Research article

Revisiting the Hermite-Hadamard fractional integral inequality via a Green function

  • Received: 11 May 2020 Accepted: 20 July 2020 Published: 28 July 2020
  • MSC : 26A51, 26D15, 26E60, 41A55

  • The Hermite-Hadamard inequality by means of the Riemann-Liouville fractional integral operators is already known in the literature. In this paper, it is our purpose to reconstruct this inequality via a relatively new method called the green function technique. In the process, some identities are established. Using these identities, we obtain loads of new results for functions whose second derivative is convex, monotone and concave in absolute value. We anticipate that the method outlined in this article will stimulate further investigation in this direction.

    Citation: Arshad Iqbal, Muhammad Adil Khan, Noor Mohammad, Eze R. Nwaeze, Yu-Ming Chu. Revisiting the Hermite-Hadamard fractional integral inequality via a Green function[J]. AIMS Mathematics, 2020, 5(6): 6087-6107. doi: 10.3934/math.2020391

    Related Papers:

    [1] Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
    [2] Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546
    [3] Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710
    [4] Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043
    [5] Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly (α,m)-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661
    [6] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [7] Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273
    [8] Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Hassen Aydi, Manuel De la Sen . Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications. AIMS Mathematics, 2022, 7(3): 3418-3439. doi: 10.3934/math.2022190
    [9] XuRan Hai, ShuHong Wang . Hermite-Hadamard type inequalities based on the Erdélyi-Kober fractional integrals. AIMS Mathematics, 2021, 6(10): 11494-11507. doi: 10.3934/math.2021666
    [10] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
  • The Hermite-Hadamard inequality by means of the Riemann-Liouville fractional integral operators is already known in the literature. In this paper, it is our purpose to reconstruct this inequality via a relatively new method called the green function technique. In the process, some identities are established. Using these identities, we obtain loads of new results for functions whose second derivative is convex, monotone and concave in absolute value. We anticipate that the method outlined in this article will stimulate further investigation in this direction.


    Let IR be an interval. Then a real-valued function f:IR is said to be convex (concave) if the inequality

    f[λx+(1λ)y]()λf(x)+(1λ)f(y)

    holds whenever x,yI and λ[0,1]. It is well-know that the convexity (concavity) has wild applications in pure and applied mathematics [1,2,3,4,5], and many inequalities [6,7,8,9,10,11,12,13,14,15,16,17,18,19] can be found in the literature via the convexity theory. Recently, the generalizations and variants for the convexity have attracted the attention of the researchers, for example, the GG- and GA-convexity [20], h-convexity [21], qausi-convexity [22], ρ-convexity [23], exponential convexity [24], harmonic convexity [25], s-convexity [26,27] and others.

    The classical Hermite-Hadamard inequality [28,29,30,31,32,33] is one of the most famous inequalities in convex function theory, which can be stated as follows:

    A real-valued function ψ:[b1,b2]R is convex if and only if

    ψ(b1+b22)1b2b1b2b1ψ(x)dxψ(b1)+ψ(b2)2. (1.1)

    If ψ is concave, then the inequalities in (1.1) remain valid in the reversed direction. The Hermite-Hadamard inequality (1.1) provides both upper and lower estimates of the integral mean of any convex function defined on a closed and bounded interval involving the endpoints and midpoints of the function's domain. Because of the excellent significance of the Hermite-Hadamard inequality, the literature is replete with ample amount of research articles dedicated to the generalizations, refinements, and extensions for the Hermite-Hadamard inequality for various families of convexity.

    Besides generalization via convexity, great effort has gone into extending (1.1) by means of fractional integral operators. Most popular of them is the Riemann-Liouville fractional integral operators given in the following definition.

    Definition 1. Let α>0, b1,b2R with b1<b2 and ψL[b1,b2]. Then the left and right Riemann-Liouville fractional integrals Jαb1+ψ and Jαb2ψ of order α are defined by

    Jαb1+ψ(x)=1Γ(α)xb1(xt)α1ψ(t)dt(x>b1)

    and

    Jαb2ψ(x)=1Γ(α)b2x(tx)α1ψ(t)dt(x<b2)

    respectively where Γ(α)=0ettα1dt is the gamma function.

    Sarikaya et al. [34] established the following fractional version of the Hermite-Hadamard inequality:

    Theorem 2. Let 0b1<b2 and ψ:[b1,b2]R be a positive convex function such that ψL[b1,b2]. Then the fractional integrals inequality

    ψ(b1+b22)Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]ψ(b1)+ψ(b2)2

    holds for α>0.

    In view of Theorem 2, it is pertinent to note that the positivity of the function ψ and the numbers b1 and b2 is not necessary. From Definition 1, it is clear that b1 and b2 are any real numbers such that b1<b2.

    Our main contribution in this article is to use a similar technique used in [35] to obtain Theorem 2. This time, our main result contains both sided fractional integral operators in the Riemann-Liouville sense. In this method, we use a green function and in the process, we obtain some identities involving the left and right Riemann-Liouville fractional integral operators. These identities are subsequently employed to establish some new results for the class of convex, concave and monotone functions.

    Our main result will be anchored on the succeeding lemma.

    Lemma 3. (See [36,37]) Let G be the green function defined on [b1,b2]×[b1,b2] by

    G(λ,μ)={b1μ,b1μλ;b1λ,λμb2.

    Then any ψC2([b1,b2]) can be expressed as

    ψ(x)=ψ(b1)+(xb1)ψ(b2)+b2b1G(x,μ)ψ(μ)dμ. (2.1)

    We are now in a position to frame and prove our results.

    Theorem 4. Let ψC2([b1,b2]) be a convex function. Then, for any α>0, the following fractional integral inequalities hold:

    ψ(b1+b22)Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]ψ(b1)+ψ(b2)2.

    Proof. Setting x=b1+b22 in (2.1), we get

    ψ(b1+b22)=ψ(b1)+(b1+b22b1)ψ(b2)+b2b1G(b1+b22,μ)ψ(μ)dμ.

    Equivalently,

    ψ(b1+b22)=ψ(b1)+(b2b12)ψ(b2)+b2b1G(b1+b22,μ)ψ(μ)dμ. (2.2)

    Using (2.1), we do the following computations:

    Jαb1+ψ(b2)=1Γ(α)b2b1(b2x)α1ψ(x)dx=1Γ(α)b2b1(b2x)α1{ψ(b1)+(xb1)ψ(b2)+b2b1G(x,μ)ψ(μ)dμ}dx=1Γ(α){ψ(b1)b2b1(b2x)α1dx+ψ(b2)b2b1(b2x)α1(xb1)dx+b2b1b2b1(b2x)α1G(x,μ)ψ(μ)dμdx}=1Γ(α)[ψ(b1)(b2x)αα|b2b1+ψ(b2){(xb1)(b2x)αα|b2b1b2b1(b2x)ααdx}+b2b1b2b1(b2x)α1G(x,μ)ψ(μ)dμdx]=1Γ(α)[ψ(b1)(b2b1)αα+ψ(b2){0(b2x)α+1α(α+1)|b2b1}+b2b1b2b1(b2x)α1G(x,μ)ψ(μ)dμdx].

    Therefore,

    Jαb1+ψ(b2)=1Γ(α)[(b2b1)ααψ(b1)+ψ(b2)(b2b1)α+1α(α+1)+b2b1b2b1(b2x)α1G(x,μ)ψ(μ)dμdx]. (2.3)

    Similarly,

    Jαb2ψ(b1)=1Γ(α)b2b1(xb1)α1ψ(x)dx=1Γ(α)b2b1(xb1)α1{ψ(b1)+(xb1)ψ(b2)+b2b1G(x,μ)ψ(μ)dμ}dx=1Γ(α){ψ(b1)b2b1(xb1)α1dx+ψ(b2)b2b1(xb1)α1(xb1)dx+b2b1b2b1(xb1)α1G(x,μ)ψ(μ)dμdx}=1Γ(α)[ψ(b1)(xb1)αα|b2b1+ψ(b2)b2b1(xb1)αdx+b2b1b2b1(xb1)α1G(x,μ)ψ(μ)dμdx]=1Γ(α)[ψ(b1)(b2b1)αα+ψ(b2)(xb1)α+1α+1|b2b1+b2b1b2b1(xb1)α1G(x,μ)ψ(μ)dμdx].

    So,

    Jαb2ψ(b1)=1Γ(α)[(b2b1)ααψ(b1)+ψ(b2)(b2b1)α+1α+1+b2b1b2b1(xb1)α1G(x,μ)ψ(μ)dμdx]. (2.4)

    Now, adding (2.3) and (2.4) and then multiplying the resultant sum by Γ(α+1)2(b2b1)α to get:

    Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]=Γ(α+1)2(b2b1)α1Γ(α)[(b2b1)ααψ(b1)+ψ(b2)(b2b1)α+1α(α+1)+b2b1b2b1(b2x)α1G(x,μ)ψ(μ)dμdx+(b2b1)ααψ(b1)+ψ(b2)(b2b1)α+1α+1+b2b1b2b1(xb1)α1G(x,μ)ψ(μ)dμdx]=α2(b2b1)α[2(b2b1)ααψ(b1)+ψ(b2)(b2b1)α+1(α+1){1α+1}+b2b1b2b1(b2x)α1G(x,μ)ψ(μ)dμdx+b2b1b2b1(xb1)α1G(x,μ)ψ(μ)dμdx]=ψ(b1)+ψ(b2)(b2b1)2+α2(b2b1)α[b2b1b2b1(b2x)α1G(x,μ)ψ(μ)dμdx+b2b1b2b1(xb1)α1G(x,μ)ψ(μ)dμdx]. (2.5)

    Subtracting (2.5) from (2.2), we obtain

    ψ(b1+b22)Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]=ψ(b1)+(b2b12)ψ(b2)+b2b1G(b1+b22,μ)ψ(μ)dμψ(b1)ψ(b2)(b2b1)2α2(b2b1)α[b2b1b2b1(b2x)α1G(x,μ)ψ(μ)dμdx+b2b1b2b1(xb1)α1G(x,μ)ψ(μ)dμdx]=b2b1[G(b1+b22,μ)α2(b2b1)α{b2b1(b2x)α1G(x,μ)dx+b2b1(xb1)α1G(x,μ)dx}]ψ(μ)dμ.

    By the definition of the Green function,

    G(x,μ)={b1μ,if b1μxb1x,if xμb2,

    we obtain

    b2b1(b2x)α1G(x,μ)dx=1α(α+1)[(b2μ)α+1(b2b1)α+1] (2.6)

    and

    b2b1(xb1)α1G(x,μ)dx=1α(α+1){(α+1)(b1μ)(b2b1)α+(μb1)α+1}. (2.7)

    Substituting Eqs (2.6) and (2.7) into (2.6), then we obtain

    ψ(b1+b22)Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]=b2b1[G(b1+b22,μ)(b2μ)α+12(α+1)(b2b1)α+b2b12(α+1)b1μ2(μb1)α+12(α+1)(b2b1)α]ψ(μ)dμ. (2.8)

    Let

    f(μ)=G(b1+b22,μ)(b2μ)α+12(α+1)(b2b1)α+b2b12(α+1)b1μ2(μb1)α+12(α+1)(b2b1)α. (2.9)

    Here,

    G(b1+b22,μ)={b1μ,b1μb1+b22;b1b22,b1+b22μb2. (2.10)

    Now, if b1μb1+b22, then from (2.9) and (2.10), we have

    f(μ)=b1μ2(b2μ)α+12(α+1)(b2b1)α+b2b12(α+1)(μb1)α+12(α+1)(b2b1)α.
    f(μ)=12+(b2μ)α2(b2b1)α(μb1)α2(b2b1)α0.

    This shows that f is decreasing and f(b1)=0 then f(μ)0 for all μ[b1,b1+b22].

    If, on the other hand, b1+b22μb2, then

    f(μ)=b1b22(b2μ)α+12(α+1)(b2b1)α+b2b12(α+1)b1μ2(μb1)α+12(α+1)(b2b1)α=μb22(b2μ)α+12(α+1)(b2b1)α+b2b12(α+1)(μb1)α+12(α+1)(b2b1)α.

    Therefore,

    f(μ)=12+(b2μ)α2(b2b1)α(μb1)α2(b2b1)α,f(μ)=α(b2μ)α12(b2b1)αα(μb1)α12(b2b1)α0,

    which shows that f is decreasing and f(b2)=0 and thus f(μ)0. Therefore, f is increasing and f(b2)=0. Hence, f(μ)0 for all μ[b1+b22,b2]. Combining the two cases discussed above, we have that

    f(μ)0for allμ[b1,b2].

    Using (2.8), we deduce the first inequality:

    ψ(b1+b22)Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)].

    For the right hand side of the inequality, we recall:

    ψ(x)=ψ(b1)+(xb1)ψ(b2)+b2b1G(x,μ)ψ(μ)dμ,ψ(b2)=ψ(b1)+(b2b1)ψ(b2)+b2b1G(b2,μ)ψ(μ)dμ,ψ(b1)+ψ(b2)=2ψ(b1)+(b2b1)ψ(b2)+b2b1G(b2,μ)ψ(μ)dμ,ψ(b1)+ψ(b2)2=ψ(b1)+(b2b1)2ψ(b2)+12b2b1G(b2,μ)ψ(μ)dμ. (2.11)

    Subtracting Eq (2.5) from (2.11), we get:

    ψ(b1)+ψ(b2)2Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]=ψ(b1)+(b2b1)2ψ(b2)+12b2b1G(b2,μ)ψ(μ)dμψ(b1)ψ(b2)(b2b1)2α2(b2b1)α[b2b1b2b1(b2x)α1G(x,μ)ψ(μ)dμdx+b2b1b2b1(xb1)α1G(x,μ)ψ(μ)dμdx]=12b2b1[G(b2,μ)α2(b2b1)αb2b1(b2x)α1G(x,μ)dx+b2b1(xb1)α1G(x,μ)dx]ψ(μ)dμ=12b2b1[G(b2,μ)(b2μ)α+1(α+1)(b2b1)α+b2b1(α+1)b1+μ(μb1)α+1(α+1)(b2b1)α]ψ(μ)dμ. (2.12)

    If we set

    F(μ)=G(b2,μ)(b2μ)α+1(α+1)(b2b1)α+b2b1(α+1)b1+μ(μb1)α+1(α+1)(b2b1)α, (2.13)

    then for b1μb2,

    F(μ)=b1μ(b2μ)α+1(α+1)(b2b1)α+b2b1(α+1)b1+μ(μb1)α+1(α+1)(b2b1)α=(b2μ)α+1(α+1)(b2b1)α+b2b1(α+1)(μb1)α+1(α+1)(b2b1)α=(b2b1)α+1(b2μ)α+1(μb1)α+1(α+1)(b2b1)α.

    If b1μb1+b22, then

    F(μ)=(b2μ)α(μb1)α(b2b1)α0

    which proves that F is increasing and F(b1)=0, and hence F(μ)0.

    Suppose also b1+b22μb2. Then,

    F(μ)=(b2μ)α(μb1)α(b2b1)α0.

    This implies that F is a decreasing function and F(b2)=0, and thus F(μ)0. Also, ψ(μ)0 since ψ is convex. Hence, F(μ)0 for all μ[b1,b2] and using (2.12) amounts to:

    Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]ψ(b1)+ψ(b2)2.

    That completes the proof.

    Next, we present new Hermite-Hadamard type inequalities for the class of monotone and convex function.

    Theorem 5. Let ψC2([b1,b2]) and α>0, Then the following statements are true:

    (ⅰ) If |ψ| is an increasing function, then

    |ψ(b1)+ψ(b2)2Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]||ψ(b2)|α(b2b1)22(α+1)(α+2).

    (ⅱ) If |ψ| is a decreasing function, then

    |ψ(b1)+ψ(b2)2Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]||ψ(b1)|α(b2b1)22(α+1)(α+2).

    (ⅲ) If |ψ| is a convex function, then

    |ψ(b1)+ψ(b2)2Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]|max{|ψ(b1)|,|ψ(b2)|}α(b2b1)22(α+1)(α+2).

    Proof. To prove (ⅰ), we use the following identity obtained from (2.12):

    ψ(b1)+ψ(b2)2Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]=12b2b1[G(b2,μ)(b2μ)α+1(α+1)(b2b1)α+b2b1(α+1)b1+μ(μb1)α+1(α+1)(b2b1)α]ψ(μ)dμ. (2.14)

    Taking absolute values on both sides of (2.14) and using the fact that |ψ| is an increasing function, we have

    |ψ(b1)+ψ(b2)2Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]||ψ(b2)|12b2b1{(b2μ)α+1(α+1)(b2b1)α+b2b1α+1(μb1)α+1(α+1)(b2b1)α}dμ=|ψ(b2)|12{(b2μ)α+2(α+1)(α+2)(b2b1)α|b2b1+b2b1α+1μ|b2b1(μb1)α+2(α+1)(α+2)(b2b1)α|b2b1}=|ψ(b2)|12{(b2b1)α+2(α+1)(α+2)(b2b1)α+(b2b1)2α+1(b2b1)α+2(α+1)(α+2)(b2b1)α}=|ψ(b2)|12{2(b2b1)α+2(α+1)(α+2)(b2b1)α+(b2b1)2α+1}=|ψ(b2)|α(b2b1)22(α+1)(α+2).

    Therefore,

    |ψ(b1)+ψ(b2)2Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]||ψ(b2)|α(b2b1)22(α+1)(α+2).

    This establishes the inequality in (ⅰ).

    Part (ⅱ) can be proved in a similar way. For (ⅲ), we make use of (2.13) and the fact that every convex function ψ defined on the interval [b1,b2] is bounded above by max{|ψ(b1)|,|ψ(b2)|} to get:

    |ψ(b1)+ψ(b2)2Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]|max{|ψ(b1)|,|ψ(b2)|}2(α+1)(b2b1)α|b2b1[(b2μ)α+1+(b2b1)α+1(μb1)α+1]dμ|=max{|ψ(b1)|,|ψ(b2)|}α(b2b1)22(α+1)(α+2).

    Remark 6. By setting α=1 in Theorem 5, we get the following inequalities:

    |ψ(b1)+ψ(b2)21b2b1b2b1ψ(t)dt||ψ(b2)|(b2b1)212,|ψ(b1)+ψ(b2)21b2b1b2b1ψ(t)dt||ψ(b1)|(b2b1)212,|ψ(b1)+ψ(b2)21b2b1b2b1ψ(t)dt|max{|ψ(b1)|,|ψ(b2)|}(b2b1)212.

    Theorem 7. Let ψC2([b1,b2]) and α>0. Then the following statements are true:

    (i) If |ψ| is an increasing function, then

    |ψ(b1+b22)Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]|(b2b1)2(α2α+2)16(α+1)(α+2)[|ψ(b1+b22)|+|ψ(b2)|].

    (ii) If |ψ| is a decreasing function, then

    |ψ(b1+b22)Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]|(b2b1)2(α2α+2)16(α+1)(α+2)[|ψ(b1)|+|ψ(b1+b22)|].

    (iii) If |ψ| is a convex function, then

    |ψ(b1+b22)Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]|(b2b1)2(α2α+2)16(α+1)(α+2)[max{|ψ(b1)|,|ψ(b1+b22)|}+{max|ψ(b1+b22)|,|ψ(b2)|}].

    Proof. The inequality in (ⅰ) is obtained by using (2.8):

    ψ(b1+b22)Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]=b1+b22b1[G(b1+b22,μ)(b2μ)α+12(α+1)(b2b1)α+b2b12(α+1)b1μ2(μb1)α+12(α+1)(b2b1)α]ψ(μ)dμ+b2b1+b22[G(b1+b22,μ)(b2μ)α+12(α+1)(b2b1)α+b2b12(α+1)b1μ2(μb1)α+12(α+1)(b2b1)α]ψ(μ)dμ.

    Taking absolute values and using triangle inequality, we get

    |ψ(b1+b22)Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]||ψ(b1+b22)||b1+b22b1{b1μ2(b2μ)α+12(α+1)(b2b1)α+b2b12(α+1)(μb1)α+12(α+1)(b2b1)α}dμ|+|ψ(b2)||b2b1+b22{μb22(b2μ)α+12(α+1)(b2b1)α+b2b12(α+1)(μb1)α+12(α+1)(b2b1)α}dμ|=|ψ(b1+b22)||{2b1μμ24|b1+b22b1+(b2μ)α+22(α+1)(α+2)(b2b1)α|b1+b22b1+(b2b1)2(α+1)μ|b1+b22b1(μb1)α+22(α+1)(α+2)(b2b1)α|b1+b22b1}|+|ψ(b2)||{μ22b2μ4|b2b1+b22+(b2μ)α+22(α+1)(α+2)(b2b1)α|b2b1+b22+b2b12(α+1)μ|b2b1+b22(μb1)α+22(α+1)(α+2)(b2b1)α|b2b1+b22}|=|ψ(b1+b22)||2b1(b1+b22)(b1+b22)242b1(b1)(b1)24+(b2b1+b22)α+22(α+1)(α+2)(b2b1)α(b2b1)α+22(α+1)(α+2)(b2b1)α+(b2b1)2(α+1)(b1+b22b1)(b1+b22b1)α+22(α+1)(α+2)(b2b1)α+(b1b1)α+22(α+1)(α+2)(b2b1)α|+|ψ(b2)||(b2)22(b2)24(b1+b22)22b2(b1+b22)4(b2b1+b22))α+22(α+1)(α+2)(b2b1)α+b2b12(α+1)(b2b1+b22)(b2b1)α+22(α+1)(α+2)(b2b1)α|
    =|ψ(b1+b22)||(b2b1)216+(b2b1)22α+3(α+1)(α+2)(b2b1)22(α+1)(α+2)+(b2b1)24(α+1)(b2b1)22α+3(α+1)(α+2)|+|ψ(b2)||(b2b1)216(b2b1)22α+3(α+1)(α+2)+(b2b1)24(α+1)(b2b1)22(α+1)(α+2)+(b2b1)22α+3(α+1)(α+2)|=|ψ(b1+b22)||(b2b1)216(b2b1)22(α+1)(α+2)+(b2b1)24(α+1)|+|ψ(b2)||(b2b1)216+(b2b1)24(α+1)(b2b1)22(α+1)(α+2)|=|ψ(b1+b22)|(b2b1)2|α2+α216(α+1)(α+2)|+|ψ(b2)|(b2b1)2|α2+α216(α+1)(α+2)|={|ψ(b1+b22)|+|ψ(b2)|}(b2b1)2[α2α+216(α+1)(α+2)]={|ψ(b1+b22)|+|ψ(b2)|}(b2b1)2(α2α+2)16(α+1)(α+2).

    The second part can be deduced by using the same procedure. For Part (ⅲ), we also employ the fact that the convex function ψ is bounded above by max{|ψ(b1)|,|ψ(b2)|} since it is defined on the interval [b1,b2]. That is, we obtain from (2.8):

    |ψ(b1+b22)Γ(α+1)2(b2b1)α[Jαb1+(b2)+Jαb2(b1)]|max{|ψ(b1)|+|ψ(b1+b22)|,|ψ(b1+b22)|+|ψ(b2)|}×(b2b1)2(α2α+2)16(α+1)(α+2)=[max{|ψ(b1)|,|ψ(b1+b22)|}+max{|ψ(b1+b22)|,|ψ(b2)|}]×(b2b1)2(α2α+2)16(α+1)(α+2)

    which is the desired inequality.

    Remark 8. In Theorem 7, if we take α = 1, then we obtain

    |ψ(b1+b22)1b2b1b2b1ψ(t)dt|(b2b1)248[|ψ(b1+b22)|+|ψ(b2)|],|ψ(b1+b22)1b2b1b2b1ψ(t)dt|(b2b1)248[|ψ(b1)|+|ψ(b1+b22)|],|ψ(b1+b22)1b2b1b2b1ψ(t)dt|(b2b1)248[max{|ψ(b1)|,|ψ(b1+b22)|}+max{|ψ(b1+b22)|,|ψ(b2)|}].

    Theorem 9. Assume that ψC2([b1,b2]) and |ψ| is a convex function. Then for any α>0 the following inequality holds

    |Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]ψ(b1+b22)|(b2b1)2(α2α+2)16(α+1)(α+2)[|ψ(b1)|+|ψ(b2)|].

    Proof. The inequality in (ⅰ) is obtained by using (2.8):

    Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]ψ(b1+b22)=b1+b22b1[(b2μ)α+12(α+1)(b2b1)αb2b12(α+1)+μb12+(μb1)α+12(α+1)(b2b1)α]ψ(μ)dμ+b2b1+b22[(b2μ)α+12(α+1)(b2b1)αb2b12(α+1)+b2μ2+(μb1)α+12(α+1)(b2b1)α]ψ(μ)dμ.

    Suppose μ=(1t)b1+tb2 where dμ=(b2b1)dt,

    =120[(b2(1t)b1tb2)α+12(α+1)(b2b1)αb2b12(α+1)+(1t)b1+tb2b12+((1t)b1+tb2b1)α+12(α+1)(b2b1)α]ψ((1t)b1+tb2)(b2b1)dt+112[(b2(1t)b1tb2)α+12(α+1)(b2b1)αb2b12(α+1)+b2(1t)b1tb22+((1t)b1+tb2b1)α+12(α+1)(b2b1)α]ψ((1t)b1+tb2)(b2b1)dt=(b2b1)22(α+1)[120[(1t)α+11+(α+1)t+tα+1]ψ((1t)b1+tb2)dt+112[(1t)α+1+α(1t)t+tα+1]ψ((1t)b1+tb2)dt]. (2.15)

    Taking absolute and triangular inequality,

    (b2b1)22(α+1)[120[(1t)α+11+(α+1)t+tα+1](1t)|ψ(b1)|dt+120[(1t)α+11+(α+1)t+tα+1]t|ψ(b2)|dt+112[(1t)α+1+α(1t)t+tα+1](1t)|ψ(b1)|dt+112[(1t)α+1+α(1t)t+tα+1]t|ψ(b2)|]dt]=(b2b1)22(α+1)[|ψ(b1)|{120((1t)α+2(1t)+(α+1)(tt2)+tα+1tα+2)dt+112((1t)α+2+α(1t)2(tt2)+tα+1tα+2)dt}+|ψ(b2)|{120(t(1t)α+1t+(α+1)t2+tα+2)dt+112(t(1t)α+1+α(tt2)t2+tα+2)dt}]=(b2b1)22(α+1)[|ψ(b1)|{I1}+|ψ(b2)|{I2}]. (2.16)

    Putting the values of I1 and I2 in above (2.16), we get:

    =(b2b1)2(α2α+2)16(α+1)(α+2)[|ψ(b1)|+|ψ(b2)|].

    Remark 10. In Theorem 9, if we take α=1, then we obtain

    |ψ(b1+b22)1b2b1b2b1ψ(t)dt|(b2b1)248[|ψ(b1)|+|ψ(b2)|].

    Theorem 11. Assume that ψC2([b1,b2]) and |ψ| is a convex function. Then for any α>0 the following inequality holds

    |ψ(b1)+ψ(b2)2Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]|α(b2b1)24(α+1)(α+2)[|ψ(b1)|+|ψ(b2)|].

    Proof. We start by recalling the following identity from (2.12):

    ψ(b1)+ψ(b2)2Γ(α+1)(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]=12b2b1[G(b2,μ)(b2μ)α+1(α+1)(b2b1)α+b2b1(α+1)b1+μ(μb1)α+1(α+1)(b2b1)α]ψ(μ)dμ=12b2b1[b1μ(b2μ)α+1(α+1)(b2b1)α+b2b1(α+1)b1+μ(μb1)α+1(α+1)(b2b1)α]ψ(μ)dμ=12b2b1[(b2μ)α+1(α+1)(b2b1)α+b2b1(α+1)(μb1)α+1(α+1)(b2b1)α]ψ(μ)dμ.

    If μ=(1t)b1+tb2 with t[0,1], then we obtain

    ψ(b1)+ψ(b2)2Γ(α+1)(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]=1210[(b2(1t)b1tb2)α+1(α+1)(b2b1)α+b2b1(α+1)((1t)b1+tb2b1)α+1(α+1)(b2b1)α]×ψ((1t)b1+tb2)(b2b1)dt=1210[(b2b1)α+1(1t)α+1(α+1)(b2b1)α+b2b1(α+1)tα+1(b2b1)α+1(α+1)(b2b1)α]×ψ((1t)b1+tb2)(b2b1)dt(b2b1)22(α+1)10[(1t)α+1+1tα+1][(1t)|ψ(b1)|+t|ψb2)|]dt=(b2b1)22(α+1)[|ψ(b1)|10{(1t)α+2+1ttα+1+tα+2}dt+|ψb2)|10{t(1t)α+1+ttα+2}dt].

    Taking absolute values and applying the triangle inequality amounts to the intended result.

    Remark 12. Let α=1. Then the inequality in Theorem 11 becomes:

    |ψ(b1)+ψ(b2)21b2b1b2b1ψ(t)dt|(b2b1)224[|ψ(b1)|+|ψ(b2)|].

    Next, we present results associated with the concave functions.

    Theorem 13. Let ψC2([b1,b2]) and |ψ| be a concave function. Then, for any α>0,

    |ψ(b1+b22)Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]|(b2b1)2(α2α+2)16(α+1)(α+2)[×|ψ(b1(2+2α+3(α+2)2α+3(α+2)(α+3)+2α724)+b2(2α+322α+3(α+2)(α+3)+α224)α2α+28(α+2))|+|ψ(b1(α224+2α+322α+3(α+2)(α+3))+b2(2α724+2α+3(α+2)+22α+3(α+2)(α+3))α2α+28(α+2))|].

    Proof. From (2.15), we have:

    Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]ψ(b1+b22)=(b2b1)22(α+1)[120[(1t)α+11+(α+1)t+tα+1]ψ((1t)b1+tb2)dt+112[(1t)α+1+α(1t)t+tα+1]ψ((1t)b1+tb2)dt].

    Now, we use Jensen's integral inequality to get:

    (b2b1)22(α+1)[120[(1t)α+11+(α+1)t+tα+1]dt×|ψ(120((1t)α+11+(α+1)t+tα+1)((1t)b1+tb2)dt120(1t)α+11+(α+1)t+tα+1)dt)|+112((1t)α+1+α(1t)t+tα+1)dt×|ψ(112((1t)α+1+α(1t)t+tα+1)((1t)b1+tb2)dt112((1t)α+1+α(1t)t+tα+1)dt)|].=(b2b1)22(α+1)[120[I1]dt|ψ(120(I2)dt120(I1)dt)|+112(A1)dt|ψ(112(A2)dt112(A1)dt)|]. (2.17)

    For this we calculate:

    I1=120[(1t)α+11+(α+1)t+tα+1]dt=(1t)α+2α+2|120t|120+(α+1)t22|120+tα+2α+2|120=12α+2(α+2)+1α+212+α+18+12α+2(α+2)=α2α+28(α+2),
    I2=120((1t)α+11+(α+1)t+tα+1)((1t)b1+tb2)dt=b1120((1t)α+2(1t)+(α+1)(tt2)+tα+1tα+2)dt+b2120(t(1t)α+1t+(α+1)t2+tα+2)dt=b1((1t)α+3α+3t+t22+(α+1)(t22t33)+tα+2α+2tα+3α+3)|120+b2(t(1t)α+2α+2120(1t)α+2α+2dtt22+(α+1)t33+tα+3α+3)|120=b1(2+2α+3(α+2)2α+3(α+2)(α+3)+2α724)+b2(2α+322α+3(α+2)(α+3)+α224),
    A1=112((1t)α+1+α(1t)t+tα+1)dt=(1t)α+2α+2|112+α(tt22)|112t22|112+tα+2α+2|112=α2α+28(α+2)

    and

    A2=112((1t)α+1+α(1t)t+tα+1)((1t)b1+tb2)dt=b1112((1t)α+2+α(1t)2t+t2+tα+1tα+2)dt+b2112(t(1t)α+1+α(tt2)t2+tα+2)dt=b1[(1t)α+3α+3|112α(1t)33|112t22|112+t33|112+tα+2α+2|112tα+3α+3|112]+b2[t(1t)α+2α+2112(1t)α+2(α+2)dt+α(t22t33)t33+tα+3α+3]112=b1[α224+2α+322α+3(α+2)(α+3)]+b2[2α724+2α+3(α+2)+22α+3(α+2)(α+3)].

    Putting the values of I1, I2, A1 and A2 in (2.17), we obtain:

    =(b2b1)22(α+1)[α2α+28(α+2)|ψ(b1(2+2α+3(α+2)2α+3(α+2)(α+3)+2α724)+b2(2α+322α+3(α+2)(α+3)+α224)α2α+28(α+2))|+α2α+28(α+2)|ψ(b1(α224+2α+322α+3(α+2)(α+3))+b2(2α724+2α+3(α+2)+22α+3(α+2)(α+3))α2α+28(α+2))|]=(b2b1)2(α2α+2)16(α+1)(α+2)×[|ψ(b1(2+2α+3(α+2)2α+3(α+2)(α+3)+2α724)+b2(2α+322α+3(α+2)(α+3)+α224)α2α+28(α+2))|+|ψ(b1(α224+2α+322α+3(α+2)(α+3))+b2(2α724+2α+3(α+2)+22α+3(α+2)(α+3))α2α+28(α+2))|].

    Remark 14. If we take α=1 in Theorem 13, then we get:

    |ψ(b1+b22)1b2b1b2b1ψ(t)dt|(b2b1)248[|ψ(5b1+3b28)|+|ψ(3b1+5b28)|].

    Theorem 15. Let ψC2([b1,b2]) and |ψ| be a concave function. Then, for any α>0,

    |ψ(b1)+ψ(b2)2Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]|α(b2b1)22(α+1)(α+2)|ψ(b1+b22)|.

    Proof. For this, we use (2.14) to obtain the following inequality:

    |ψ(b1)+ψ(b2)2Γ(α+1)2(b2b1)α[Jαb1+ψ(b2)+Jαb2ψ(b1)]|=(b2b1)22(α+1)10[(1t)α+1+1tα+1][ψ((1t)b1+tb2)]dt.

    We use Jensen's integral inequality to get:

    (b2b1)22(α+1){10((1t)α+1+1tα+1)dt×|ψ(10((1t)α+1+1tα+1)((1t)b1+tb2)dt10((1t)α+1+1tα+1)dt)|}
    =(b2b1)22(α+1){αα+2|ψ(b1(α2(α+2))+b2(α2(α+2))αα+2)|}=(b2b1)22(α+1){αα+2|ψ(b1+b22)|}.

    Remark 16. If we set α=1, then Theorem 15 amounts to:

    |ψ(b1)+ψ(b2)21b2b1b2b1ψ(t)dt|(b2b1)212|ψ(b1+b22)|.

    By means of a green function, we outlined a new method of proving the Hermite-Hadamard inequality involving the Riemann-Liouville fractional integral operators. In the process of doing this, some new identities were obtained. We applied these identities to prove more results in this direction. Results established in this paper can be recast by using the green function G2(λ,μ) defined on [b1,b2]×[b1,b2] by

    G2(λ,μ)={λb1,b1μλ;μb1,λμb2.

    The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions. The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, 11601485).

    There is no conflict of interest to report.



    [1] M. A. Khan, S. H. Wu, H. Ullah, et al. Discrete majorization type inequalities for convex functions on rectangles, J. Inequal. Appl., 2019 (2019), 1-18. doi: 10.1186/s13660-019-1955-4
    [2] S. Z. Ullah, M. A. Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4
    [3] T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14. doi: 10.1007/s13398-019-00732-2
    [4] M. K. Wang, H. H. Chu, Y. M. Li, et al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255-271.
    [5] P. Agarwal, M. Kadakal, İ. İşcan, et al. Better approaches for n-times differentiable convex functions, Mathematics, 8 (2020), 1-11.
    [6] S. Khan, M. A. Khan, Y. M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Method. Appl. Sci., 43 (2020), 2577-2587. doi: 10.1002/mma.6066
    [7] S. Rafeeq, H. Kalsoom, S. Hussain, et al. Delay dynamic double integral inequalities on time scales with applications, Adv. Differ. Equ., 2020 (2020), 1-32. doi: 10.1186/s13662-019-2438-0
    [8] M. A. Khan, J. Pečarić, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Mathematics, 5 (2020), 4931-4945. doi: 10.3934/math.2020315
    [9] M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
    [10] S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions, AIMS Mathematics, 5 (2020), 2629-2645. doi: 10.3934/math.2020171
    [11] T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Mathematics, 5 (2020), 4512-4528. doi: 10.3934/math.2020290
    [12] Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93.
    [13] B. Wang, C. L. Luo, S. H. Li, et al. Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, RACSAM, 114 (2020), 1-10. doi: 10.1007/s13398-019-00732-2
    [14] M. K. Wang, M. Y. Hong, Y. F. Xu, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., 14 (2020), 1-21.
    [15] M. K. Wang, H. H. Chu, Y. M. Chu, Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals, J. Math. Anal. Appl., 480 (2019), 1-9.
    [16] W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166. doi: 10.18514/MMN.2019.2334
    [17] S. S. Zhou, S. Rashid, F. Jarad, et al. New estimates considering the generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2020 (2020), 1-15. doi: 10.1186/s13662-019-2438-0
    [18] S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 1-12.
    [19] S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1-18. doi: 10.1186/s13662-019-2438-0
    [20] Y. Khurshid, M. Adil Khan, Y. M. Chu, Conformable fractional integral inequalities for GG- and GA-convex function, AIMS Mathematics, 5 (2020), 5012-5030. doi: 10.3934/math.2020322
    [21] I. Abbas Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-7.
    [22] M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4
    [23] M. U. Awan, N. Akhtar, A. Kashuri, et. al. 2D approximately reciprocal ρ-convex functions and associated integral inequalities, AIMS Mathematics, 5 (2020), 4662-4680. doi: 10.3934/math.2020299
    [24] S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mapping with application, AIMS Mathematics, 5 (2020), 3525-3546. doi: 10.3934/math.2020229
    [25] M. U. Awan, N. Akhtar, S. Iftikhar, et al. New Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
    [26] S. Rashid, İ. İşcan, D. Baleanu, et al. Generation of new fractional inequalities via n polynomials s-type convexixity with applications, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
    [27] M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
    [28] P. O. Mohammed, M. Z. Sarikaya, Hermite-Hadamard type inequalities for F-convex function involving fractional integrals, J. Inequal. Appl., 2018 (2018), 1-33. doi: 10.1186/s13660-017-1594-6
    [29] F. Qi, P. O. Mohammed, J. C. Yao, et al. Generalized fractional integral inequalities of Hermite-Hadamard type for (α, m)-convex functions, J. Inequal. Appl., 2019 (2019), 1-17. doi: 10.1186/s13660-019-1955-4
    [30] M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
    [31] A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Space., 2020 (2020), 1-18.
    [32] M. U. Awan, S. Talib, Y. M. Chu, et al. Some new refinements of Hermite-Hadamard-type inequalities involving Ψk-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 1-10.
    [33] T. Abdeljawad, P. O. Mohammed, A. Kashuri, New modified conformable fractional integral inequalities of Hermite-Hadamard type with applications, J. Funct. Space., 2020 (2020), 1-14.
    [34] M. Z. Sarikaya, E. Set, H. Yaldiz, et al. Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403-2407. doi: 10.1016/j.mcm.2011.12.048
    [35] M. Adil Khan, A. Iqbal, M. Suleman, et al. Hermite-Hadamard type inequalities for fractional integrals via Green's function, J. Inequal. Appl., 2018 (2018), 1-15. doi: 10.1186/s13660-017-1594-6
    [36] R. P. Agarwal, P. J. Y. Patricia, Error Inequalities in Polynomial Interpolation and Their Applications, Springer Science & Business Media, 1993.
    [37] N. Mehmood, R. P. Agarwal, S. I. Butt, et al. New generalizations of Popoviciu-type inequalities via new Green's functions and Montgomery identity, J. Inequal. Appl., 2017 (2017), 1-17. doi: 10.1186/s13660-016-1272-0
  • This article has been cited by:

    1. Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, İmdat İşcan, Yu-Ming Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02955-9
    2. Eze R. Nwaeze, Muhammad Adil Khan, Yu-Ming Chu, Fractional inclusions of the Hermite–Hadamard type for m-polynomial convex interval-valued functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-02977-3
    3. Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, A new approach on fractional calculus and probability density function, 2020, 5, 2473-6988, 7041, 10.3934/math.2020451
    4. Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03036-7
    5. Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu, Some New (p1p2,q1q2)-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity, 2020, 5, 2473-6988, 7122, 10.3934/math.2020456
    6. Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y
    7. Thabet Abdeljawad, Saima Rashid, A. A. El-Deeb, Zakia Hammouch, Yu-Ming Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, 2020, 2020, 1687-1847, 10.1186/s13662-020-02935-z
    8. Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, 2020, 5, 2473-6988, 6874, 10.3934/math.2020441
    9. Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, 2020, 5, 2473-6988, 6404, 10.3934/math.2020412
    10. Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, 2020, 5, 2473-6988, 7071, 10.3934/math.2020453
    11. Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, 2020, 5, 2473-6988, 6479, 10.3934/math.2020418
    12. Slavko Simić, Bandar Bin-Mohsin, Some generalizations of the Hermite–Hadamard integral inequality, 2021, 2021, 1029-242X, 10.1186/s13660-021-02605-y
    13. Zehui Shao, Saeed Kosari, Milad Yadollahzadeh, Generalized Fejér-Divergence in Information Theory, 2022, 46, 1028-6276, 1241, 10.1007/s40995-022-01331-4
    14. Chahn Yong Jung, Ghulam Farid, Hafsa Yasmeen, Yu-Pei Lv, Josip Pečarić, Refinements of some fractional integral inequalities for refined (α,hm)-convex function, 2021, 2021, 1687-1847, 10.1186/s13662-021-03544-0
    15. Jorge E. Macías-Díaz, Muhammad Bilal Khan, Hleil Alrweili, Mohamed S. Soliman, Some Fuzzy Inequalities for Harmonically s-Convex Fuzzy Number Valued Functions in the Second Sense Integral, 2022, 14, 2073-8994, 1639, 10.3390/sym14081639
    16. Çetin Yildiz, Luminiţa-Ioana Cotîrlă, Examining the Hermite–Hadamard Inequalities for k-Fractional Operators Using the Green Function, 2023, 7, 2504-3110, 161, 10.3390/fractalfract7020161
    17. Hua Wang, Jamroz Khan, Muhammad Adil Khan, Sadia Khalid, Rewayat Khan, Ahmet Ocak Akdemir, The Hermite–Hadamard–Jensen–Mercer Type Inequalities for Riemann–Liouville Fractional Integral, 2021, 2021, 2314-4785, 1, 10.1155/2021/5516987
    18. Muhammad Bilal Khan, Gustavo Santos-García, Savin Treanțǎ, Mohamed S. Soliman, New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals, 2022, 14, 2073-8994, 2322, 10.3390/sym14112322
    19. Çetin Yildiz, Levent Akgün, Muhammad Adil Khan, Nasir Rehman, Firdous A. Shah, Some Further Results Using Green’s Function for s -Convexity, 2023, 2023, 2314-4785, 1, 10.1155/2023/3848846
    20. Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, A Comprehensive Review of the Hermite–Hadamard Inequality Pertaining to Fractional Integral Operators, 2023, 11, 2227-7390, 1953, 10.3390/math11081953
    21. Tahir Ullah Khan, Muhammad Adil Khan, Hermite-Hadamard inequality for new generalized conformable fractional operators, 2021, 6, 2473-6988, 23, 10.3934/math.2021002
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4459) PDF downloads(288) Cited by(21)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog