This paper develops the theory of discrete Dirac reduction of discrete Lagrange–Dirac systems with an abelian symmetry group acting on the configuration space. We begin with the linear theory and, then, we extend it to the nonlinear setting using retraction compatible charts. We consider the reduction of both the discrete Dirac structure and the discrete Lagrange–Pontryagin principle, and show that they both lead to the same discrete Lagrange–Poincaré–Dirac equations. The coordinatization of the discrete reduced spaces relies on the notion of discrete connections on principal bundles. At last, we demonstrate the method obtained by applying it to a charged particle in a magnetic field, and to the double spherical pendulum.
Citation: Álvaro Rodríguez Abella, Melvin Leok. Discrete Dirac reduction of implicit Lagrangian systems with abelian symmetry groups[J]. Journal of Geometric Mechanics, 2023, 15(1): 319-356. doi: 10.3934/jgm.2023013
[1] | Manuela Larguinho, José Carlos Dias, Carlos A. Braumann . Pricing and hedging bond options and sinking-fund bonds under the CIR model. Quantitative Finance and Economics, 2022, 6(1): 1-34. doi: 10.3934/QFE.2022001 |
[2] | Longfei Wei, Lu Liu, Jialong Hou . Pricing hybrid-triggered catastrophe bonds based on copula-EVT model. Quantitative Finance and Economics, 2022, 6(2): 223-243. doi: 10.3934/QFE.2022010 |
[3] | Sebastian Ferrando, Andrew Fleck, Alfredo Gonzalez, Alexey Rubtsov . Trajectorial asset models with operational assumptions. Quantitative Finance and Economics, 2019, 3(4): 661-708. doi: 10.3934/QFE.2019.4.661 |
[4] | Amir Ahmad Dar, N. Anuradha . Comparison: Binomial model and Black Scholes model. Quantitative Finance and Economics, 2018, 2(1): 230-245. doi: 10.3934/QFE.2018.1.230 |
[5] | Yunjae Nam, Changwoo Yoo, Hyundong Kim, Jaewon Hong, Minjoon Bang, Junseok Kim . Accurate computation of Greeks for equity-linked security (ELS) near early redemption dates. Quantitative Finance and Economics, 2025, 9(2): 300-316. doi: 10.3934/QFE.2025010 |
[6] | Lianzhang Bao, Guangliang Zhao, Zhuo Jin . A new equilibrium trading model with asymmetric information. Quantitative Finance and Economics, 2018, 2(1): 217-229. doi: 10.3934/QFE.2018.1.217 |
[7] | Wenyan Hao, Claude Lefèvre, Muhsin Tamturk, Sergey Utev . Quantum option pricing and data analysis. Quantitative Finance and Economics, 2019, 3(3): 490-507. doi: 10.3934/QFE.2019.3.490 |
[8] | Fabrizio Di Sciorio, Raffaele Mattera, Juan Evangelista Trinidad Segovia . Measuring conditional correlation between financial markets' inefficiency. Quantitative Finance and Economics, 2023, 7(3): 491-507. doi: 10.3934/QFE.2023025 |
[9] | Takashi Kanamura . Supply-side perspective for carbon pricing. Quantitative Finance and Economics, 2019, 3(1): 109-123. doi: 10.3934/QFE.2019.1.109 |
[10] | Jin Liang, Hong-Ming Yin, Xinfu Chen, Yuan Wu . On a Corporate Bond Pricing Model with Credit Rating Migration Risksand Stochastic Interest Rate. Quantitative Finance and Economics, 2017, 1(3): 300-319. doi: 10.3934/QFE.2017.3.300 |
This paper develops the theory of discrete Dirac reduction of discrete Lagrange–Dirac systems with an abelian symmetry group acting on the configuration space. We begin with the linear theory and, then, we extend it to the nonlinear setting using retraction compatible charts. We consider the reduction of both the discrete Dirac structure and the discrete Lagrange–Pontryagin principle, and show that they both lead to the same discrete Lagrange–Poincaré–Dirac equations. The coordinatization of the discrete reduced spaces relies on the notion of discrete connections on principal bundles. At last, we demonstrate the method obtained by applying it to a charged particle in a magnetic field, and to the double spherical pendulum.
[1] | R. Abraham, J. Marsden, Foundations of Mechanics, 2nd edition, Addison-Wesley, 1978, (with the assistance of Tudor Ratiu and Richard Cushman). |
[2] | P. A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008. https://doi.org/10.1515/9781400830244 |
[3] | V. Arnold, On the differential geometry of Lie groups of infinite dimension and its applications to the hydrodynamics of perfect fluids, Ann. Fourier Inst., 16 (1966), 319–361. |
[4] | V. Arnold, Mathematical Methods of Classical Mechanics, vol. 60 of Graduate Texts in Mathematics, Springer-Verlag, 1989, Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein. |
[5] | M. Barbero Liñán, D. Martín de Diego, Bäcklund transformations in discrete variational principles for Lie–Poisson equations, in Discrete Mechanics, Geometric Integration and Lie–Butcher Series (eds. K. Ebrahimi-Fard and M. Barbero Liñán), Springer International Publishing, Cham, 2018,315–332. |
[6] |
A. Bloch, L. Colombo, F. Jiménez, The variational discretization of the constrained higher-order Lagrange–Poincaré equations, Discrete Contin. Dyn. Syst., 39 (2019), 309–344. https://doi.org/10.3934/dcds.2019013 doi: 10.3934/dcds.2019013
![]() |
[7] |
A. Bobenko, Y. Suris, Discrete Lagrangian reduction, discrete Euler–Poincaré equations, and semidirect products, Lett. Math. Phys., 49 (1999), 79–93. https://doi.org/10.1023/A:1007654605901 doi: 10.1023/A:1007654605901
![]() |
[8] | M. I. Caruso, J. Fernández, C. Tori, M. Zuccalli, Discrete mechanical systems in a Dirac setting: a proposal, 2022, URL https://arXiv.org/abs/2203.05600. |
[9] |
J. Fernández, M. Zuccalli, A geometric approach to discrete connections on principal bundles, J. Geom. Mech., 5 (2013), 433–444. https://doi.org/10.3934/jgm.2013.5.433 doi: 10.3934/jgm.2013.5.433
![]() |
[10] | E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-preserving algorithms for ordinary differential equations, vol. 31 of Springer Series in Computational Mathematics, 2nd edition, Springer-Verlag, 2006. |
[11] |
S. Jalnapurkar, M. Leok, J. Marsden, M. West, Discrete Routh reduction, J. Phys. A: Math. Gen., 39 (2006), 5521. https://doi.org/10.1088/0305-4470/39/19/S12 doi: 10.1088/0305-4470/39/19/S12
![]() |
[12] |
S. Lall, M. West, Discrete variational Hamiltonian mechanics, J. Phys. A: Math. Gen., 39 (2006), 5509. https://doi.org/10.1088/0305-4470/39/19/S11 doi: 10.1088/0305-4470/39/19/S11
![]() |
[13] |
T. Lee, M. Leok, N. Mcclamroch, Lagrangian mechanics and variational integrators on two-spheres, Int. J. Numer. Methods Eng., 79 (2009), 1147–1174. https://doi.org/10.1002/nme.2603 doi: 10.1002/nme.2603
![]() |
[14] | M. Leok, J. Marsden, A. Weinstein, A discrete theory of connections on principal bundles, 2005, URL https://arXiv.org/abs/math/0508338. |
[15] |
M. Leok, T. Ohsawa, Discrete Dirac structures and implicit discrete Lagrangian and Hamiltonian systems, AIP Conference Proceedings, 1260 (2010), 91–102. https://doi.org/10.1063/1.3479325 doi: 10.1063/1.3479325
![]() |
[16] |
M. Leok, T. Ohsawa, Variational and geometric structures of discrete Dirac mechanics, Found. Comput. Math., 11 (2011), 529–562. https://doi.org/10.1007/s10208-011-9096-2 doi: 10.1007/s10208-011-9096-2
![]() |
[17] |
M. Leok, J. Zhang, Discrete Hamiltonian variational integrators, IMA J. Numer. Anal., 31 (2011), 1497–1532. https://doi.org/10.1093/imanum/drq027 doi: 10.1093/imanum/drq027
![]() |
[18] |
Z. Ma, C. Rowley, Lie–Poisson integrators: A Hamiltonian, variational approach, Int. J. Numer. Methods Eng., 82 (2010), 1609–1644. https://doi.org/10.1002/nme.2812 doi: 10.1002/nme.2812
![]() |
[19] |
J. Marrero, D. Martín de Diego, E. Martínez, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids, Nonlinearity, 19 (2006), 1313. https://doi.org/10.1088/0951-7715/19/6/006 doi: 10.1088/0951-7715/19/6/006
![]() |
[20] | J. Marsden, Lectures on Mechanics, Lecture note series. London Mathematical Society, Cambridge University Press, 1992. |
[21] |
J. Marsden, S. Pekarsky, S. Shkoller, Discrete Euler–Poincaré and Lie–Poisson equations, Nonlinearity, 12 (1999), 1647–1662. https://doi.org/10.1088/0951-7715/12/6/314 doi: 10.1088/0951-7715/12/6/314
![]() |
[22] |
J. Marsden, S. Pekarsky, S. Shkoller, Symmetry reduction of discrete Lagrangian mechanics on Lie groups, J. Geom. Phys., 36 (2000), 140–151. https://doi.org/10.1016/S0393-0440(00)00018-8 doi: 10.1016/S0393-0440(00)00018-8
![]() |
[23] | J. Marsden, T. Ratiu, Introduction to Mechanics and Symmetry, vol. 17 of Texts in Applied Mathematics, 2nd edition, Springer-Verlag, 1999. |
[24] |
J. Marsden, J. Scheurle, Lagrangian reduction and the double spherical pendulum, Z. angew. Math. Phys., 44 (1993), 17–43. https://doi.org/10.1007/BF00914351 doi: 10.1007/BF00914351
![]() |
[25] | J. E. Marsden, J. Scheurle, The reduced Euler-Lagrange equations, Fields Institute Communications, 1. |
[26] |
J. Marsden, A. Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Math. Phys., 5 (1974), 121–130. https://doi.org/10.1016/0034-4877(74)90021-4 doi: 10.1016/0034-4877(74)90021-4
![]() |
[27] |
J. Marsden, M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 317–514. https://doi.org/10.1017/S096249290100006X doi: 10.1017/S096249290100006X
![]() |
[28] | K. R. Meyer, Symmetries and integrals in mechanics, Dynamical Systems (ed. M. M. Peixoto), Academic Press, 1973,259–272. https://doi.org/10.1016/B978-0-12-550350-1.50025-4 |
[29] |
J. Moser, A. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Commun.Math. Phys., 139 (1991), 217–243. https://doi.org/10.1007/BF02352494 doi: 10.1007/BF02352494
![]() |
[30] |
A. Natale, C. Cotter, A variational H(div) finite-element discretization approach for perfect incompressible fluids, IMA J. Numer. Anal., 38 (2017), 1388–1419. https://doi.org/10.1093/imanum/drx075 doi: 10.1093/imanum/drx075
![]() |
[31] |
H. Parks, M. Leok, Variational integrators for interconnected Lagrange–Dirac systems, J. Nonlinear Sci., 27 (2017), 1399–1434. https://doi.org/10.1007/s00332-017-9364-7 doi: 10.1007/s00332-017-9364-7
![]() |
[32] |
D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J. Marsden, M. Desbrun, Structure-preserving discretization of incompressible fluids, Phys. D, 240 (2011), 443–458, https://doi.org/10.1016/j.physd.2010.10.012 doi: 10.1016/j.physd.2010.10.012
![]() |
[33] |
S. Smale, Topology and mechanics. Ⅰ, Inventiones Math., 10 (1970), 305–331. https://doi.org/10.1007/BF01418778 doi: 10.1007/BF01418778
![]() |
[34] | W. M. Tulczyjew, Geometric Formulations of Physical Theories: Statics and Dynamics of Mechanical Systems, vol. 11 of Monographs and Textbooks in Physical Science Lecture Notes, Bibliopolis, 1989. |
[35] | A. J. van der Schaft, Port-Hamiltonian systems: an introductory survey, in International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, 1339–1365. |
[36] |
J. Vankerschaver, Euler–Poincaré reduction for discrete field theories, J. Math. Phys., 48 (2007), 032902. https://doi.org/10.1063/1.2712419 doi: 10.1063/1.2712419
![]() |
[37] |
J. Vankerschaver, F. Cantrijn, Discrete Lagrangian field theories on Lie groupoids, J. Geom. Phys., 57 (2007), 665–689. https://doi.org/10.1016/j.geomphys.2006.05.006 doi: 10.1016/j.geomphys.2006.05.006
![]() |
[38] | V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, Graduate Texts in Mathematics, Springer New York, 2013. |
[39] | A. Weinstein, Lagrangian mechanics and groupoids, Fields Inst. Proc. AMS, 7 (1996), 207–231. |
[40] |
H. Yoshimura, J. Marsden, Dirac structures in Lagrangian mechanics Part Ⅰ: Implicit Lagrangian systems, J. Geom. Phys., 57 (2006), 133–156. https://doi.org/10.1016/j.geomphys.2006.02.009 doi: 10.1016/j.geomphys.2006.02.009
![]() |
[41] |
H. Yoshimura, J. Marsden, Dirac structures in Lagrangian mechanics Part Ⅱ: Variational structures, J. Geom. Phys., 57 (2006), 209–250. https://doi.org/10.1016/j.geomphys.2006.02.012 doi: 10.1016/j.geomphys.2006.02.012
![]() |
[42] |
H. Yoshimura, J. Marsden, Dirac cotangent bundle reduction, J. Geom. Mech., 1 (2009), 87–158. https://doi.org/10.3934/jgm.2009.1.87 doi: 10.3934/jgm.2009.1.87
![]() |
1. | Shuyun Jiao, Mingzhan Huang, An SIHR epidemic model of the COVID-19 with general population-size dependent contact rate, 2020, 5, 2473-6988, 6714, 10.3934/math.2020431 | |
2. | Chaofan Qian, Yuhui Hu, Novel stability criteria on nonlinear density-dependent mortality Nicholson’s blowflies systems in asymptotically almost periodic environments, 2020, 2020, 1029-242X, 10.1186/s13660-019-2275-4 | |
3. | Qian Cao, Xiaojin Guo, Anti-periodic dynamics on high-order inertial Hopfield neural networks involving time-varying delays, 2020, 5, 2473-6988, 5402, 10.3934/math.2020347 | |
4. | Manickam Iswarya, Ramachandran Raja, Grienggrai Rajchakit, Jinde Cao, Jehad Alzabut, Chuangxia Huang, Existence, Uniqueness and Exponential Stability of Periodic Solution for Discrete-Time Delayed BAM Neural Networks Based on Coincidence Degree Theory and Graph Theoretic Method, 2019, 7, 2227-7390, 1055, 10.3390/math7111055 | |
5. | Yadan Zhang, Minghui Jiang, Xue Fang, A New Fixed-Time Stability Criterion and Its Application to Synchronization Control of Memristor-Based Fuzzy Inertial Neural Networks with Proportional Delay, 2020, 52, 1370-4621, 1291, 10.1007/s11063-020-10305-9 | |
6. | Qian Cao, Guoqiu Wang, Chaofan Qian, New results on global exponential stability for a periodic Nicholson’s blowflies model involving time-varying delays, 2020, 2020, 1687-1847, 10.1186/s13662-020-2495-4 | |
7. | Hong Zhang, Qian Cao, Hedi Yang, Asymptotically almost periodic dynamics on delayed Nicholson-type system involving patch structure, 2020, 2020, 1029-242X, 10.1186/s13660-020-02366-0 | |
8. | Anbalagan Pratap, Ramachandran Raja, Jehad Alzabut, Jinde Cao, Grienggrai Rajchakit, Chuangxia Huang, Mittag‐Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field, 2020, 43, 0170-4214, 6223, 10.1002/mma.6367 | |
9. | Chaofan Qian, New periodic stability for a class of Nicholson's blowflies models with multiple different delays, 2020, 0020-7179, 1, 10.1080/00207179.2020.1766118 | |
10. | Umesh Kumar, Subir Das, Chuangxia Huang, Jinde Cao, Fixed-time synchronization of quaternion-valued neural networks with time-varying delay, 2020, 476, 1364-5021, 20200324, 10.1098/rspa.2020.0324 | |
11. | Chuangxia Huang, Luanshan Yang, Jinde Cao, Asymptotic behavior for a class of population dynamics, 2020, 5, 2473-6988, 3378, 10.3934/math.2020218 | |
12. | M. Syed Ali, G. Narayanan, Sumit Saroha, Bandana Priya, Ganesh Kumar Thakur, Finite-time stability analysis of fractional-order memristive fuzzy cellular neural networks with time delay and leakage term, 2021, 185, 03784754, 468, 10.1016/j.matcom.2020.12.035 | |
13. | Sudesh Kumari, Renu Chugh, Jinde Cao, Chuangxia Huang, Multi Fractals of Generalized Multivalued Iterated Function Systems in b-Metric Spaces with Applications, 2019, 7, 2227-7390, 967, 10.3390/math7100967 | |
14. | M. Iswarya, R. Raja, G. Rajchakit, J. Cao, J. Alzabut, C. Huang, A perspective on graph theory-based stability analysis of impulsive stochastic recurrent neural networks with time-varying delays, 2019, 2019, 1687-1847, 10.1186/s13662-019-2443-3 | |
15. | Xin Long, Novel stability criteria on a patch structure Nicholson’s blowflies model with multiple pairs of time-varying delays, 2020, 5, 2473-6988, 7387, 10.3934/math.2020473 | |
16. | Lihong Huang, Huili Ma, Jiafu Wang, Chuangxia Huang, GLOBAL DYNAMICS OF A FILIPPOV PLANT DISEASE MODEL WITH AN ECONOMIC THRESHOLD OF INFECTED-SUSCEPTIBLE RATIO, 2020, 10, 2156-907X, 2263, 10.11948/20190409 | |
17. | Xin Yang, Shigang Wen, Xian Zhao, Chuangxia Huang, Systemic importance of financial institutions: A complex network perspective, 2020, 545, 03784371, 123448, 10.1016/j.physa.2019.123448 | |
18. | Wentao Wang, Wei Chen, Persistence and extinction of Markov switched stochastic Nicholson’s blowflies delayed differential equation, 2020, 13, 1793-5245, 2050015, 10.1142/S1793524520500151 | |
19. | Xin Yang, Shigang Wen, Zhifeng Liu, Cai Li, Chuangxia Huang, Dynamic Properties of Foreign Exchange Complex Network, 2019, 7, 2227-7390, 832, 10.3390/math7090832 | |
20. | Qian Cao, Guoqiu Wang, Dynamic analysis on a delayed nonlinear density-dependent mortality Nicholson's blowflies model, 2020, 0020-7179, 1, 10.1080/00207179.2020.1725134 | |
21. | Hong Zhang, Chaofan Qian, Convergence analysis on inertial proportional delayed neural networks, 2020, 2020, 1687-1847, 10.1186/s13662-020-02737-3 | |
22. | Ajendra singh, Jitendra Nath Rai, Stability of Fractional Order Fuzzy Cellular Neural Networks with Distributed Delays via Hybrid Feedback Controllers, 2021, 1370-4621, 10.1007/s11063-021-10460-7 | |
23. | Qian Cao, Xin Long, New convergence on inertial neural networks with time-varying delays and continuously distributed delays, 2020, 5, 2473-6988, 5955, 10.3934/math.2020381 | |
24. | Chuangxia Huang, Xiaoguang Yang, Jinde Cao, Stability analysis of Nicholson’s blowflies equation with two different delays, 2020, 171, 03784754, 201, 10.1016/j.matcom.2019.09.023 | |
25. | Jian Zhang, Chuangxia Huang, Dynamics analysis on a class of delayed neural networks involving inertial terms, 2020, 2020, 1687-1847, 10.1186/s13662-020-02566-4 | |
26. | Qian Wang, Hui Wei, Zhiwen Long, A non-reduced order approach to stability analysis of delayed inertial genetic regulatory networks, 2021, 33, 0952-813X, 227, 10.1080/0952813X.2020.1735531 | |
27. | Jiafu Wang, Su He, Lihong Huang, Limit Cycles Induced by Threshold Nonlinearity in Planar Piecewise Linear Systems of Node-Focus or Node-Center Type, 2020, 30, 0218-1274, 2050160, 10.1142/S0218127420501606 | |
28. | Gang Yang, Qian Cao, Stability for patch structure Nicholson’s blowflies systems involving distinctive maturation and feedback delays, 2020, 0952-813X, 1, 10.1080/0952813X.2020.1836032 | |
29. | Chuangxia Huang, Xin Long, Jinde Cao, Stability of antiperiodic recurrent neural networks with multiproportional delays, 2020, 43, 0170-4214, 6093, 10.1002/mma.6350 | |
30. | Qian Cao, Guoqiu Wang, New findings on global exponential stability of inertial neural networks with both time-varying and distributed delays, 2021, 0952-813X, 1, 10.1080/0952813X.2021.1883744 | |
31. | Ruihan Chen, Song Zhu, Yongqiang Qi, Yuxin Hou, Reachable set bounding for neural networks with mixed delays: Reciprocally convex approach, 2020, 125, 08936080, 165, 10.1016/j.neunet.2020.02.005 | |
32. | Shigang Wen, Yu Tan, Mengge Li, Yunke Deng, Chuangxia Huang, Analysis of Global Remittance Based on Complex Networks, 2020, 8, 2296-424X, 10.3389/fphy.2020.00085 | |
33. | Zhenhua Duan, Changjin Xu, Anti-periodic behavior for quaternion-valued delayed cellular neural networks, 2021, 2021, 1687-1847, 10.1186/s13662-021-03327-7 | |
34. | Yi Wang, Jinde Cao, Gang Huang, Further dynamic analysis for a network sexually transmitted disease model with birth and death, 2019, 363, 00963003, 124635, 10.1016/j.amc.2019.124635 | |
35. | Luogen Yao, Qian Cao, Anti-periodicity on high-order inertial Hopfield neural networks involving mixed delays, 2020, 2020, 1029-242X, 10.1186/s13660-020-02444-3 | |
36. | Anbalagan Pratap, Ramachandran Raja, Jinde Cao, Chuangxia Huang, Michal Niezabitowski, Ovidiu Bagdasar, Stability of discrete‐time fractional‐order time‐delayed neural networks in complex field, 2021, 44, 0170-4214, 419, 10.1002/mma.6745 | |
37. | Luogen Yao, Global exponential stability on anti-periodic solutions in proportional delayed HIHNNs, 2021, 33, 0952-813X, 47, 10.1080/0952813X.2020.1721571 | |
38. | Yanli Xu, Qian Cao, Xiaojin Guo, Stability on a patch structure Nicholson’s blowflies system involving distinctive delays, 2020, 105, 08939659, 106340, 10.1016/j.aml.2020.106340 | |
39. | Yanli Xu, Qian Cao, Global asymptotic stability for a nonlinear density-dependent mortality Nicholson’s blowflies system involving multiple pairs of time-varying delays, 2020, 2020, 1687-1847, 10.1186/s13662-020-02569-1 | |
40. | Sudesh Kumari, Renu Chugh, Jinde Cao, Chuangxia Huang, On the construction, properties and Hausdorff dimension of random Cantor one pth set, 2020, 5, 2473-6988, 3138, 10.3934/math.2020202 | |
41. | A. Pratap, R. Raja, Jinde Cao, J. Alzabut, Chuangxia Huang, Finite-time synchronization criterion of graph theory perspective fractional-order coupled discontinuous neural networks, 2020, 2020, 1687-1847, 10.1186/s13662-020-02551-x | |
42. | Qian Cao, Guoqiu Wang, Hong Zhang, Shuhua Gong, New results on global asymptotic stability for a nonlinear density-dependent mortality Nicholson’s blowflies model with multiple pairs of time-varying delays, 2020, 2020, 1029-242X, 10.1186/s13660-019-2277-2 | |
43. | Rundong Zhao, Qiming Liu, Meici Sun, Dynamical behavior of a stochastic SIQS epidemic model on scale-free networks, 2021, 1598-5865, 10.1007/s12190-021-01550-9 | |
44. | Xianhui Zhang, Convergence analysis of a patch structure Nicholson’s blowflies system involving an oscillating death rate, 2021, 0952-813X, 1, 10.1080/0952813X.2021.1908433 | |
45. | Roberto Galizia, Petri T. Piiroinen, Regions of Reduced Dynamics in Dynamic Networks, 2021, 31, 0218-1274, 2150080, 10.1142/S0218127421500802 | |
46. | Jian Zhang, Ancheng Chang, Gang Yang, Periodicity on Neutral-Type Inertial Neural Networks Incorporating Multiple Delays, 2021, 13, 2073-8994, 2231, 10.3390/sym13112231 | |
47. | Jiaying Zhou, Yi Zhao, Yong Ye, Yixin Bao, Bifurcation Analysis of a Fractional-Order Simplicial SIRS System Induced by Double Delays, 2022, 32, 0218-1274, 10.1142/S0218127422500687 | |
48. | Shuping Li, Xiaorong Zhao, Ruixia Zhang, Site-bond percolation model of epidemic spreading with vaccination in complex networks, 2022, 85, 0303-6812, 10.1007/s00285-022-01816-1 | |
49. | Lian Duan, Lihong Huang, Chuangxia Huang, Spatial dynamics of a diffusive SIRI model with distinct dispersal rates and heterogeneous environment, 2021, 20, 1534-0392, 3539, 10.3934/cpaa.2021120 | |
50. | Jie Li, Jiu Zhong, Yong-Mao Ji, Fang Yang, A new SEIAR model on small-world networks to assess the intervention measures in the COVID-19 pandemics, 2021, 25, 22113797, 104283, 10.1016/j.rinp.2021.104283 | |
51. | Chaouki Aouiti, Mahjouba Ben Rezeg, Impulsive multidirectional associative memory neural networks: New results, 2021, 14, 1793-5245, 10.1142/S1793524521500601 | |
52. | Hong Zhang, Qian Cao, Hedi Yang, Dynamics analysis of delayed Nicholson-type systems involving patch structure and asymptotically almost periodic environments, 2022, 34, 0952-813X, 725, 10.1080/0952813X.2021.1924869 | |
53. | Reinhard Schlickeiser, Martin Kröger, Determination of a Key Pandemic Parameter of the SIR-Epidemic Model from Past COVID-19 Mutant Waves and Its Variation for the Validity of the Gaussian Evolution, 2023, 5, 2624-8174, 205, 10.3390/physics5010016 | |
54. | Xiaojin Guo, Chuangxia Huang, Jinde Cao, Nonnegative periodicity on high-order proportional delayed cellular neural networks involving operator, 2020, 6, 2473-6988, 2228, 10.3934/math.2021135 | |
55. | Qian Cao, Attractivity analysis on a neoclassical growth system incorporating patch structure and multiple pairs of time-varying delays, 2021, 14173875, 1, 10.14232/ejqtde.2021.1.76 | |
56. | Reinhard Schlickeiser, Martin Kröger, Key Epidemic Parameters of the SIRV Model Determined from Past COVID-19 Mutant Waves, 2023, 3, 2673-8112, 592, 10.3390/covid3040042 | |
57. | Shixiang Han, Guanghui Yan, Huayan Pei, Wenwen Chang, Dynamical Analysis of an Improved Bidirectional Immunization SIR Model in Complex Network, 2024, 26, 1099-4300, 227, 10.3390/e26030227 | |
58. | Guangyu Li, Haifeng Du, Jiarui Fan, Xiaochen He, Wenhua Wang, The Effect of Fangcang Shelter Hospitals under Resource Constraints on the Spread of Epidemics, 2023, 20, 1660-4601, 5802, 10.3390/ijerph20105802 | |
59. | Chuangxia Huang, Jiafu Wang, Lihong Huang, Asymptotically almost periodicity of delayed Nicholson-type system involving patch structure, 2020, 2020, 1072-6691, 61, 10.58997/ejde.2020.61 | |
60. | 德玉 郭, Construction and Dynamic Analysis of a Class of Hepatitis C Model with Population Heterogeneity, 2023, 12, 2324-7991, 4665, 10.12677/AAM.2023.1211458 | |
61. | Guojin Wang, Wei Yao, An application of small-world network on predicting the behavior of infectious disease on campus, 2024, 9, 24680427, 177, 10.1016/j.idm.2023.12.007 | |
62. | Bingjie Wu, Liang’an Huo, Studying the impact of individual emotional states on the co-evolution of information, behavior and disease in multiplex networks, 2025, 03784371, 130480, 10.1016/j.physa.2025.130480 | |
63. | Samuel Lopez, Natalia L. Komarova, An optimal network that promotes the spread of an advantageous variant in an SIR epidemic, 2025, 00225193, 112095, 10.1016/j.jtbi.2025.112095 | |
64. | Ruomu Miao, Qingxuan Wang, Cross-cultural communication and the micro-spread of internet rumors: mechanisms and predictions, 2025, 2197-4233, 10.1007/s40636-025-00340-3 |