Mini review Special Issues

Cyclodextrin-containing layer-by-layer films and microcapsules: Synthesis and applications

  • Received: 31 May 2017 Accepted: 16 July 2017 Published: 19 July 2017
  • This article reviews the synthesis and applications of cyclodextrin (CD)-containing layer-by-layer (LbL) films and microcapsules. CD-containing LbL films and microcapsules have been synthesized through the electrostatic interactions between charged CDs and polyelectrolytes or the formation of host–guest complexes. In the former strategy, sulfonated and carboxylated CDs are often combined with oppositely charged polyelectrolytes. In contrast, in the latter strategy, CD-bearing polymers and guest-modified polymers are used as components of LbL assembly. Typical guest molecules include adamantane, ferrocene, and azobenzene derivatives. Electrochemical biosensors have been constructed by coating the surface of electrodes with CD-containing LbL films. In addition, CD-containing LbL assemblies are used as scaffolds for constructing drug delivery systems, in which hydrophobic, poorly soluble drugs are loaded on the film through host–guest complexation.

    Citation: Uichi Akiba, Jun-ichi Anzai. Cyclodextrin-containing layer-by-layer films and microcapsules: Synthesis and applications[J]. AIMS Materials Science, 2017, 4(4): 832-846. doi: 10.3934/matersci.2017.4.832

    Related Papers:

    [1] Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096
    [2] Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710
    [3] Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly (α,m)-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661
    [4] Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407
    [5] Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially (α,hm)-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521
    [6] Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546
    [7] Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637
    [8] Arshad Iqbal, Muhammad Adil Khan, Noor Mohammad, Eze R. Nwaeze, Yu-Ming Chu . Revisiting the Hermite-Hadamard fractional integral inequality via a Green function. AIMS Mathematics, 2020, 5(6): 6087-6107. doi: 10.3934/math.2020391
    [9] Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon . On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals. AIMS Mathematics, 2023, 8(1): 1833-1847. doi: 10.3934/math.2023094
    [10] Atiq Ur Rehman, Ghulam Farid, Sidra Bibi, Chahn Yong Jung, Shin Min Kang . k-fractional integral inequalities of Hadamard type for exponentially (s,m)-convex functions. AIMS Mathematics, 2021, 6(1): 882-892. doi: 10.3934/math.2021052
  • This article reviews the synthesis and applications of cyclodextrin (CD)-containing layer-by-layer (LbL) films and microcapsules. CD-containing LbL films and microcapsules have been synthesized through the electrostatic interactions between charged CDs and polyelectrolytes or the formation of host–guest complexes. In the former strategy, sulfonated and carboxylated CDs are often combined with oppositely charged polyelectrolytes. In contrast, in the latter strategy, CD-bearing polymers and guest-modified polymers are used as components of LbL assembly. Typical guest molecules include adamantane, ferrocene, and azobenzene derivatives. Electrochemical biosensors have been constructed by coating the surface of electrodes with CD-containing LbL films. In addition, CD-containing LbL assemblies are used as scaffolds for constructing drug delivery systems, in which hydrophobic, poorly soluble drugs are loaded on the film through host–guest complexation.


    The wighted version of Hadamard inequality known as Fejér-Hadamard inequality was established by Fejér in 1906. It is stated as follows:

    Theorem 1. [1] Let ψ:[a,b]R be a convex function. Further, let η:[a,b]R be integrable non-negative function which is symmetric about a+b2. Then we have

    ψ(a+b2)baη(x)dxbaψ(x)η(x)dxψ(a)+ψ(b)2baη(x)dx. (1.1)

    The Hadamard inequality is obtained if we consider η(x)=1 in the inequality (1.1). The following definition of "convex function with respect to a strictly monotone function" is the key factor of this paper.

    Definition 1. [2] If φ is strictly monotone function, then ψ is called convex with respect to φ if ψoφ1 is a convex function.

    Alternatively the Definition 1 can be taken as follows:

    Let I,J be intervals in R and ψ:IR be the convex function, also let φ:JIR be strictly monotone function. Then ψ is called convex with respect to φ if

    ψ(φ1(tx+(1t)y))tψ(φ1(x))+(1t)ψ(φ1(y)), (1.2)

    for t[0,1],x,yRange(φ), provided Range(φ) is convex set. Therefore Definition 1 is equivalently defined by inequality (1.2).

    Examples: [3] 1. Let φ(x)=x. Then φ1(x)=x, the inequality (1.2) takes the form

    ψ(tx+(1t)y)tψ(x)+(1t)ψ(y). (1.3)

    2. Let φ(x)=lnx. Then φ1(x)=expx, the inequality (1.2) takes the form

    ψ(exp(tx+(1t)y))tψ(exp(x))+(1t)ψ(exp(y)). (1.4)

    By replacing x with lnx and y with lny in (1.4), we get

    ψ(xty1t)tψ(x)+(1t)ψ(y). (1.5)

    3. Let φ(x)=1x. Then φ1(x)=1x, the inequality (1.2) takes the form

    ψ((tx+(1t)y)1)tψ(1x)+(1t)ψ(1y). (1.6)

    By replacing x with 1x and y with 1y in (1.6), we get

    ψ(xyty+(1t)x)tψ(x)+(1t)ψ(y). (1.7)

    4. Let φ(x)=xp,p>0. Then φ1(x)=x1p, the inequality (1.2) takes the form

    ψ((tx+(1t)y)1p)tψ(x1p)+(1t)ψ(y1p). (1.8)

    By replacing x with xp and y with yp in (1.8), we get

    ψ((txp+(1t)yp)1p)tψ(x)+(1t)ψ(y). (1.9)

    5. By replacing x with φ(x), y with φ(y), the inequality (1.2) takes the form

    ψ(φ1(tφ(x)+(1t)g(y)))tψ(x)+(1t)ψ(y). (1.10)

    Inequalities (1.3), (1.5), (1.7) and (1.9) give convexity, GA-convexity, harmonic convexity and p-convexity given in [4,5,6]. Hence these independently defined notions are actually examples of a convex function with respect to a strictly monotone function.

    Definition 2. [7] A function ψ will be called symmetric with respect to a strictly monotone function h about h(a)+h(b)2,a,bDomain(h), if

    ψ(h1(h(a)+h(b)x)=ψ(h1(x)) (1.11)

    holds for all xRang(h).

    The notions of symmetric, harmonically symmetric, p-symmetric, geometrically symmetric are examples of Definition 2. These are defined explicitly in [8,9,10].

    We have obtained the following versions of the Fejér-Hadamard inequality for convex function with respect to a strictly monotone function.

    Theorem 2. [7] Let I,J be intervals in R and ψ:[a,b]IR be a convex function, also let φ:J[a,b]R be a strictly monotone function. Further, let ψ be convex with respect to φ, and η:[a,b]R be non-negative integrable and symmetric with respect to φ about φ(a)+φ(b)2. Then the following inequality holds:

    ψ(φ1(φ(a)+φ(b)2))φ(b)φ(a)η(φ1(t))dξφ(b)φ(a)ψ(φ1(t))η(φ1(t))dξψ(a)+ψ(b)2φ(b)φ(a)η(φ1(t))dξ. (1.12)

    The aim of this paper is to give two Riemann-Liouville fractional versions of the Fejér-Hadamard inequality for convex function with respect to a strictly monotone function by using symmetricity with respect to strictly monotone function. These Fejér-Hadamard inequalities for specific strictly monotone functions will give results for convex, geometric convex, harmonically convex and p-convex functions published by different authors in [5,7,8,9,10,11,12,13,14,15,16]. The following definition gives the left as well as right Riemann-Liouville fractional integral operators:

    Definition 3. [17] Let μ>0 and ψL1[a,b]. Then Riemann-Liouville fractional integral operators of order μ are defined by:

    Iμa+ψ(x):=1Γ(μ)xaψ(t)(xt)1μdt,x>a (1.13)
    Iμbψ(x):=1Γ(μ)bxψ(t)(tx)1μdt,x<b, (1.14)

    where Γ(.) is notation for the gamma function.

    The following theorem gives first fractional version of the Hadamard inequality for Riemann-Liouville fractional integrals.

    Theorem 3. [15] Let ψ:[a,b]R be a positive function with 0a<b and ψL[a,b]. If ψ is a convex function on [a,b], then the following fractional integral inequality holds:

    ψ(a+b2)Γ(μ+1)2(ba)μ[Iμa+ψ(b)+Iμbψ(a)]ψ(a)+ψ(b)2, (1.15)

    with μ>0.

    Another version of the Hadamard inequality for Riemann-Liouville fractional integrals is given in the following theorem.

    Theorem 4. [16] Under the assumptions of Theorem 3, the following fractional integral inequality holds:

    ψ(a+b2)2μ1Γ(μ+1)(ba)μ[Iμ(a+b2)+ψ(b)+Iμ(a+b2)ψ(a)]ψ(a)+ψ(b)2, (1.16)

    with μ>0.

    We have obtained the following fractional versions of the Hadamard inequality for Riemann-Liouville fractional integrals of convex function with respect to a strictly monotone function.

    Theorem 5. [7] Let I,J be intervals in R and ψ:[a,b]IR be a convex function, also let φ:J[a,b]R be a strictly monotone function. Further, let ψ be convex with respect to φ. Then for μ>0 the following inequality holds for Riemann-Liouville fractional integrals:

    ψ(φ1(φ(a)+φ(b)2))Γ(μ+1)2(φ(b)φ(a))μ(Jμφ(a)+ψ(b)+Jμφ(b)ψ(a))ψ(a)+ψ(b)2. (1.17)

    Theorem 6. [7] Under the assumptions of Theorem 5, the following inequality holds for Riemann-Liouville fractional integrals:

    ψ(φ1(φ(a)+φ(b)2))2μ1Γ(μ+1)(φ(b)φ(a))μ(Jμφ(a)+φ(b)2+ψ(b)+Jμφ(a)+φ(b)2ψ(a))ψ(a)+ψ(b)2. (1.18)

    In the upcoming section we establish two versions of the Fejér-Hadamard inequality for convex function with respect to a strictly monotone function by using Riemann-Liouville fractional integrals. These inequalities generate new inequalities by selecting different strictly increasing and decreasing functions of our choice. Several results published in [5,7,8,9,10,11,12,13,14,15,16,18,19] are deducible from the results presented in this paper.

    First we prove the following lemma:

    Lemma 1. Let ψ be symmetric with respect to strictly monotone function φ about φ(a)+φ(b)2, and φL[a,b]. Then the following identity holds for Riemann-Liouville fractional integrals:

    Iμφ(a)+ψ(b)=Iμφ(b)ψ(a)=Iμφ(a)+ψ(b)+Iμφ(b)ψ(a)2. (2.1)

    Proof. From definition of Riemann-Liouville fractional integrals we have

    Iμφ(a)+ψ(b)=Iμφ(a)+ψ(φ1(φ(b)))=1Γ(μ)φ(b)φ(a)ψ(φ1(u))du(φ(b)u)1μ. (2.2)

    By setting φ(a)+φ(b)u=z in (1.13) we get

    Iμφ(a)+ψ(b)=1Γ(μ)φ(b)φ(a)ψ(φ1(φ(a)+φ(b)z))dz(zφ(a))1μ. (2.3)

    By using symmetricity of ψ with respect to strictly monotone function φ about φ(a)+φ(b)2, we get Iμφ(a)+ψ(b)=Iμφ(b)ψ(φ1(φ(a))) and hence (2.1) is obtained.

    Remark 1. (i) By setting φ(x)=1x in (2.1), we get [20,Lemma 2].

    (ii) By setting φ(x)=xp,p0 in (2.1), we get [21,Lemma 1].

    By using Lemma 1 we prove the following Riemann-Liouville fractional Fejér-Hadamard inequality for convex function ψ with respect to a strictly monotone function φ.

    Theorem 7. Let I,J be intervals in R and ψ,η:[a,b]IR be real valued functions. Let ψ be convex and w be the positive and symmetric about φ(a)+φ(b)2. Let φ:J[a,b]R be a strictly monotone function. If ψ is convex with respect to φ, then the following inequality holds for Riemann-Liouville fractional integrals:

    ψ(φ1(φ(a)+φ(b)2))(Iμφ(a)+η(b)+Iμφ(b)η(a))Iμφ(a)+(ψ.η)(b)+Iμφ(b)(ψ.η)(a)ψ(a)+ψ(b)2(Iμφ(a)+η(b)+Iμφ(b)η(a)). (2.4)

    Proof. Let K be the interval with end points φ(a) and φ(b). Since ψ is convex with respect to φ, for all x,yK, the inequality

    ψ(φ1(x+y2))ψ(φ1(x))+ψ(φ1(y))2 (2.5)

    holds. By setting x=ξφ(a)+(1ξ)φ(b),y=(1ξ)φ(a)+ξφ(b), ξ[0,1], we find the following inequality:

    2ψ(φ1(φ(a)+φ(b)2))ψ(φ1(ξφ(a)+(1ξ)φ(b)))+ψ(φ1((1ξ)φ(a)+ξφ(b))). (2.6)

    By multiplying with ξμ1η(φ1(ξφ(a)+(1ξ)φ(b))) on both sides of (2.6) and then integrating over [0,1], the following inequality is obtained:

    2ψ(φ1(φ(a)+φ(b)2))10ξμ1η(φ1(ξφ(a)+(1ξ)φ(b))dξ10ξμ1(ψ.η)(φ1(ξφ(a)+(1ξ)φ(b)))dξ+10ξμ1ψ(φ1((1ξ)φ(a)+ξφ(b)))η(φ1(ξφ(a)+(1ξ)φ(b)))dξ. (2.7)

    Now setting again u=ξφ(a)+(1ξ)φ(b) that is ξ=φ(b)uφ(b)φ(a) and v=(1ξ)φ(a)+ξφ(b) that is ξ=vφ(a)φ(b)φ(a) in (2.7), we find the following inequality:

    2ψ(φ1(φ(a)+φ(b)2))φ(b)φ(a)η(φ1(u))du(φ(b)u)1μφ(b)φ(a)(ψ.η)(φ1(u))du(φ(b)u)1μ+φ(b)φ(a)ψ(φ1(v))η(φ1(φ(a)+φ(b)v))dv(vφ(a))1μ.

    From which by using symmericity of w with respect to φ, one can get the first inequality of (2.4). On the other hand by using convexity of ψ with respect to φ, the following inequality can be derived:

    ψ(φ1(ξφ(a)+(1ξ)φ(b)))+ψ(φ1((1ξ)φ(a)+ξφ(b)))ψ(a)+ψ(b),ξ[0,1]. (2.8)

    By multiplying with ξμ1η(φ1(ξφ(a)+(1ξ)φ(b))) on both sides of (2.8) and then integrating over [0,1], the following inequality is obtained:

    10ξμ1(ψ.η)(φ1(ξφ(a)+(1ξ)φ(b)))dξ+10ξμ1ψ(φ1((1ξ)φ(a)+ξφ(b)))η(φ1(ξφ(a)+(1ξ)φ(b)))dξ[ψ(a)+ψ(b)]10ξμ1η(φ1(ξφ(a)+(1ξ)φ(b)))dξ. (2.9)

    By making substitution u=ξφ(a)+(1ξ)φ(b) and v=(1ξ)φ(a)+ξφ(b) in first and second integrals respectively of the left hand side of the inequality (2.9), and making substitution of u=ξφ(a)+(1ξ)φ(b) for integral appearing on right side of this inequality we obtain

    φ(b)φ(a)ψ(φ1(u))du(φ(b)u)1μ+φ(b)φ(a)ψ(φ1(v))η(φ1(φ(a)+φ(b)v))dv(vφ(a))1μψ(a)+ψ(b)2φ(b)φ(a)η(φ1(u))du(φ(b)u)1μ. (2.10)

    From which by using symmericity of w with respect to φ, one can get the second inequality of (2.4).

    In the following we give consequences the above theorem.

    Corollary 1. The following Fejér-Hadamard inequality holds for GA-convex function:

    ψ(ab)(Iμlna+η(b)+Iμlnbη(a))Iμlna+(ψ.η)(b)+Iμlnb(ψ.η)(a)ψ(a)+ψ(b)2(Iμlna+η(b)+Iμlnbη(a)). (2.11)

    Proof. Let φ(x)=expx. Then φ1(x)=lnx, the inequality (2.4) reduces to (2.11) for GA-convex functions.

    Corollary 2. The following Fejér-Hadamard inequality holds for ψln-convex function:

    ψ(ln(exp(a)+exp(b)2))(Iμexp(a)+η(b)+Iμexp(b)η(a))Iμexp(a)+(ψ.η)(b)+Iμexp(b)(ψ.η)(a)ψ(a)+ψ(b)2(Iμexp(a)+η(b)+Iμexp(b)η(a)). (2.12)

    Proof. Let φ(x)=lnx. Then φ1(x)=expx, the inequality (2.4) reduces to (2.12) for GA-convex functions.

    Remark 2. (i) By choosing η(x)=1, Theorem 5 is obtained.

    (ii) By choosing φ(x)=1x, [20,Theorem 5] is obtained.

    (iii) By choosing η(x)=1 and φ(x)=x, Theorem 3 is obtained.

    (iv) By choosing η(x)=1 and φ(x)=1x, [12,Theorem 4] is obtained.

    (v) By choosing η(x)=1 and φ(x)=xp,μ=1, [11,Theorem 6] is obtained.

    (vi) By choosing η(x)=1 and φ(x)=1x,μ=1, [5,Theorem 2.4] is obtained.

    (vii) By choosing φ(x)=xp,μ=1, [9,Theorem 5] is obtained.

    (viii) By choosing η(x)=1 and φ(x)=lnx,μ=1, [10,Theorem 2.2] is obtained.

    (ix) By choosing η(x)=1 and φ(x)=x,μ=1, the classical Hadamard inequality is obtained.

    Lemma 2. Let ψ be symmetric with respect to strictly monotone function φ about φ(a)+φ(b)2, and φL[a,b]. Then the following identity holds for Riemann-Liouville fractional integrals:

    Iμφ(a)+φ(b)2+ψ(b)=Iμφ(a)+φ(b)2ψ(a)=Iμφ(a)+φ(b)2+ψ(b)+Iμφ(a)+φ(b)2ψ(a)2. (2.13)

    Proof. From definition of Riemann-Liouville fractional integrals we have

    Iμφ(a)+φ(b)2+ψ(b)=Iμφ(a)+φ(b)2+ψ(φ1(φ(b)))=φ(b)φ(a)+φ(b)2ψ(φ1(u))du(φ(b)u)1μ. (2.14)

    By setting φ(a)+φ(b)u=z in (2.14) we get

    Iμφ(a)+φ(b)2+ψ(b)=φ(a)+φ(b)2φ(a)ψ(φ1(φ(a)+φ(b)z))dz(zφ(a))1μ. (2.15)

    By using symmetricity of ψ with respect to strictly monotone function φ about φ(a)+φ(b)2, we get Iμφ(a)+φ(b)2+ψ(b)=Iμφ(a)+φ(b)2ψ(φ1(φ(a))) and hence (2.13) is obtained.

    Remark 3. (i) By setting φ(x)=1x in (2.13), we get [14,Lemma 2].

    (ii) By setting φ(x)=xp,p0 in (2.13), we get the identity for p-symmetric functions.

    In the next theorem we establish another version of the Fejér-Hadamard inequality for convex function with respect to a strictly monotone function.

    Theorem 8. Under the assumptions of Theorem 7, the following inequality holds for Riemann-Liouville fractional integrals:

    ψ(φ1(φ(a)+φ(b)2))(Iμφ(a)+φ(b)2+η(b)+Iμφ(a)+φ(b)2η(a))Iμφ(a)+φ(b)2+(ψ.η)(b)+Iμφ(a)+φ(b)2(ψ.η)(a)ψ(a)+ψ(b)2(Iμφ(a)+φ(b)2+η(b)+Iμφ(a)+φ(b)2η(a)). (2.16)

    Proof. Let x=ξ2φ(a)+2ξ2φ(b),y=2ξ2φ(a)+ξ2φ(b), ξ[0,1]. Then from (2.5) we get the following inequality:

    2ψ(φ1(φ(a)+φ(b)2))ψ(φ1(ξ2φ(a)+2ξ2φ(b)))+ψ(φ1(2ξ2φ(a)+ξ2φ(b))). (2.17)

    By multiplying with ξμ1η(φ1(ξ2φ(a)+2ξ2φ(b))) on both sides of (2.17) and then integrating over [0,1], the following inequality is obtained:

    2ψ(φ1(φ(a)+φ(b)2))10ξμ1η(φ1(ξ2φ(a)+2ξ2φ(b)))dξ10ξμ1ψ(φ1(ξ2φ(a)+2ξ2φ(b)))η(φ1(ξ2φ(a)+2ξ2φ(b)))dξ+10ξμ1ψ(φ1(2ξ2φ(a)+ξ2φ(b)))η(φ1(ξ2φ(a)+2ξ2φ(b)))dξ. (2.18)

    Taking u=ξ2φ(a)+2ξ2φ(b) that is ξ=2(φ(b)u)φ(b)φ(a) and v=2ξ2φ(a)+ξ2φ(b) that is ξ=2(vφ(a))φ(b)φ(a) in (2.18), we find the following inequality:

    2ψ(φ1(φ(a)+φ(b)2))φ(a)+φ(b)2φ(a)η(φ1(u))du(φ(b)u)1μφ(a)+φ(b)2φ(a)(ψ.η)(φ1(u))du(φ(b)u)1μ+φ(a)+φ(b)2φ(a)ψ(φ1(v))η(φ1(φ(a)+φ(b)v))dv(vφ(a))1μ.

    From which by using symmericity of w with respect to φ, one can get the first inequality of (2.16). Again by using convexity of ψ with respect to φ, the following inequality is derived for ξ[0,1]:

    ψ(φ1(ξ2φ(a)+2ξ2φ(b)))+ψ(φ1(2ξ2φ(a)+ξ2φ(b)))ψ(a)+ψ(b). (2.19)

    By multiplying with ξμ1η(φ1(ξ2φ(a)+2ξ2φ(b))) on both sides of (2.8) and then integrating over [0,1], the following inequality is obtained:

    10ξμ1ψ(φ1(ξ2φ(a)+2ξ2φ(b)))η(φ1(ξ2φ(a)+2ξ2φ(b)))dξ+10ξμ1ψ(φ1(2ξ2φ(a)+ξ2φ(b)))η(φ1(ξ2φ(a)+2ξ2φ(b)))dξ.[ψ(a)+ψ(b)]10ξμ1(φ1(ξ2φ(a)+2ξ2φ(b)))dξ. (2.20)

    By making substitution u=ξ2φ(a)+2ξ2φ(b) and v=2ξ2φ(a)+ξ2φ(b) in first and second integrals respectively of the left hand side of the inequality (2.20), and making substitution of u=ξ2φ(a)+2ξ2φ(b) in the integral appearing in the right hand side of this inequality we will get

    φ(a)+φ(b)2φ(a)(ψ.η)(φ1(u))du(φ(b)u)1μ+φ(a)+φ(b)2φ(a)ψ(φ1(v))η(φ1(φ(a)+φ(b)v))dv(vφ(a))1μψ(a)+ψ(b)2φ(a)+φ(b)2φ(a)η(φ1(u))du(φ(b)u)1μ. (2.21)

    From which by using symmericity of w with respect to φ, one can get the second inequality of (2.16).

    The consequences of above theorem are given in the following corollaries and remark.

    Corollary 3. The following Fejér-Hadamard inequality holds for GA-convex function:

    ψ(ab)(Iμlnab+η(b)+Iμlnabη(a))Iμlnab+(ψ.η)(b)+Iμlnab(ψ.η)(a)ψ(a)+ψ(b)2(Iμlnab+η(b)+Iμlnabη(a)). (2.22)

    Proof. Let φ(x)=expx. Then φ1(x)=lnx, the inequality (2.16) reduces to (2.22) for GA-convex functions.

    Corollary 4. The following Fejér-Hadamard inequality holds for ψln-convex function:

    ψ(ln(exp(a)+exp(b)2))(Iμexp(a)+exp(b)2+η(b)+Iμexp(a)+exp(b)2η(a))Iμexp(a)+exp(b)2+(ψ.η)(b)+Iμexp(a)+exp(b)2(ψ.η)(a)ψ(a)+ψ(b)2(Iμexp(a)+exp(b)2+η(b)+Iμexp(a)+exp(b)2η(a)). (2.23)

    Proof. Let φ(x)=lnx. Then φ1(x)=expx, the inequality (2.16) reduces to (2.23) for GA-convex functions.

    Remark 4. (i) By choosing η(x)=1, Theorem 6 is obtained.

    (i) By choosing η(x)=1 and φ(x)=x, Theorem 4 is obtained.

    (ii) By choosing η(x)=1 and φ(x)=1x, [14,Theorem 4] is obtained.

    (iii) By choosing η(x)=1 and φ(x)=xp,p0, [13,Theorem 7] is obtained.

    (iv) By choosing η(x)=1 and φ(x)=1x,μ=1, [5,Theorem 2.4] is obtained.

    (v) By choosing η(x)=1 and φ(x)=xp,p≠=1, [11,Theorem 6] is obtained.

    We have studied the Riemann-Liouville fractional integral versions of Fejér-Hadamard inequalities for convex function with respect to strictly monotone function. The established inequalities provide the Hadamard and Fejér-Hadamard inequalities for Riemann-Liouville fractional integrals of convex, harmonically convex, p-convex and GA-convex functions. For specific increasing/decreasing functions the reader can produce corresponding Fejér-Hadamard inequalities from results of this paper. Further, we are investigating such results for other kinds of fractional integrals for future work.

    This work was supported by the Key Laboratory of Key Technologies of Digital Urban-Rural Spatial Planning of Hunan Province.

    It is declared that the author have no competing interests.

    [1] Gentile P, Carmagnola I, Nardo T, et al. (2015) Layer-by-layer assembly for biomedical applications in the last decade. Nanotechnology 26: 422001. doi: 10.1088/0957-4484/26/42/422001
    [2] Barsan MM, Brett CMA (2016) Recent advances in layer-by-layer strategies for biosensors incorporating metal nanoparticles. TrAC-Trend Anal Chem 79: 286–296. doi: 10.1016/j.trac.2015.11.019
    [3] Richardson JJ, Cui J, Björnmalm M, et al. (2016) Innovation in layer-by-layer assembly. Chem Rev 116: 14828–14867. doi: 10.1021/acs.chemrev.6b00627
    [4] Xuan M, Zhao J, Shao J, et al. (2017) Recent progress in layer-by-layer assembled biogenic capsules and their applications. J Colloid Interf Sci 487: 107–117. doi: 10.1016/j.jcis.2016.10.018
    [5] Polomska A, Leroux J, Brambilla D (2017) Layer-by-layer coating of solid drug cores: A versatile method to improve stability, control release and tune surface properties. Macromol Biosci 17: 1600228. doi: 10.1002/mabi.201600228
    [6] Anzai J, Kobayashi Y, Suzuki Y, et al. (1998) Enzyme sensors prepared by layer-by-layer deposition of enzymes on a platinum electrode through avidin-biotin interaction. Sensor Actuat B-Chem 52: 3–9. doi: 10.1016/S0925-4005(98)00248-2
    [7] Shi H, Yang Y, Huang JD, et al. (2006) Amperometric choline biosensors prepared by layer-by-layer deposition of choline oxidase on the Prussian blue-modified platinum electrode. Talanta 70: 852–858. doi: 10.1016/j.talanta.2006.02.012
    [8] Wang B, Anzai J (2007) Redox reactions of ferricyanide ions in layer-by-layer deposited polysaccharide films: A significant effect of the type of polycation in the films. Langmuir 23: 7378–7384. doi: 10.1021/la070119m
    [9] Crouzier T, Boudou T, Picart C (2010) Polysaccharide-based polyelectrolyte multilayers. Curr Opin Colloid In 15: 417–426. doi: 10.1016/j.cocis.2010.05.007
    [10] Sato H, Anzai J (2006) Preparation of layer-by-layer thin films composed of DNA and ferrocene-bearing poly(amine)s and their redox properties. Biomacromolecules 7: 2072–2076. doi: 10.1021/bm060222a
    [11] Jewell CM, Lynn DM (2008) Multilayered polyelectrolyte assemblies as platforms for the delivery of DNA and other nucleic acid-based therapeutics. Adv Drug Deliver Rev 60: 979–999. doi: 10.1016/j.addr.2008.02.010
    [12] Sukhishvili SA, Granick S (2002) Layered, erasable polymer multilayers formed by hydrogen-bonded sequential self-assembly. Macromolecules 35: 301–310. doi: 10.1021/ma011346c
    [13] Pavlukhina S, Sukhishvili S (2011) Polymer assemblies for controlled delivery of bioactive molecules from surfaces. Adv Drug Deliver Rev 63: 822–836. doi: 10.1016/j.addr.2011.03.017
    [14] Rao SV, Anderson KW, Bachas LG (1999) Controlled layer-by-layer immobilization of horseradish peroxidase. Biotechnol Bioeng 65: 389–396. doi: 10.1002/(SICI)1097-0290(19991120)65:4<389::AID-BIT3>3.0.CO;2-V
    [15] Sato K, Kodama D, Naka Y, et al. (2006) Electrochemically induced disintegration of layer-by-layer-assembled thin films composed of 2-iminobiotin-labeled poly(ethyleneimine) and avidin. Biomacromolecules 7: 3302–3305. doi: 10.1021/bm060819q
    [16] Hoshi T, Akase S, Anzai J (2002) Preparation of multilayer thin films containing avidin through sugar-lectin interactions and their binding properties. Langmuir 18: 7024–7028. doi: 10.1021/la0203685
    [17] Donath E, Sukhorukov GB, Caruso F, et al. (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed 37: 2201–2205. doi: 10.1002/(SICI)1521-3773(19980904)37:16<2201::AID-ANIE2201>3.0.CO;2-E
    [18] Antipov AA, Sukhorukov GB, Leporatti S, et al. (2002) Polyelectrolyte multilayer capsule permeability control. Colloid Surface A 198–200: 535–541.
    [19] De Mercato LL, Ferraro MM, Baldassarre F, et al. (2014) Biological applications of LBL multilayer capsules: From drug delivery to sensing. Adv Colloid Interfac 207: 139–154. doi: 10.1016/j.cis.2014.02.014
    [20] Liu L, Son M, Park H, et al. (2014) Efficacy of CNT-bound polyelecby spray-assisted layer-by-layer (LbL) technique on water purification. RSC Adv 4: 32858–32865. doi: 10.1039/C4RA05272B
    [21] Kaner P, Johnson DJ, Seker E, et al. (2015) Layer-by-layer surface modification of polyethersulfone membranes using polyelectrolytes and AgCl/TiO2 xerogels. J Membrane Sci 493: 807–819. doi: 10.1016/j.memsci.2015.05.048
    [22] Sato K, Takahashi S, Anzai J (2012) Layer-by-layer thin films and microcapsules for biosensors and controlled release. Anal Sci 28: 929–938. doi: 10.2116/analsci.28.929
    [23] Wu B, Hou S, Huang L, et al. (2008) Oriented immobilization of immunoglobulin G onto the cuvette of the resonant mirror biosensor through layer-by-layer assembly of multilayer films. Mater Sci Eng C 28: 1065–1069. doi: 10.1016/j.msec.2007.04.035
    [24] Yoshida K, Hasebe Y, Takahashi S, et al. (2014) Layer-by-layer deposited nano- and micro-assemblies for insulin delivery: A review. Mater Sci Eng C 34: 384–392. doi: 10.1016/j.msec.2013.09.045
    [25] Hashide R, Yoshida K, Hasebe Y, et al. (2014) Poly(lactic acid) microparticles coated with insulin-containing layer-by-layer films and their pH-dependent insulin release. J Nanosci Nanotechno 14: 3100–3105. doi: 10.1166/jnn.2014.8562
    [26] Zhu Y, Xuan H, Ren J, et al. (2015) Self-healing multilayer polyelectrolyte composite film with chitosan and poly(acrylic acid). Soft Matt 11: 8452–8459. doi: 10.1039/C5SM01463H
    [27] Zhu Y, Yin T, Ren J, et al. (2016) Self-healing polyelectrolyte multilayer composite film with microcapsules. RSC Adv 6: 12100–12106. doi: 10.1039/C5RA22821B
    [28] Kurkov SV, Loftsson T (2013) Cyclodextrins. Int J Pharmaceut 453: 167–180. doi: 10.1016/j.ijpharm.2012.06.055
    [29] Suzuki I, Obata K, Anzai J, et al. (2000) Crown ether-tethered cyclodextrins: superiority of the secondary-hydroxy side modification in binding tryptophan. J Chem Soc Perkin Trans 2: 1705–1710.
    [30] Zhu X, Wang H, Chen Q, et al. (2007) Preparation and characterization of inclusion complex of iprodione and b-cyclodextrin to improve fungicidal activity. J Agr Food Chem 55: 3535–3539. doi: 10.1021/jf070197f
    [31] Takahashi K, Morimoto S, Nakamura H, et al. (2011) Improvement of pharmaceutical potential of all-trans retinoic acid with hydroxypropyl-b-cyclodextrin. J Incl Phenom Macro 70: 389–396. doi: 10.1007/s10847-010-9857-6
    [32] Moussa Z, Hmadeh M, Abiad MG, et al. (2016) Encapsulation of curcumine in cyclodextrin-metal organic frameworks: Dissociation of loaded Cd-MOFs enhances stability of curcumin. Food Chem 212: 485–494. doi: 10.1016/j.foodchem.2016.06.013
    [33] Čepo DV, Jug M, Rajkovič MG, et al. (2017) Formulation of a nutraceutical derived from carob: b-cyclodextrin encapsulation of antioxidants from carob pod. J Food Nutr Res 56: 48–60.
    [34] Suzuki I, Murakami K, Anzai J (2001) Fabrication of surface-confined ferrocene-appended cyclodextrins on gold electrode. Mater Sci Eng C 17: 149–154. doi: 10.1016/S0928-4931(01)00325-3
    [35] Arima H, Motoyama K, Higashi T (2017) Potential use of cyclodextrins as drug carriers and active pharmaceutical ingredients. Chem Pharm Bull 65: 341–348. doi: 10.1248/cpb.c16-00779
    [36] Seki T, Abe K, Egawa Y, et al. (2016) A pseudopolyrotaxane for glucose-responsive insulin release: The effect of binding ability and spatial arrangement of phenylboronic acid group. Mol Pharmaceut 13: 3807–3815. doi: 10.1021/acs.molpharmaceut.6b00599
    [37] Kojima Y, Okano T, Seki T, et al. (2017) Polyol-responsive pseudopolyrotaxanes based on phenylboronic acid-modified polyethylene glycol and cyclodextrins. J Incl Phenom Macro 87: 295–303. doi: 10.1007/s10847-017-0699-3
    [38] Yang X, Johnson S, Shi J, et al. (1997) Polyelectrolyte and molecular host ion self-assembly to multilayer thin films: An approach to thin chemical sensors. Sensor Actuat B-Chem 45: 87–92. doi: 10.1016/S0925-4005(97)00274-8
    [39] Sato K, Suzuki I, Anzai J (2003) Preparation of polyelectrolyte-layered assemblies containing cyclodextrin and their binding properties. Langmuir 19: 7406–7412. doi: 10.1021/la030163b
    [40] Sato K, Suzuki I, Anzai J (2004) Layered assemblies composed of sulfonated cyclodextrin and poly(allylamine). Colloid Polym Sci 282: 287–290. doi: 10.1007/s00396-003-0911-4
    [41] Suzki I, Sato K, Koga M, et al. (2003) Polyelectrolyte layered assemblies containing azobenzene-modified polymer and anionic cyclodextrins. Mater Sci Eng C 23: 579–583. doi: 10.1016/S0928-4931(03)00050-X
    [42] Zhi J, Tian X, Zhao W, et al. (2008) Self-assembled film based on carboxymethyl-b-cyclodextrin and diazoresin and its binding properties for methylene blue. J Colloid Interf Sci 319: 270–276. doi: 10.1016/j.jcis.2007.11.031
    [43] Yang SY, Hoonor R, Jin H, et al. (2013) Synthesis and characterization of cationic and anionic cyclodextrin oligomaers and their use in layer-by-layer film formation. B Korean Chem Soc 34: 2016–2022. doi: 10.5012/bkcs.2013.34.7.2016
    [44] Dam HH, Caruso F (2013) Formation and degradation of layer-by-layer-assembled polyelectrolyte polyrotaxane capsules. Langmuir 29: 7203–7208. doi: 10.1021/la304580x
    [45] Suzuki I, Egawa Y, Mizukawa Y, et al. (2002) Construction of positively-charged layered assemblies assisted by cyclodextrin complexation. Chem Commun 164–166.
    [46] Heyden AV, Wilczewski M, Labbé P, et al. (2006) Multilayer films based on host-guest interactions between biocompatible polymers. Chem Commun 3220–3222.
    [47] Kaftan O, Tumbiolo S, Dubreuil F, et al. (2011) Probing multivalent host-guest interactions between modified polymer layers by direct force measurement. J Phys ChemB 115: 7726–7735. doi: 10.1021/jp110939c
    [48] Dubacheva GV, Dumy P, Auzély R, et al. (2010) Unlimited growth of host-guest multilayer films based on functionalized neutral polymers. Soft Matt 6: 3747–3750. doi: 10.1039/c0sm00324g
    [49] Zhu M, Aryal GH, Zhang N, et al. (2015) Host-guest interactions derived multilayer perylene diimide thin film constructed on a scaffolding porphyrin monolayer. Langmuir 31: 578–586. doi: 10.1021/la504297w
    [50] Huang J, Yang Y, Shi H, et al. (2006) Multi-walled carbon nanotubes-based glucose biosensor prepared by layer-by-layer technique. Mater Sci Eng C 26: 113–117. doi: 10.1016/j.msec.2005.06.002
    [51] Zhang S, Vlémincq C, Wong DR, et al. (2016) Nanopapers of layer-by-layer nanotubes. J Mater Chem B 4: 7651–7661. doi: 10.1039/C6TB02737G
    [52] Trejo NK, Frey M (2015) A comparative study on electrosprayed, layer-by-layer, and chemically grafted nanomembranes loaded with iron oxide nanoparticles. J Appl Polym Sci 132: 42657.
    [53] Xiong F, Chen C, Liu S (2016) Preparation of chitosan/polystyrene sulfonate multilayered composite metal nanoparticles and its application. J Nanosci Nanotechno 16: 6027–6031. doi: 10.1166/jnn.2016.12111
    [54] Crespo-Biel O, Dordi B, Reinhoudt DN, et al. (2005) Supramolecular layer-by-layer assembly: Alternating adsorption of guest- and host-functionalized molecules and particles using multivalent supramolecular interactions. J Am Chem Soc 127: 7594–7600. doi: 10.1021/ja051093t
    [55] Crespo-Biel O, Dordi B, Maury P, et al. (2006) Patterned, hybrid, multilayer nanostructures based on multivalent supramolecular interactions. Chem Mater 18: 2545–2551. doi: 10.1021/cm052796c
    [56] Li G, Dong Z, Zhu Y, et al. (2016) Dual-responsive colloidal microcapsules based on host-guest interaction on solid templates. J Colloid Interf Sci 475: 196–202. doi: 10.1016/j.jcis.2016.04.050
    [57] Zhang Y, Yang RH, Liu F, et al. (2004) Fluorescent sensor for imidazole derivatives based on monomer-dimer equilibrium of a zinc porphyrin complex in a polymeric film. Anal Chem 76: 7336–7345. doi: 10.1021/ac049477+
    [58] Khan R, Dhayal M (2009) Chitosan/polyaniline hybrid conducting biopolymer base impedimetric immunosensor to detect Ochratoxin-A. Biosens Bioelectron 24: 1700–1705. doi: 10.1016/j.bios.2008.08.046
    [59] Kurita R, Hirata Y, Yabuki S, et al. (2008) Surface modification of thin polyion complex film for surface plasmon resonance immunosensor. Sensor Actuat B-Chem 130: 320–325. doi: 10.1016/j.snb.2007.08.007
    [60] Anzai J, Ueno A, Osa T (1984) High and rapid response in photo-induced potential changes across a poly(vinyl chloride)/spirobenzopyran membrane. J Chem Soc Chem Commun 688–689.
    [61] Kirsch J, Siltanen C, Zhou Q, et al. (2013) Biosensor technology: recent advances in threat agent detection and medicine. Chem Soc Rev 42: 8733–8768. doi: 10.1039/c3cs60141b
    [62] Takahashi S, Anzai J (2013) Recent progress in ferrocene-modified thin films and nanoparticles for biosensors. Materials 6: 5742–5762. doi: 10.3390/ma6125742
    [63] Rao PV, Gan SH (2015) Recent advances in nanotechnology-based diagnosis and treatments of diabetes. Curr Drug Metab 16: 371–375. doi: 10.2174/1389200215666141125120215
    [64] Zhang W, Shi Y, Zheng S, et al. (2017) Preparation of photoactive multilayer films with high photocurrent response and detection of thrombin. J Electroanal Chem 784: 85–90. doi: 10.1016/j.jelechem.2016.10.061
    [65] Yang Y, Yang X, Liu Y, et al. (2005) Optical sensor for lithocholic acid based on multilayered assemblies from polyelectrolyte and cyclodextrin. J Photoch Photobio A 171: 137–144. doi: 10.1016/j.jphotochem.2004.10.006
    [66] Damos FS, Luz RCS, Tanaka AA, et al. (2010) Development of an electroactive layer-by-layer assembly based on host-guest supramolecular interactions. J Electroanal Chem 639: 36–42. doi: 10.1016/j.jelechem.2009.11.008
    [67] Damos FS, Luz RCS, Tanaka AA, et al. (2010) Dissolved oxygen amperometric sensor based on layer-by-layer assembly using host-guest supramolecular interactions. Anal Chim Acta 664: 144–150. doi: 10.1016/j.aca.2010.02.011
    [68] Chen W, Luo G, Qiu W, et al. (2017) Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemo therapy. Biomaterials 117: 54–65. doi: 10.1016/j.biomaterials.2016.11.057
    [69] Nag S, Duarte L, Bertrand E, et al. (2014) Ultrasensitive QRS made by supramolecular assembly of functionalized cyclodextrins and graphene for the detection of lung cancer VOC biomarkers. J Mater Chem B 2: 6571–6579. doi: 10.1039/C4TB01041H
    [70] Duarte L, Nag S, Castro M, et al. (2016) Chemical sensors based on new polyamides biobased on (Z) octadec-9-enedioic acid and b-cyclodextrin. Macromol Chem Phys 217: 1620–1628. doi: 10.1002/macp.201600102
    [71] Li J, Liu D, Tian L, et al. (2009) Electrochemical investigation of myoglobin in layer-by-layer films assembled with sulfonated-b-cyclodextrin. Electroanalysis 21: 2653–2659. doi: 10.1002/elan.200900308
    [72] Camacho C, Matías JC, Cao R, et al. (2008) Hydrogen peroxide biosensor with a supramolecular layer-by-layer design. Langmuir 24: 7654–7657. doi: 10.1021/la800242a
    [73] Villalonga R, Díez P, Gamella M, et al. (2012) Layer-by-layer supramolecular architecture of cyclodextrin-modified PAMAM dendrimers and adamantane-modified peroxidase on gold surface for electrochemical biosensing. Electrochim Acta 76: 249–255. doi: 10.1016/j.electacta.2012.05.025
    [74] Zhu X, Loh X (2015) Layer-by-layer assemblies for antibacterial applications. Biomater Sci 3: 1505–1518. doi: 10.1039/C5BM00307E
    [75] Wei T, Zhan W, Cao L, et al. (2016) Multifunctional and regenerable antibacterial surfaces fabricated by a universal strategy. ACS Appl Mater Interfaces 8: 30048–30057. doi: 10.1021/acsami.6b11187
    [76] Qu Y, Wei T, Zhan W, et al. (2017) A reusable supramolecular platform for the specific capture and release of proteins and bacteria. J Mater Chem B 5: 444–453. doi: 10.1039/C6TB02821G
    [77] Xu G, Pranantyo D, Xu L, et al. (2016) Antifouling, antimicrobial, and antibiocorrosion multilayer coatings assembled by layer-by-layer deposition involving host-guest interaction. Ind Eng Chem Res 55: 10906–10915. doi: 10.1021/acs.iecr.6b02190
    [78] Wang Z, Feng Z, Gao C (2008) Stepwise assembly of the same polyelectrolytes using host-guest interaction to obtain microcapsules with multiresponsive properties. Chem Mater 20: 4194–4199. doi: 10.1021/cm8003358
    [79] Li C, Luo G, Wang H, et al. (2011) Host-guest assembly of pH-responsive degradable microcapsules with controlled drug release behavior. J Phys Chem C 115: 17651–17659. doi: 10.1021/jp203940s
    [80] Luo G, Xu X, Zhang J, et al. (2012) Encapsulation of an adamantane-doxorubicin prodrug in pH-responsive polysaccharide capsules for controlled release. ACS Appl Mater Interfaces 4: 5317–5324. doi: 10.1021/am301258a
    [81] Xiao W, Chen W, Zhang J, et al. (2011) Design of a photoswitchable hollow microcapsular drug delivery system by using a supramolecular drug-loading approach. J Phys Chem B 115: 13796–13802. doi: 10.1021/jp208692c
    [82] Lin H, Xiao W, Qin S, et al. (2014) Switch on/off microcapsules for controlled photosensitive drug release in a 'release-cease-recommence' mode. Polym Chem 5: 4437–4440.
    [83] Jing J, Szarpak-Jankowska A, Guillot R, et al. (2013) Cyclodextrin/paclitaxel complex in biodegradable capsules for breast cancer treatment. Chem Mater 25: 3867–3873. doi: 10.1021/cm4019925
    [84] Tejashri G, Amrita B, Darshana J (2013) Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharmaceut 63: 335–358.
    [85] Cho E, Jung S (2015) Supramolecular complexation of carbohydrates for the bioavailability enhancement of poorly soluble drugs. Molecules 20: 19620–19646. doi: 10.3390/molecules201019620
    [86] Antoniuk I, Amiel C (2016) Cyclodextrin-mediated hierarchical self-assembly and its potential in drug delivery applications. J Pharm Sci 105: 2570–2588. doi: 10.1016/j.xphs.2016.05.010
    [87] Kurapati R, Raichur AM (2013) Composite cyclodextrin-calcium carbonate porous microparticles and modified multilayer capsules: novel carriers for encapsulation of hydrophobic drugs. J Mater Chem B 1: 3175–3184. doi: 10.1039/c3tb20192a
    [88] Martin A, Tabary N, Leclercq L, et al. (2013) Multilayered textile coating based on a b-cyclodextrin polyelectrolyte for the controlled release of drugs. Carbohyd Polym 93: 718–730. doi: 10.1016/j.carbpol.2012.12.055
    [89] Junthip J, Tabary N, Chai F, et al. (2016) Layer-by-layer coating of textile with two oppositely charged cyclodextrin polyelectrolytes for extended drug delivery. J Biomed Mater Res A 104: 1408–1424. doi: 10.1002/jbm.a.35674
    [90] Gómez-Galván F, Pérez-Álvarez L, Matas J, et al. (2016) Preparation and characterization of soluble branched ionic b-cyclodextrin and their inclusion complexes with triclosan. Carbohyd Polym 142: 149–157. doi: 10.1016/j.carbpol.2016.01.046
    [91] Pérez-Álvarez L, Matas J, Gómez-Galván F, et al. (2017) Branched and ionic b-cyclodextrin multilayer assembling onto polyacrylonitrile membranes for removal and controlled release of triclosan. Carbohyd Polym 156: 143–151. doi: 10.1016/j.carbpol.2016.09.020
    [92] Hashide R, Yoshida K, Hasebe Y, et al. (2012) Insulin-containing layer-by-layer films deposited on poly(lactic acid) microbeads for pH-controlled release of insulin. Colloid Surface B 89: 242–247. doi: 10.1016/j.colsurfb.2011.09.023
    [93] Masood F (2016) Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C 60: 569–578. doi: 10.1016/j.msec.2015.11.067
    [94] Fagui AE, Wintgens V, Gaillet C, et al. (2014) Layer-by-layer coated PLA nanoparticles with oppositely charged b-cyclodextrin polymer for controlled delivery of lipophilic molecules. Macromol Chem Phys 215: 555–565. doi: 10.1002/macp.201300693
    [95] Xuan H, Ren J, Zhang J, et al. (2017) Novel highly-flexible, acid-resistant and self-healing host-guest transparent multilayer films. Appl Surf Sci 411: 303–314. doi: 10.1016/j.apsusc.2017.03.129
    [96] Xuan H, Ren J, Wang X, et al. (2017) Flame-retardant, non-irritating and self-healing multilayer films with double-network structure. Compos Sci Technol 145: 15–23. doi: 10.1016/j.compscitech.2017.03.038
  • This article has been cited by:

    1. Li Xu, Lu Chen, Ti-Ren Huang, Monotonicity, convexity and inequalities involving zero-balanced Gaussian hypergeometric function, 2022, 7, 2473-6988, 12471, 10.3934/math.2022692
    2. Ghulam Farid, Josip Pec̆arić, Kamsing Nonlaopon, Inequalities for fractional Riemann–Liouville integrals of certain class of convex functions, 2022, 2022, 2731-4235, 10.1186/s13662-022-03682-z
    3. Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, A Comprehensive Review on the Fejér-Type Inequality Pertaining to Fractional Integral Operators, 2023, 12, 2075-1680, 719, 10.3390/axioms12070719
    4. Muhammad Samraiz, Maria Malik, Saima Naheed, Ahmet Ocak Akdemir, Error estimates of Hermite‐Hadamard type inequalities with respect to a monotonically increasing function, 2023, 46, 0170-4214, 14527, 10.1002/mma.9334
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7407) PDF downloads(1378) Cited by(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog