Research article Special Issues

A high accuracy method for the nonlinear fractional diffusion problem on network

  • Published: 22 October 2025
  • The fractional diffusion equation involving the fractional Laplacian is used to govern fractional random walk dynamics on network, which allowing long-range displacements. This paper develops a high accuracy numerical method for the computation of nonlinear fractional diffusion equation. The main idea is to approximate the spatial domain with a spectral Galerkin method based on Fourier-like basis functions, and then to discretize time by the general linear methods which contains Runge-Kutta methods, multistep methods, and many new classes of methods. For $ (k, l) $-algebraically stable general linear methods with general stage order $ p $, the nonlinear term satisfies the locally Lipschitz condition, and the proposed method is proved to be well-posed, stable, and convergent with order $ p $ in time. Moreover, an optimal spatial error estimate is established, whose convergence rate is independent of the fractional parameter $ \alpha $. Finally, several numerical experiments are presented to verify and support the theoretical results.

    Citation: Yangming Zhang, Yan Fan. A high accuracy method for the nonlinear fractional diffusion problem on network[J]. Electronic Research Archive, 2025, 33(10): 6241-6266. doi: 10.3934/era.2025276

    Related Papers:

  • The fractional diffusion equation involving the fractional Laplacian is used to govern fractional random walk dynamics on network, which allowing long-range displacements. This paper develops a high accuracy numerical method for the computation of nonlinear fractional diffusion equation. The main idea is to approximate the spatial domain with a spectral Galerkin method based on Fourier-like basis functions, and then to discretize time by the general linear methods which contains Runge-Kutta methods, multistep methods, and many new classes of methods. For $ (k, l) $-algebraically stable general linear methods with general stage order $ p $, the nonlinear term satisfies the locally Lipschitz condition, and the proposed method is proved to be well-posed, stable, and convergent with order $ p $ in time. Moreover, an optimal spatial error estimate is established, whose convergence rate is independent of the fractional parameter $ \alpha $. Finally, several numerical experiments are presented to verify and support the theoretical results.



    加载中


    [1] D. Brockmann, L. Hufnagel, T. Geisel, The scaling laws of human travel, Nature, 439 (2006), 462–465. https://doi.org/10.1038/nature04292 doi: 10.1038/nature04292
    [2] M. B. A. Barrat, A. Vespignani, Dynamical Processes on Complex Networks, Cambridge University Press, 2013.
    [3] W. Huang, S. Chen, W. Wang, Navigation in spatial networks: A survey, Physica A, 393 (2014), 132–154. https://doi.org/10.1016/j.physa.2013.09.014 doi: 10.1016/j.physa.2013.09.014
    [4] T. Michelitsch, A. P. Riascos, B. Collet, A. Nowakowski, F. Nicolleau, Fractional Dynamics on Networks and Lattices, John Wiley & Sons, 2019. https://doi.org/10.1002/9781119608165
    [5] J. D. Noh, H. Rieger, Random walks on complex networks, Phys. Rev. Lett., 92 (2004), 118701. https://doi.org/10.1103/PhysRevLett.92.118701 doi: 10.1103/PhysRevLett.92.118701
    [6] S. N. Dorogovtsev, A. V. Goltsev, J. F. Mendes, Critical phenomena in complex networks, Rev. Mod. Phys., 80 (2008), 1275–1335. https://doi.org/10.1103/RevModPhys.80.1275 doi: 10.1103/RevModPhys.80.1275
    [7] Z. Zhang, A. Julaiti, B. Hou, H. Zhang, G. Chen, Mean first-passage time for random walks on undirected networks, Eur. Phys. J. B, 84 (2011), 691–697. https://doi.org/10.1140/epjb/e2011-20834-1 doi: 10.1140/epjb/e2011-20834-1
    [8] A. P. Riascos, J. L. Mateos, Long-range navigation on complex networks using lévy random walks, Phys. Rev. E, 86 (2012), 056110. https://doi.org/10.1103/PhysRevE.86.056110 doi: 10.1103/PhysRevE.86.056110
    [9] T. Michelitsch, B. Collet, A. P. Riascos, A. Nowakowski, F. Nicolleau, Recurrence of random walks with long-range steps generated by fractional laplacian matrices on regular networks and simple cubic lattices, J. Phys. A: Math. Theor., 50 (2017), 505004. https://doi.org/10.1088/1751-8121/aa9008 doi: 10.1088/1751-8121/aa9008
    [10] T. M. Michelitsch, B. Collet, A. P. Riascos, A. Nowakowski, F. C. Nicolleau, Fractional random walk lattice dynamics, J. Phys. A: Math. Theor., 50 (2017), 055003. https://doi.org/10.1088/1751-8121/aa5173 doi: 10.1088/1751-8121/aa5173
    [11] A. P. Riascos, J. L. Mateos, Fractional dynamics on networks: Emergence of anomalous diffusion and lévy flights, Phys. Rev. E, 90 (2014), 032809. https://doi.org/10.1103/PhysRevE.90.032809 doi: 10.1103/PhysRevE.90.032809
    [12] A. Riascos, J. L. Mateos, Fractional diffusion on circulant networks: emergence of a dynamical small world, J. Stat. Mech: Theory Exp., 2015 (2015), P07015. https://doi.org/10.1088/1742-5468/2015/07/P07015 doi: 10.1088/1742-5468/2015/07/P07015
    [13] Y. Zhang, D. A. Benson, D. M. Reeves, Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications, Adv. Water Resour., 32 (2009), 561–581. https://doi.org/10.1016/j.advwatres.2009.01.008 doi: 10.1016/j.advwatres.2009.01.008
    [14] C. Lee, Y. Nam, M. Bang, S. Ham, J. Kim, Numerical investigation of the dynamics for a normalized time-fractional diffusion equation, AIMS Math., 9 (2024), 26671–26687. https://doi.org/10.3934/math.20241297 doi: 10.3934/math.20241297
    [15] S. Duo, L. Ju, Y. Zhang, A fast algorithm for solving the space-time fractional diffusion equation, Comput. Math. Appl., 75 (2018), 1929–1941. https://doi.org/10.1016/j.camwa.2017.04.008 doi: 10.1016/j.camwa.2017.04.008
    [16] Z. Hao, Z. Zhang, R. Du, Fractional centered difference scheme for high-dimensional integral fractional Laplacian, J. Comput. Phys., 424 (2021), 109851. https://doi.org/10.1016/j.jcp.2020.109851 doi: 10.1016/j.jcp.2020.109851
    [17] M. Zhang, F. Liu, I. W. Turner, V. V. Anh, A vertex-centred finite volume method for the 3d multi-term time and space fractional bloch–torrey equation with fractional Laplacian, Commun. Nonlinear Sci. Numer. Simul., 114 (2022), 106666. https://doi.org/10.1016/j.cnsns.2022.106666 doi: 10.1016/j.cnsns.2022.106666
    [18] C. Sheng, B. Su, C. Xu, Efficient monte carlo method for integral fractional laplacian in multiple dimensions, SIAM J. Numer. Anal., 61 (2023), 2035–2061. https://doi.org/10.1137/22M1504706 doi: 10.1137/22M1504706
    [19] C. Jiao, C. Li, Monte carlo method for parabolic equations involving fractional Laplacian, Monte Carlo Methods Appl., 29 (2023), 33–53. https://doi.org/10.1515/mcma-2022-2129 doi: 10.1515/mcma-2022-2129
    [20] B. Yin, Y. Liu, H. Li, S. He, Fast algorithm based on tt-m fe system for space fractional allen–cahn equations with smooth and non-smooth solutions, J. Comput. Phys., 379 (2019), 351–372. https://doi.org/10.1016/j.jcp.2018.12.004 doi: 10.1016/j.jcp.2018.12.004
    [21] R. H. Nochetto, E. Otárola, A. J. Salgado, A PDE approach to fractional diffusion in general domains: a priori error analysis, Found. Comput. Math., 15 (2015), 733–791. https://doi.org/10.1007/s10208-014-9208-x doi: 10.1007/s10208-014-9208-x
    [22] L. Chen, R. Nochetto, E. Otárola, A. Salgado, Multilevel methods for nonuniformly elliptic operators and fractional diffusion, Math. Comput., 85 (2016), 2583–2607. https://doi.org/10.1090/mcom/3089 doi: 10.1090/mcom/3089
    [23] A. Bonito, W. Lei, J. E. Pasciak, On sinc quadrature approximations of fractional powers of regularly accretive operators, J. Numer. Math., 27 (2019), 57–68. https://doi.org/10.1515/jnma-2017-0116 doi: 10.1515/jnma-2017-0116
    [24] A. Bueno-Orovio, D. Kay, K. Burrage, Fourier spectral methods for fractional-in-space reaction-diffusion equations, BIT Numer. Math., 54 (2014), 937–954. https://doi.org/10.1007/s10543-014-0484-2 doi: 10.1007/s10543-014-0484-2
    [25] F. Song, C. Xu, G. E. Karniadakis, Computing fractional laplacians on complex-geometry domains: algorithms and simulations, SIAM J. Sci. Comput., 39 (2017), A1320–A1344. https://doi.org/10.1137/16M1078197 doi: 10.1137/16M1078197
    [26] T. Tang, L. Wang, H. Yuan, T. Zhou, Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains, SIAM J. Sci. Comput., 42 (2020), A585–A611. https://doi.org/10.1137/19M1244299 doi: 10.1137/19M1244299
    [27] H. Zhang, X. Jiang, F. Zeng, G. E. Karniadakis, A stabilized semi-implicit fourier spectral method for nonlinear space-fractional reaction-diffusion equations, J. Comput. Phys., 405 (2020), 109141. https://doi.org/10.1016/j.jcp.2019.109141 doi: 10.1016/j.jcp.2019.109141
    [28] S. Chen, J. Shen, L. L. Wang, Generalized Jacobi functions and their applications to fractional differential equations, Math. Comput., 85 (2016), 1603–1638. https://doi.org/10.1090/mcom3035 doi: 10.1090/mcom3035
    [29] C. Sheng, D. Cao, J. Shen, Efficient spectral methods for PDEs with spectral fractional Laplacian, J. Sci. Comput., 88 (2021), 4. https://doi.org/10.1007/s10915-021-01491-2 doi: 10.1007/s10915-021-01491-2
    [30] C. Sheng, J. Shen, T. Tang, L. L. Wang, H. Yuan, Fast fourier-like mapped chebyshev spectral-galerkin methods for pdes with integral fractional laplacian in unbounded domains, SIAM J. Numer. Anal., 58 (2020), 2435–2464. https://doi.org/10.1137/19M128377X doi: 10.1137/19M128377X
    [31] C. Sheng, S. Ma, H. Li, L. L. Wang, L. Jia, Nontensorial generalised hermite spectral methods for pdes with fractional laplacian and schrödinger operators, ESAIM. Math. Model. Numer. Anal., 55 (2021), 2141–2168. https://doi.org/10.1051/m2an/2021049 doi: 10.1051/m2an/2021049
    [32] J. Burkardt, Y. Wu, Y. Zhang, A unified meshfree pseudospectral method for solving both classical and fractional PDEs, SIAM J. Sci. Comput., 43 (2021), A1389–A1411. https://doi.org/10.1137/20M1335959 doi: 10.1137/20M1335959
    [33] D. Nie, W. Deng, Local discontinuous galerkin method for the fractional diffusion equation with integral fractional laplacian, Comput. Math. Appl., 104 (2021), 44–49. https://doi.org/10.1016/j.camwa.2021.11.007 doi: 10.1016/j.camwa.2021.11.007
    [34] W. Wang, Y. Huang, J. Tang, Lie-Trotter operator splitting spectral method for linear semiclassical fractional Schrödinger equation, Comput. Math. Appl., 113 (2022), 117–129. https://doi.org/10.1016/j.camwa.2022.03.016 doi: 10.1016/j.camwa.2022.03.016
    [35] W. Wang, Y. Huang, Analytical and numerical dissipativity for the space-fractional Allen–Cahn equation, Math. Comput. Simul., 207 (2023), 80–96. https://doi.org/10.1016/j.matcom.2022.12.012 doi: 10.1016/j.matcom.2022.12.012
    [36] B. Yu, X. Zheng, P. Zhang, L. Zhang, Computing solution landscape of nonlinear space-fractional problem via fast approximation algorithm, J. Comput. Phys., 468 (2022), 111513. https://doi.org/10.1016/j.jcp.2022.111513 doi: 10.1016/j.jcp.2022.111513
    [37] Y. Xu, Y. Zhang, J. Zhao, Backward difference formulae and spectral Galerkin methods for the Riesz space fractional diffusion equation, Math. Comput. Simul., 166 (2019), 494–507. https://doi.org/10.1016/j.matcom.2019.07.007 doi: 10.1016/j.matcom.2019.07.007
    [38] Y. Zhang, Y. Li, Y. Yu, W. Wang, Implicit Runge-Kutta with spectral Galerkin methods for the fractional diffusion equation with spectral fractional Laplacian, Numer. Methods Partial Differ. Equations, 40 (2024), e23074. https://doi.org/10.1002/num.23074 doi: 10.1002/num.23074
    [39] J. C. Butcher, General linear methods, Acta Numer., 15 (2006), 157–256. https://doi.org/10.1017/S0962492906220014 doi: 10.1017/S0962492906220014
    [40] K. Burrage, J. C. Butcher, Non-linear stability of a general class of differential equation methods, BIT Numer. Math., 20 (1980), 185–203. https://doi.org/10.1007/BF01933191 doi: 10.1007/BF01933191
    [41] S. Li, Stability and B-convergence of general linear methods, J. Comput. Appl. Math., 28 (1989), 281–296. https://doi.org/10.1016/0377-0427(89)90340-3 doi: 10.1016/0377-0427(89)90340-3
    [42] S. Li, Numerical Analysis for Stiff Ordinary and Functional Differential Equations, Xiangtan University Publisher, 2010.
    [43] J. Shen, L. L. Wang, Fourierization of the Legendre–Galerkin method and a new space–time spectral method, Appl. Numer. Math., 57 (2007), 710–720. https://doi.org/10.1016/j.apnum.2006.07.012 doi: 10.1016/j.apnum.2006.07.012
    [44] V. J. Ervin, J. P. Roop, Variational solution of fractional advection dispersion equations on bounded domains in $\mathbb{R}^{d}$, Numer. Methods Partial Differ. Equations, 23 (2007), 256–281. https://doi.org/10.1002/num.20169 doi: 10.1002/num.20169
    [45] E. Hairer, G. Wanner, Solving Ordinary Differential Equations Ⅱ—Stiff and Differential-Algebraic Problems, Springer Verlag, Berlin, 1996. https://doi.org/10.1007/978-3-642-05221-7
    [46] C. Huang, Q. Chang, A. Xiao, B-convergence of general linear methods for stiff problems, Appl. Numer. Math., 47 (2003), 31–44. https://doi.org/10.1016/S0168-9274(03)00051-5 doi: 10.1016/S0168-9274(03)00051-5
    [47] Y. Xu, Y. Zhang, J. Zhao, General linear and spectral Galerkin methods for the Riesz space fractional diffusion equation, Appl. Math. Comput., 364 (2020), 124664. https://doi.org/10.1016/j.amc.2019.124664 doi: 10.1016/j.amc.2019.124664
    [48] S. Li, Stability and B-convergence properties of multistep Runge-Kutta methods, Math. Comput., 69 (2000), 1481–1504. https://doi.org/10.1090/S0025-5718-99-01159-X doi: 10.1090/S0025-5718-99-01159-X
    [49] Y. Zhang, Y. Fan, Y. Li, General linear and spectral Galerkin methods for the nonlinear two-sided space distributed-order diffusion equation, Comput. Math. Appl., 113 (2022), 1–12. https://doi.org/10.1016/j.camwa.2022.03.021 doi: 10.1016/j.camwa.2022.03.021
    [50] Y. Zhang, Y. Li, Y. Yu, W. Wang, Error estimates of general linear and spectral galerkin methods for the fractional diffusion equation with spectral fractional Laplacian, Comput. Appl. Math., 44 (2025), 157. https://doi.org/10.1007/s40314-025-03116-y doi: 10.1007/s40314-025-03116-y
    [51] D. S. Grebenkov, B. T. Nguyen, Geometrical structure of Laplacian eigenfunctions, SIAM Rev., 55 (2013), 601–667. https://doi.org/10.1137/120880173 doi: 10.1137/120880173
    [52] K. Burrage, N. Hale, D. Kay, An efficient implicit FEM scheme for fractional-in-space reaction–diffusion equations, SIAM J. Sci. Comput., 34 (2012), A2145–A2172. https://doi.org/10.1137/110847007 doi: 10.1137/110847007
    [53] C. Lee, S. Ham, Y. Hwang, S. Kwak, J. Kim, An explicit fourth-order accurate compact method for the allen-cahn equation, AIMS Math., 9 (2024), 735–762. https://doi.org/10.3934/math.2024038 doi: 10.3934/math.2024038
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(321) PDF downloads(29) Cited by(0)

Article outline

Figures and Tables

Figures(13)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog