), 1-13. doi: 10.1186/s13660-019-1955-4
![]() |
[88] |
W. M. Qian, H. Z. Xu, Y. M. Chu, Improvements of bounds for the Sándor-Yang means, J. Inequal. Appl., 2019 (2019), 1-8. doi: 10.1186/s13660-019-1955-4
![]() |
[89] | M. K. Wang, S. L. Qiu, Y. M. Chu, Infinite series formula for Hübner upper bound function with applications to Hersch-Pfluger distortion function, Math. Inequal. Appl., 21 (2018), 629-648. |
[90] | Z. H. Yang, Y. M. Chu, A monotonicity property involving the generalized elliptic integral of the first kind, Math. Inequal. Appl., 20 (2017), 729-735. |
[91] |
Y. M. Chu, M. K. Wang, Y. P. Jiang, et al. Concavity of the complete elliptic integrals of the second kind with respect to Hölder means, J. Math. Anal. Appl., 395 (2012), 637-642. doi: 10.1016/j.jmaa.2012.05.083
![]() |
[92] |
Y. M. Chu, M. K. Wang, Optimal Lehmer mean bounds for the Toader mean, Results Math., 61 (2012), 223-229. doi: 10.1007/s00025-010-0090-9
![]() |
[93] | Y. M. Chu, M. K. Wang, Inequalities between arithmetic-geometric, Gini, and Toader means, Abstr. Appl. Anal., 2012 (2012), 1-11. |
[94] |
M. K. Wang, Z. K. Wang, Y. M. Chu, An optimal double inequality between geometric and identric means, Appl. Math. Lett., 25 (2012), 471-475. doi: 10.1016/j.aml.2011.09.038
![]() |
[95] |
Y. F. Qiu, M. K. Wang, Y. M. Chu, et al. Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean, J. Math. Inequal., 5 (2011), 301-306. doi: 10.7153/jmi-05-27
![]() |
[96] |
Y. Zhang, D. Y. Chen, A Diophantine equation with the harmonic mean, Period. Math. Hung., 80 (2020), 138-144. doi: 10.1007/s10998-019-00302-4
![]() |