It is proved in this paper that if $ G $ is a $ \mathcal {G} $-topological group and $ \{K_{i}: i\in \omega \} $ is a family of generalized open subsets containing the identity element $ e $ in $ G $ satisfying $ K_{i+1}^2 \subset K_i $ and $ K_i^{-1} = K_i $ for every $ i\in \omega $, then $ G/H $ is metrizable where $ H = \bigcap_{i\in\omega}K_{i} $. Let $ \left(G, \tau \right) $ be a $ \mathcal {G} $-topological group satisfying for every $ e\in U\in \tau $ that there is $ e\in O\in \tau $ such that $ O^{2}\subset U $. Then, we obtain that 1) if $ H $ is generalized $ \kappa $-narrow and $ cl_{G}H = G $, then $ G $ is also generalized $ \kappa $-narrow; 2) $ AB $ is generalized $ \kappa $-narrow in $ G $ provided that $ A $ and $ B $ are generalized $ \kappa $-narrow in $ G $. Finally, we consider coset spaces. It is shown that 3) for a subgroup $ H $ of G, if H and the generalized quotient space G/H have countable generalized pseudocharacter, then G also has countable generalized pseudocharacter; 4) for a subgroup $ H $, if $ H $ is the generalized connected component containing $ e $ in $ G $, $ G/H $ is generalized totally disconnected; 5) if H is a generalized closed subgroup and generalized totally disconnected, then G is also generalized totally disconnected when G/H is generalized totally disconnected.
Citation: Kaixiong Lin, Jing Zhang, Hanfeng Wang. Some results in generalized topological groups[J]. Electronic Research Archive, 2025, 33(10): 6206-6218. doi: 10.3934/era.2025274
It is proved in this paper that if $ G $ is a $ \mathcal {G} $-topological group and $ \{K_{i}: i\in \omega \} $ is a family of generalized open subsets containing the identity element $ e $ in $ G $ satisfying $ K_{i+1}^2 \subset K_i $ and $ K_i^{-1} = K_i $ for every $ i\in \omega $, then $ G/H $ is metrizable where $ H = \bigcap_{i\in\omega}K_{i} $. Let $ \left(G, \tau \right) $ be a $ \mathcal {G} $-topological group satisfying for every $ e\in U\in \tau $ that there is $ e\in O\in \tau $ such that $ O^{2}\subset U $. Then, we obtain that 1) if $ H $ is generalized $ \kappa $-narrow and $ cl_{G}H = G $, then $ G $ is also generalized $ \kappa $-narrow; 2) $ AB $ is generalized $ \kappa $-narrow in $ G $ provided that $ A $ and $ B $ are generalized $ \kappa $-narrow in $ G $. Finally, we consider coset spaces. It is shown that 3) for a subgroup $ H $ of G, if H and the generalized quotient space G/H have countable generalized pseudocharacter, then G also has countable generalized pseudocharacter; 4) for a subgroup $ H $, if $ H $ is the generalized connected component containing $ e $ in $ G $, $ G/H $ is generalized totally disconnected; 5) if H is a generalized closed subgroup and generalized totally disconnected, then G is also generalized totally disconnected when G/H is generalized totally disconnected.
| [1] |
Á. Császár, Generalized topology, generized continuity, Acta Math. Hung., 96 (2002), 351–357. https://doi.org/10.1023/A:1019713018007 doi: 10.1023/A:1019713018007
|
| [2] |
Á. Császár, Separation axioms for generalized topologies, Acta Math. Hung., 104 (2004), 63–69. https://doi.org/10.1023/b:amhu.0000034362.97008.c6 doi: 10.1023/b:amhu.0000034362.97008.c6
|
| [3] |
Á. Császár, $\gamma$-connected sets, Acta Math. Hung., 101 (2003), 273–279. https://doi.org/10.1023/B:AMHU.0000004939.57085.9e doi: 10.1023/B:AMHU.0000004939.57085.9e
|
| [4] |
Á. Császár, Product of generalized topologies, Acta Math. Hung., 123 (2009), 127–132. https://doi.org/10.1007/s10474-008-8074-x doi: 10.1007/s10474-008-8074-x
|
| [5] |
R. Shen, Remarks on products of generalized topologies, Acta Math. Hung., 124 (2009), 363–369. https://doi.org/10.1007/s10474-009-8207-x doi: 10.1007/s10474-009-8207-x
|
| [6] |
G. E. Ge, G. E. Ying, $\mu$-Separations in generalized topological spaces, Appl. Math. J. Chin. Univ., 25 (2010), 243–252. https://doi.org/10.1007/s11766-010-2274-1 doi: 10.1007/s11766-010-2274-1
|
| [7] |
M. S. Sarsak, Weak separation axioms in generalized topological spaces, Acta Math. Hung., 131 (2011), 110–121. https://doi.org/10.1007/s10474-010-0017-7 doi: 10.1007/s10474-010-0017-7
|
| [8] |
L. E. De Arruda Saraiva, Generalized quotient topologies, Acta Math. Hung., 132 (2011), 168–173. https://doi.org/10.1007/s10474-010-0047-1 doi: 10.1007/s10474-010-0047-1
|
| [9] | A. Arhangel'skii, M. Tkachenko, Topological Groups and Related Structures, An Introduction to Topological Algebra, $1^{st}$ edition, Atlantis Press, 2008. https://doi.org/10.2991/978-94-91216-35-0 |
| [10] |
S. Lin, L. Xie, D. Chen, Some generalized countably compact properties in topological groups, Topol. Appl., 339 (2023), 108705. https://doi.org/10.1016/j.topol.2023.108705 doi: 10.1016/j.topol.2023.108705
|
| [11] |
A. V. Arkhangel'skii, Topological homogeneity. Topological groups and their continuous images, Russ. Math. Surv., 42 (1987), 83–131. https://doi.org/10.1070/rm1987v042n02abeh001333 doi: 10.1070/rm1987v042n02abeh001333
|
| [12] |
S. Bagchi, The sequential and contractible topological embeddings of functional groups, Symmetry, 12 (2020), 789. https://doi.org/10.3390/sym12050789 doi: 10.3390/sym12050789
|
| [13] |
M. Hussain, M. U. D. Khan, C. Ozel, On generalized topological groups, Filomat, 27 (2013), 567–575. https://doi.org/10.2298/FIL1304567H doi: 10.2298/FIL1304567H
|
| [14] |
Z. Li, S. Li, Introduction to generalized topological groups, Publ. Math. Debrecen, 85 (2014), 1–13. https://doi.org/10.5486/pmd.2014.5597 doi: 10.5486/pmd.2014.5597
|
| [15] |
M. Hussain, M. U. D. Khan, C. Ozel, More on generalized topological groups, Creative Math. Inf., 22 (2013), 47–51. https://doi.org/10.37193/CMI.2013.01.07 doi: 10.37193/CMI.2013.01.07
|
| [16] | T. Hida, Soft topological group, Ann. Fuzzy Math. Inf., 8 (2014), 1001–1025. |
| [17] | T. Shah, S. Shaheen, Soft topological groups and rings, Ann. Fuzzy Math. Inf., 7 (2014), 725–743. |
| [18] |
O. Tantawy, S. A. Kandil, A. ElShamy, Generalization of soft topological groups, J. Egypt. Math. Soc., 28 (2020), 13. https://doi.org/10.1186/s42787-020-00075-7 doi: 10.1186/s42787-020-00075-7
|
| [19] | Á. Császár, Extremally disconnected generalized topologies, Ann. Univ. Sci. Budap. Rolando Eötvös Nominatae Sect. Math., 47 (2004), 91–96. |
| [20] |
P. Ye, C. Cai, Research on some properties of generalized topological groups, J. Nanning Normal Univ. (Nat. Sci. Ed.), 38 (2021), 27–36. https://doi.org/10.16601/j.cnki.issn2096-7330.2021.02.004 doi: 10.16601/j.cnki.issn2096-7330.2021.02.004
|