For $ \alpha > -\frac{1}{2} $, the Laguerre differential operator is defined as
$ L_\alpha = \frac{1}{2}\Big(-\frac{d^2}{dx^2}+x^2+\frac{1}{x^2}\big(\alpha^2-\frac{1}{4}\big)\Big), \,x\in(0,\infty). $
For sufficiently good function $ f $, the maximal functions associated with heat and Poisson semigroups are defined by
$ Tf(x) = \sup\limits_{t>0}|T_tf(x)|,\,x\in(0,\infty), $
where $ \{T_t\}_{t > 0} $ is the heat semigroup $ \{e^{-tL_\alpha}\}_{t > 0} $ or Poisson semigroup $ \{e^{-t\sqrt{L_\alpha}}\}_{t > 0} $ related to the Laguerre differential operator $ L_\alpha $. In this paper, we first established a $ T1 $ criterion for the boundedness of the $ \gamma $-Laguerre-Calderón-Zygmund operator on $ BMO^{\beta}_{L_{\alpha}}((0, \infty)) \; (0\leq\beta\leq1) $ spaces related to the Laguerre differential operator $ L_\alpha $. As applications, using this $ T1 $ criterion, we proved the boundedness on $ BMO^{\beta}_{L_{\alpha}}((0, \infty)) \; (0\leq\beta\leq1) $ of the maximal operators for semigroups related to the Laguerre differential operator $ L_\alpha $.
Citation: Li Yuan, Jinglan Jia, Ping Li, Zhu Wen. The boundedness on $ BMO^\beta_{L_\alpha} $ of maximal operators for semigroups related to Laguerre operator[J]. Electronic Research Archive, 2025, 33(10): 6219-6240. doi: 10.3934/era.2025275
For $ \alpha > -\frac{1}{2} $, the Laguerre differential operator is defined as
$ L_\alpha = \frac{1}{2}\Big(-\frac{d^2}{dx^2}+x^2+\frac{1}{x^2}\big(\alpha^2-\frac{1}{4}\big)\Big), \,x\in(0,\infty). $
For sufficiently good function $ f $, the maximal functions associated with heat and Poisson semigroups are defined by
$ Tf(x) = \sup\limits_{t>0}|T_tf(x)|,\,x\in(0,\infty), $
where $ \{T_t\}_{t > 0} $ is the heat semigroup $ \{e^{-tL_\alpha}\}_{t > 0} $ or Poisson semigroup $ \{e^{-t\sqrt{L_\alpha}}\}_{t > 0} $ related to the Laguerre differential operator $ L_\alpha $. In this paper, we first established a $ T1 $ criterion for the boundedness of the $ \gamma $-Laguerre-Calderón-Zygmund operator on $ BMO^{\beta}_{L_{\alpha}}((0, \infty)) \; (0\leq\beta\leq1) $ spaces related to the Laguerre differential operator $ L_\alpha $. As applications, using this $ T1 $ criterion, we proved the boundedness on $ BMO^{\beta}_{L_{\alpha}}((0, \infty)) \; (0\leq\beta\leq1) $ of the maximal operators for semigroups related to the Laguerre differential operator $ L_\alpha $.
| [1] | S. Campanato, Proprietà di hölderianità di alcume classi di funzioni, Ann. Sc. Norm. Super. Pisa, 17 (1963), 175–188. |
| [2] |
B. Bongioanni, E. Harboure, O. Salinas, Riesz transforms related to Schrödinger operators acting on $BMO$ type spaces, J. Math. Anal. Appl., 357 (2009), 115–131. https://doi.org/10.1016/j.jmaa.2009.03.048 doi: 10.1016/j.jmaa.2009.03.048
|
| [3] |
T. Ma, P. R. Stinga, J. L. Torrea, C. Zhang, Regularity estimates in Hölder spaces for Schrödinger operators via a T1 theorem, Ann. Mat. Pur. Appl., 193 (2014), 561–589. https://doi.org/10.1007/s10231-012-0291-9 doi: 10.1007/s10231-012-0291-9
|
| [4] |
Z. Wang, P. Li, C. Zhang, Boundedness of operators generated by fractional semigroups associated with Schrödinger operators on Campanato type spaces via T1 theorem, Banach J. Math. Anal., 15 (2021), 64. https://doi.org/10.1007/s43037-021-00148-4 doi: 10.1007/s43037-021-00148-4
|
| [5] | G. Szegö, Orthogonal Polynomials, 4th edition, American Mathematical Society, Providence, RI, 1975. |
| [6] |
K. Stempak, J. L. Torrea, Poisson integrals and Riesz transforms for Hermite function expansions with weights, J. Funct. Anal., 202 (2003), 443–472. https://doi.org/10.1016/S0022-1236(03)00083-1 doi: 10.1016/S0022-1236(03)00083-1
|
| [7] |
C. Fan, H. Du, J. Jia, P. Li, Z. Wen, The boundedness on $BMO_{L_\alpha}$ space of variation operators for semigroups related to the Laguerre operator, AIMS Math., 9 (2024), 22486–22499. https://doi.org/10.3934/math.20241093 doi: 10.3934/math.20241093
|
| [8] |
J. J. Betancor, R. Crescimbeni, J. C. Fariña, P. R. Stinga, J. L. Torrea, A T1 criterion for Hermite-Calderón-Zygmund operators on the $BMO_H(\mathbb{R}^n)$ spaces and applications, Ann. Sc. Norm. Super. Pisa CI. Sci., 12 (2013), 157–187. https://doi.org/10.2422/2036-2145.201011-002 doi: 10.2422/2036-2145.201011-002
|
| [9] | Y. Ma, M. Chen, Y. Chen, P. Li, The oscillation of the Poisson semigroup associated with parabolic Bessel operator, J. Cent. China Norm. Univ. Nat. Sci., 57 (2023). https://doi.org/10.19603/j.cnki.1000-1190.2023.03.002 |
| [10] |
H. Ye, J. Jia, P. Li, Z. Wu, The oscillation of the Poisson semigroup associated with the parabolic Laguerre operator(in Chinese), Sci. Sin. Math., 55 (2025), 1–12. https://doi.org/10.1360/SSM-2024-0273 doi: 10.1360/SSM-2024-0273
|
| [11] |
Y. Xiao, P. Li, The oscillation of semigroups associated with discrete Laplacian, J. Cent. China Norm. Univ. Nat. Sci., 56 (2022), 922–927. https://doi.org/10.19603/j.cnki.1000-1190.2022.06.002 doi: 10.19603/j.cnki.1000-1190.2022.06.002
|
| [12] |
Y. Bao, Q. Deng, Y. Jiang, P. Li, Fractional square functions and potential spaces related to disctete Laplacian, Commun. Pure Appl. Anal., 24 (2025), 2389–2406. https://doi.org/10.3934/cpaa.2025086 doi: 10.3934/cpaa.2025086
|
| [13] | L. Cha, H. Liu, $BMO$-boundedness of maximal operators and $g$-functions associated with Laguerre expansions, J. Funct. Spaces Appl., 2012, Art. ID 923874. https://doi.org/10.1155/2012/923874 |
| [14] |
J. J. Betancor, J. C. Farina, L. Rodŕguez-Mesa, A. Sanabria, J. L. Torrea, Transference between Laguerre and Hermite settings, J. Funct. Anal., 254 (2008), 826–850. https://doi.org/10.1016/j.jfa.2007.10.014 doi: 10.1016/j.jfa.2007.10.014
|
| [15] |
J. Dziubański, Hardy spaces for laguerre expansions, Constr. Approx., 27 (2008), 269–287. https://doi.org/10.1007/s00365-006-0667-y doi: 10.1007/s00365-006-0667-y
|
| [16] |
J. J. Betancor, J. Dziubański, G. Garrigós, Riesz transform characterization of Hardy spaces associated with certain Laguerre expansions, Tohoku Math. J., 62 (2010), 215–231. https://doi.org/10.2748/tmj/1277298646 doi: 10.2748/tmj/1277298646
|
| [17] |
J. J. Betancor, S. M. Molina, L. Rodríguez-Mesa, Area Littlewood-paley functions associated with Hermite and Laguerre operators, Potential Anal., 34 (2011), 345–369. https://doi.org/10.1007/s11118-010-9197-6 doi: 10.1007/s11118-010-9197-6
|
| [18] |
J. Dziubański, G. Garrigós, T. Martínez, J. L. Torrea, J. Zienkiewicz, BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z., 249 (2005), 329–356. https://doi.org/10.1007/s00209-004-0701-9 doi: 10.1007/s00209-004-0701-9
|
| [19] |
L. Cha, H. Liu, BMO space for Laguerre expansions, Taiwanse J. Math., 16 (2012), 2153–2186. https://doi.org/ 10.11650/twjm/1500406845 doi: 10.11650/twjm/1500406845
|
| [20] |
J. Dong, H. Liu, The $BMO_L$ space and Riesz transforms associated with Schrödinger operators, Acta Math. Sin. (Engl. Ser.), 26 (2010), 659–668. https://doi.org/10.1007/s10114-010-8115-6 doi: 10.1007/s10114-010-8115-6
|
| [21] |
H. Wang, P. Li, Fractional integral associated with the Schrödinger operators on variable exponent space, Electron. Res. Arch., 31 (2023), 6833–6843. https://doi.org/10.3934/era.2023345 doi: 10.3934/era.2023345
|
| [22] |
P. Li, C. Ma, Y. Hou, The oscillation of the Poisson semigroup associated to parabolic Hermite operator, Acta Math. Sci. Ser. B (Engl. Ed.), 38 (2018), 1214–1226. https://doi.org/10.1016/S0252-9602(18)30809-9 doi: 10.1016/S0252-9602(18)30809-9
|
| [23] |
P. Li, P. R. Stinga, J. L. Torrea, On weighted mixed-norm Sobolev estimates for some basic parabolic equations, Commun. Pure Appl. Anal., 16 (2017), 855–882. https://doi.org/10.3934/cpaa.2017041 doi: 10.3934/cpaa.2017041
|
| [24] |
P. Plewa, Besov and Triebel-Lizorkin spaces associated with Laguerre expansions of Hermite type, Acta Math. Hungar., 153 (2017), 143–176. https://doi.org/10.1007/s10474-017-0747-x doi: 10.1007/s10474-017-0747-x
|
| [25] |
K. Stempak, Heat-diffusion and Poisson integrals for Laguerre expansions, Tohoku Math. J., 46 (1994), 83–104. https://doi.org/10.2748/tmj/1178225803 doi: 10.2748/tmj/1178225803
|
| [26] | E. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton, NJ, Princeton University Press, 1993. |