Research article

Some results in generalized topological groups

  • Published: 21 October 2025
  • It is proved in this paper that if $ G $ is a $ \mathcal {G} $-topological group and $ \{K_{i}: i\in \omega \} $ is a family of generalized open subsets containing the identity element $ e $ in $ G $ satisfying $ K_{i+1}^2 \subset K_i $ and $ K_i^{-1} = K_i $ for every $ i\in \omega $, then $ G/H $ is metrizable where $ H = \bigcap_{i\in\omega}K_{i} $. Let $ \left(G, \tau \right) $ be a $ \mathcal {G} $-topological group satisfying for every $ e\in U\in \tau $ that there is $ e\in O\in \tau $ such that $ O^{2}\subset U $. Then, we obtain that 1) if $ H $ is generalized $ \kappa $-narrow and $ cl_{G}H = G $, then $ G $ is also generalized $ \kappa $-narrow; 2) $ AB $ is generalized $ \kappa $-narrow in $ G $ provided that $ A $ and $ B $ are generalized $ \kappa $-narrow in $ G $. Finally, we consider coset spaces. It is shown that 3) for a subgroup $ H $ of G, if H and the generalized quotient space G/H have countable generalized pseudocharacter, then G also has countable generalized pseudocharacter; 4) for a subgroup $ H $, if $ H $ is the generalized connected component containing $ e $ in $ G $, $ G/H $ is generalized totally disconnected; 5) if H is a generalized closed subgroup and generalized totally disconnected, then G is also generalized totally disconnected when G/H is generalized totally disconnected.

    Citation: Kaixiong Lin, Jing Zhang, Hanfeng Wang. Some results in generalized topological groups[J]. Electronic Research Archive, 2025, 33(10): 6206-6218. doi: 10.3934/era.2025274

    Related Papers:

  • It is proved in this paper that if $ G $ is a $ \mathcal {G} $-topological group and $ \{K_{i}: i\in \omega \} $ is a family of generalized open subsets containing the identity element $ e $ in $ G $ satisfying $ K_{i+1}^2 \subset K_i $ and $ K_i^{-1} = K_i $ for every $ i\in \omega $, then $ G/H $ is metrizable where $ H = \bigcap_{i\in\omega}K_{i} $. Let $ \left(G, \tau \right) $ be a $ \mathcal {G} $-topological group satisfying for every $ e\in U\in \tau $ that there is $ e\in O\in \tau $ such that $ O^{2}\subset U $. Then, we obtain that 1) if $ H $ is generalized $ \kappa $-narrow and $ cl_{G}H = G $, then $ G $ is also generalized $ \kappa $-narrow; 2) $ AB $ is generalized $ \kappa $-narrow in $ G $ provided that $ A $ and $ B $ are generalized $ \kappa $-narrow in $ G $. Finally, we consider coset spaces. It is shown that 3) for a subgroup $ H $ of G, if H and the generalized quotient space G/H have countable generalized pseudocharacter, then G also has countable generalized pseudocharacter; 4) for a subgroup $ H $, if $ H $ is the generalized connected component containing $ e $ in $ G $, $ G/H $ is generalized totally disconnected; 5) if H is a generalized closed subgroup and generalized totally disconnected, then G is also generalized totally disconnected when G/H is generalized totally disconnected.



    加载中


    [1] Á. Császár, Generalized topology, generized continuity, Acta Math. Hung., 96 (2002), 351–357. https://doi.org/10.1023/A:1019713018007 doi: 10.1023/A:1019713018007
    [2] Á. Császár, Separation axioms for generalized topologies, Acta Math. Hung., 104 (2004), 63–69. https://doi.org/10.1023/b:amhu.0000034362.97008.c6 doi: 10.1023/b:amhu.0000034362.97008.c6
    [3] Á. Császár, $\gamma$-connected sets, Acta Math. Hung., 101 (2003), 273–279. https://doi.org/10.1023/B:AMHU.0000004939.57085.9e doi: 10.1023/B:AMHU.0000004939.57085.9e
    [4] Á. Császár, Product of generalized topologies, Acta Math. Hung., 123 (2009), 127–132. https://doi.org/10.1007/s10474-008-8074-x doi: 10.1007/s10474-008-8074-x
    [5] R. Shen, Remarks on products of generalized topologies, Acta Math. Hung., 124 (2009), 363–369. https://doi.org/10.1007/s10474-009-8207-x doi: 10.1007/s10474-009-8207-x
    [6] G. E. Ge, G. E. Ying, $\mu$-Separations in generalized topological spaces, Appl. Math. J. Chin. Univ., 25 (2010), 243–252. https://doi.org/10.1007/s11766-010-2274-1 doi: 10.1007/s11766-010-2274-1
    [7] M. S. Sarsak, Weak separation axioms in generalized topological spaces, Acta Math. Hung., 131 (2011), 110–121. https://doi.org/10.1007/s10474-010-0017-7 doi: 10.1007/s10474-010-0017-7
    [8] L. E. De Arruda Saraiva, Generalized quotient topologies, Acta Math. Hung., 132 (2011), 168–173. https://doi.org/10.1007/s10474-010-0047-1 doi: 10.1007/s10474-010-0047-1
    [9] A. Arhangel'skii, M. Tkachenko, Topological Groups and Related Structures, An Introduction to Topological Algebra, $1^{st}$ edition, Atlantis Press, 2008. https://doi.org/10.2991/978-94-91216-35-0
    [10] S. Lin, L. Xie, D. Chen, Some generalized countably compact properties in topological groups, Topol. Appl., 339 (2023), 108705. https://doi.org/10.1016/j.topol.2023.108705 doi: 10.1016/j.topol.2023.108705
    [11] A. V. Arkhangel'skii, Topological homogeneity. Topological groups and their continuous images, Russ. Math. Surv., 42 (1987), 83–131. https://doi.org/10.1070/rm1987v042n02abeh001333 doi: 10.1070/rm1987v042n02abeh001333
    [12] S. Bagchi, The sequential and contractible topological embeddings of functional groups, Symmetry, 12 (2020), 789. https://doi.org/10.3390/sym12050789 doi: 10.3390/sym12050789
    [13] M. Hussain, M. U. D. Khan, C. Ozel, On generalized topological groups, Filomat, 27 (2013), 567–575. https://doi.org/10.2298/FIL1304567H doi: 10.2298/FIL1304567H
    [14] Z. Li, S. Li, Introduction to generalized topological groups, Publ. Math. Debrecen, 85 (2014), 1–13. https://doi.org/10.5486/pmd.2014.5597 doi: 10.5486/pmd.2014.5597
    [15] M. Hussain, M. U. D. Khan, C. Ozel, More on generalized topological groups, Creative Math. Inf., 22 (2013), 47–51. https://doi.org/10.37193/CMI.2013.01.07 doi: 10.37193/CMI.2013.01.07
    [16] T. Hida, Soft topological group, Ann. Fuzzy Math. Inf., 8 (2014), 1001–1025.
    [17] T. Shah, S. Shaheen, Soft topological groups and rings, Ann. Fuzzy Math. Inf., 7 (2014), 725–743.
    [18] O. Tantawy, S. A. Kandil, A. ElShamy, Generalization of soft topological groups, J. Egypt. Math. Soc., 28 (2020), 13. https://doi.org/10.1186/s42787-020-00075-7 doi: 10.1186/s42787-020-00075-7
    [19] Á. Császár, Extremally disconnected generalized topologies, Ann. Univ. Sci. Budap. Rolando Eötvös Nominatae Sect. Math., 47 (2004), 91–96.
    [20] P. Ye, C. Cai, Research on some properties of generalized topological groups, J. Nanning Normal Univ. (Nat. Sci. Ed.), 38 (2021), 27–36. https://doi.org/10.16601/j.cnki.issn2096-7330.2021.02.004 doi: 10.16601/j.cnki.issn2096-7330.2021.02.004
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(235) PDF downloads(34) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog