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Abstract: For α > −1
2 , the Laguerre differential operator is defined as

Lα =
1
2

(
−

d2

dx2 + x2 +
1
x2

(
α2 −

1
4
))
, x ∈ (0,∞).

For sufficiently good function f , the maximal functions associated with heat and Poisson semigroups
are defined by

T f (x) = sup
t>0
|Tt f (x)|, x ∈ (0,∞),

where {Tt}t>0 is the heat semigroup {e−tLα}t>0 or Poisson semigroup {e−t
√

Lα}t>0 related to the Laguerre
differential operator Lα. In this paper, we first established a T1 criterion for the boundedness of the
γ-Laguerre-Calderón-Zygmund operator on BMOβLα((0,∞)) (0 ≤ β ≤ 1) spaces related to the Laguerre
differential operator Lα. As applications, using this T1 criterion, we proved the boundedness on
BMOβLα((0,∞)) (0 ≤ β ≤ 1) of the maximal operators for semigroups related to the Laguerre differential
operator Lα.

Keywords: Laguerre operators; heat semigroup; Poisson semigroup; T1 theorem; Campanato type spaces

1. Introduction

In the research of harmonic analysis and partial differential equations, the regularity estimates for the
second-order differential operators play an important role and have been studied extensively by many
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scholars. Sobolev and Schauder estimates for the second-order differential operators are fundamental
results in this context and can be interpreted as the boundedness of Hölder spaces under negative powers
of differential operators.

It is well-known that the classical Hölder space Cα(Rn) can be identified with the Campanato space
BMOα(Rn); see [1]. Bongioanni et al. [2] obtained the analogous results for the Schrödinger operator
H := −∆ + |x|2. They identified the Hölder space related to the Schrödinger operator with a
Campanato-type BMOαH(Rn) space. The authors derived Hölder regularity estimates for
time-independent Schrödinger operators via the T1 theorem method, and gave some applications [3].
Recently, Wang et al. studied the regularity of fractional heat semigroup associated with the Schrödinger
operator H := −∆ + V, for which the nonnegative potential V satisfies the reverse Hölder inequality [4].

For n ∈ N and α > −1, the Laguerre function of Hermite type φα on (0,+∞) is defined as

φαn (y) =
(
Γ(n + 1)
Γ(n + 1 + α)

)1/2
e−

y2
2 yαLαn (y2)(2y)1/2, y ∈ (0,+∞),

where Lαn (x) represents the Laguerre polynomial of degree n and order α [5]. It is well-known that
for every α > −1, the system {φαn }

∞
n=0 forms an orthonormal basis of L2((0,∞)). Furthermore, these

functions are eigenfunctions of the Laguerre differential operator

Lα =
1
2

(
−

d2

dy2 + y2 +
α2 − 1

4

y2

)
satisfying Lαφαn = (2n+α+1)φαn , and Lα can be extended to a positive self-adjoint operator on L2((0,∞))
by specifying a suitable domain of definition; see [6].

This paper is devoted to studying the boundedness of maximal operators of semigroups associated
with the Laguerre operator Lα(α > −1/2) on the Campanato-type spaces via the T1 theorem. Inspired
by the work of Stinga and collaborators in [3], we first establish a simple T1 criterion of the γ-Laguerre-
Calderón-Zygmund operator T given in Definition 1.1 to be bounded on Campanato-type spaces
BMOβLα((0,∞)) related to the Laguerre operator, and then use this T1 criterion to obtain the boundedness
of maximal operators of semigroups associated with the Laguerre operator on BMOβLα((0,∞)).

Let α > −1/2, and the auxiliary function ρLα related to the Laguerre operator Lα is defined as

ρLα(x) =
1
8

min
(
x,

1
x
)
, x > 0. (1.1)

Definition 1.1. Set 0 ≤ γ < 1, 1 < p ≤ q < ∞, 1
q =

1
p − γ. Let T be a bounded linear operator from

Lp(0,∞) into Lq(0,∞) such that

T f (x) =
∫ ∞

0
K(x, y) f (y)dy, f ∈ Lp

c ((0,∞)) and a.e. x < supp(f).

Then, T is a γ-Laguerre-Calderón-Zygmund operator if there exists a constant C > 0 and regularity
exponent σ > 0,

(i) |K(x, y)| ≤ C
|x−y|1−γ e

−|x−y|2 , for all x, y ∈ (0,∞) with x , y,

(ii) |K(x, y) − K(x, z)| + |K(y, x) − K(z, x)| ≤ C |y−z|σ

|x−y|1+σ−γ , when |x − y| > 2|y − z|.
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Remark 1.1. The γ-Laguerre-Calderón-Zygmund operator is also the classical Calderón-Zygmund operator.

Our first main result is the following T1-type theorem for the Laguerre-Calderón-Zygmund operator
T , given in Definition 1.1, concerning its boundedness on BMOβLα((0,∞)) related to the Laguerre
operator Lα. For the definition and properties of BMOβLα((0,∞)), we refer to Definition 2.1.

Theorem 1.2. (T1 criterion for BMOβLα((0,∞)) (0 < β < 1). Let T be a γ-Laguerre-Calderón-Zygmund
operator given in Definition 1.1, where the real number γ > 0 and smoothness exponent δ satisfies
β + γ < min{1, δ}((0,∞)). Then the operator T is bounded from BMOβLα((0,∞)) into BMOβ+γLα

((0,∞))
if and only if there exists a constant C > 0 such that, for every ball B = B(x, r), x ∈ (0,∞) and
0 < r ≤ 1

2ρLα(x),

(i)
1

|B(x, ρLα(x))|

∫
B(x,ρLα (x))

|T1(y)|dy ≤ C,

(ii)
(ρLα(x)

r

)β 1
|B|1+γ

∫
B
|T1(y) − (T1)B|dy ≤ C,

where (T1)B =
1
|B|

∫
B

T1(y)dy, the auxiliary function ρLα(x) is defined in (1.1), and the BMOβLα((0,∞))
space is defined in Definition 2.1.

Remark 1.2. Some further comments on Theorem 1.2:

(i) Theorem 1.2 also holds for vector-valued setting. For the Hermite operator case, see Remark 1.1
in [8]; for the Schrödinger operators case, see [3].

(ii) Suppose that T1 is a bounded function in (0,∞). Then T1 satisfies the first condition of Theorem
1.2. The second condition of Theorem 1.2 is fulfilled whenever there exists 0 < α ≤ 1 such that
|T1(x) − T1(y)| ≤ C|x − y|α for x, y ∈ (0,∞). For example, if ∇T1 ∈ L∞(0,∞), then the condition
(ii) holds.

For endpoint case β = 0, we get the following theorem.

Theorem 1.3. (T1 criterion for BMOLα((0,∞))). Let T be a γ-Laguerre-Calderón-Zygmund operator
given in Definition 1.1, 0 ≤ γ < min{1, δ}, with smoothness exponent δ. Then T is bounded from
BMOLα((0,∞)) into BMOγLα((0,∞)) if and only if there exists a constant C > 0 such that, for every ball
B = B(x, r), x ∈ (0,∞) and 0 < r ≤ 1

2ρLα(x),

(i)
1

|B(x, ρLα(x))|

∫
B(x,ρLα (x))

|T1(y)|dy ≤ C;

(ii) log
(ρLα(x)

r

) 1
|B|1+γ

∫
B
|T1(y) − (T1)B|dy ≤ C,

where (T1)B =
1
|B|

∫
B

T1(y)dy and ρLα(x) is defined in (1.1).

Notice that, by tracking down the exact constant in the proof, we can see that Theorem 1.3 can be
viewed as the limiting case of Theorem 1.2. This phenomenon is analogous to known results for other
operators. For the Schrödinger operator case due to [3] and for the Laguerre operator, see [7].

As a by-product of our main results, we also characterize the pointwise multipliers on BMOβLα((0,∞)).
That is, we obtain the following pointwise multiplier theorem.

Electronic Research Archive Volume 33, Issue 10, 6219–6240.



6222

Corollary 1. Assume that g is a measurable function on (0,∞). We define the multiplier operator
Tg( f ) := f g. Then

(i) Tg is a bounded operator in BMOβLα((0,∞)) for 0 < β < 1 if and only if g ∈ L∞(0,∞), and there
exists a constant C > 0 such that, for all ball B = B(x0, r0), x0 ∈ (0,∞) and 0 < r0 <

1
2ρLα(x0),

(ρLα(x0)
r0

)β 1
|B|

∫
B
|g(y) − gB|dy ≤ C.

(ii) Tg is a bounded operator in BMOLα((0,∞)) if and only if g ∈ L∞((0,∞)) and there exists a constant
C > 0 such that, for all ball B = B(x0, r0), x0 ∈ (0,∞) and 0 < r0 <

1
2ρLα(x0),

log
(ρLα(x0)

r0

) 1
|B|

∫
B
|g(y) − gB|dy ≤ C.

Remark 1.3. If g ∈ C0,α((0,∞)) ∩ L∞((0,∞)), 0 < α ≤ 1, then Tg is bounded on BMOLα((0,∞)).
Moreover, if for some γ-Laguerre-Calderón-Zygmund operator T we have that T1 defines a pointwise
multiplier in BMOβLα((0,∞)), then Corollary 1 and Theorems 1.2 and 1.3 imply that T is a bounded
operator on BMOαLα((0,∞)).

Before introducing some applications, we first review some recent works about T1 theorem. Betancor
et al. [8] established a T1 criterion for Calderón-Zygmund operators on BMOH(Rn) related to the
Hermite operator H = −∆ + |x|2. They then utilized this T1 criterion to obtain the BMOH(Rn)-
boundedness of several singular integral operators associated with H, including maximal operators,
Littlewood-Paley g-functions, Riesz transforms, and variation operators. Ma et al. [3] established an
analogous T1 criterion for Schrödinger operator. They obtained the boundedness on Campanato-type
space BMOαH(Rn) of maximal operators, square functions, Laplace transform-type multipliers, negative
powers, and Riesz transforms. The authors provided necessary and sufficient conditions in terms of T1
criteria for generalized Calderón-Zygmund-type operators to be bounded on Hp

L(Rn) and BMOL(Rn)
with respect to the Schrödinger operator L = −∆ + V with nonnegative potential V , which satisfies the
reverse Hölder inequality. Wang et al. [4] studied the boundedness of the operator generated by the
fractional semigroup related to the Schrödinger operators on Campanato-type space via the T1 theorem.
More recently, Fan et al. proved the boundedness of variation operators for semigroups related to the
Laguerre operator on BMOLα((0,∞)); see [7]. Ma et al. [9] established the oscillation of the Poisson
semigroup associated with the parabolic Bessel operator by the vector-valued Calderón-Zygmund
theorem. Ye et al. [10] also established the oscillation of the Poisson semigroup associated with a
parabolic Bessel operator. Xiao and Li [11] studied the oscillation of Poisson semigroup related to
discrete Laplacian by the discrete vector-valued Calderón-Zygmund theorem. For square functions and
potential spaces associated with the discrete Laplacian, see [12].

Now, we turn to our applications. We shall show the boundedness of the maximal operators generated
by semigroups associated with the Laguerre operator on BMOβLα((0,∞)). We have the following theorem.

Theorem 1.4. Let 0 ≤ β ≤ 1. The maximal operators generated by the heat semigroup {WLα
t }t>0 and

Poisson semigroup {PLα
t }t>0 related to the Laguerre operator are bounded from BMOβLα((0,∞)) into itself.
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Note that the authors in [13] proved that the maximal operators of the heat semigroup and Poisson
semigroup, as well as the Littlewood-Paley g-functions of the heat and Poisson semigroups related to
the Laguerre operator, are bounded on BMOLα((0,∞)) space.

Here, we also review recent progress in harmonic analysis associated with the Laguerre operator.
Betancor et al. [14] studied a transference principle between the Laguerre and Hermite settings, and
obtained some new properties of the Laguerre operators. Dziubański [15] studied the Hardy space
H1

Lα((0,∞)) related to the Laguerre operator Lα for α > −1/2 and used the maximal function related to
the heat-diffusion semigroup generated by Lα and atomic decompositions to characterize this Hardy
space. In the sequel, Betancor et al. [16] characterized the Hardy space associated with certain
Laguerre expansions by means of the Laguerre-Riesz transform. Betancor et al. [17] studied the Lp-
boundedness of area Littlewood-Paley g-functions associated with Hermite and Laguerre operators.
Dziubański et al. [18] studied the BMO spaces related to Schrödinger operators with potentials satisfying
a reverse Hölder inequality. Cha and Liu [19] studied the BMOLα((0,∞)) space related to Lα for
α > −1/2, which is identified as the dual space of H1

Lα((0,∞)) associated with Lα. They characterized
the BMOLα((0,∞)) by Carleson measures related to appropriate square functions, and obtained the
boundedness on BMOLα((0,∞)) of the fractional integral operator and the Riesz transform related to the
Laguerre operator. Dong and Liu in [20] established the boundedness of the Riesz transform associated
with the Laguerre operator on BMOLα((0,∞)). Wang and Li in [21] considered the fractional integral of
variable exponent space associated with the Schrödinger operators. For more references, see [22–25].

The outline of this paper is as follows: in Section 2, we introduce the definition and some properties
of BMOβLα((0,∞)). In Section 3, we show the proofs of Theorems 1.2 and 1.3. In Section 4, we establish
the boundedness of the maximal operators generated by semigroups associated with the Laguerre
operator Lα on BMOβLα((0,∞)).

Throughout this paper, we denote by C and c suitable positive constants that may change at each
occurrence. We will repeatedly use the inequality tαe−βt ≤ C, α ≥ 0, β > 0.

2. The space BMOβLα((0,∞)), 0 ≤ β ≤ 1

In this section, we first introduce the definition of BMOβLα((0,∞)) related to the Laguerre operator
Lα for α > −1

2 , and then give some properties that will be used frequently later; see e.g., [20].
We first introduce several notations. Denote by Br(x) = B(x, r) a ball with center x and radius r in

(0,∞), B∗ denotes B2r(x); x ∼ y means x ≤ Cy and y ≤ Cx for some constant.

Definition 2.1. Let α > −1
2 and 0 ≤ β ≤ 1. Denote by Br(x) a ball with center x and radius r in (0,∞).

We say a locally integrable function f on (0,∞) belongs to BMOβLα((0,∞)) if there exists a constant
C > 0 independent of r and x such that

(i)
1

|Br(x)|

∫
Br(x)
| f (x) − fBr(x)|dx ≤ C|Br(x)|β, for every ball Br(x) in (0,∞),

(ii)
1

|Br(x)|

∫
Br(x)
| f (x)|dx ≤ C|Br(x)|β, for r ≥ ρLα(x),

where fBr(x) =
1

|Br(x)|

∫
Br(x)
| f (x)|dx, and the auxiliary function ρLα(x) is defined in (1.1). The norm

∥ f ∥BMOβLα
of f is defined as the minimum C > 0 such that (i) and (ii) above hold. Specially, we have

Electronic Research Archive Volume 33, Issue 10, 6219–6240.
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BMO0
Lα

((0,∞)) = BMOLα((0,∞)), where BMOLα((0,∞)) is the BMO space related to the Laguerre
operator, see [19].

Thanks to the John-Nirenberg inequality, it can be seen that if in (i) and (ii) L1-norms are replaced
by Lp-norms for 1 < p < ∞, then the space BMOβLα((0,∞)) does not change, and equivalent norms
appear. In this case, the conditions are expressed as:

(i)p

(
1

|Br(x)|

∫
Br(x)
| f (x) − fBr(x)|

pdx
) 1

p

≤ C|Br(x)|β, for every ball Br(x) in (0,∞),

(ii)p

(
1

|Br(x)|

∫
Br(x)
| f (x)|pdx

) 1
p

≤ C|Br(x)|β, for r ≥ ρLα(x).

Note that if (ii) (resp. (ii)p) above is true for some ball B, then (i) (resp. (i)p) holds for the same
ball, so we might ask for (i) (resp. (i)p) only for balls with radii smaller that ρLα(x). If β > 1, then the
space BMOβLα((0,∞)) only contains constant functions. Hence, the restriction β < 1 in the definition
above is necessary.

Lemma 2.2. (According to [18], Lemma 1) Let ρLα(x) denote the auxiliary function defined in (1.1).
Assume that x0 = 1, x j = x j+1 + ρLα(x j−1) for j > 1, and x j = x j+1 − ρLα(x j+1) for j < 1. We define the
family of “critical balls” of Q = {Qk}

∞
k=−∞, where Qk := {x ∈ (0,∞) : |x − xk| < ρLα(xk)}. Then

1) ∪∞k=−∞Qk = (0,∞);

2) For every k ∈ Z,Qk ∩ Q j = ∅ provided that j < {k − 1, k, k + 1};

3) For any y0 ∈ (0,∞), at most three balls in Q have nonempty intersection with Q(y0, ρLα(y0)).

It is not hard to check that for every QR(x) ⊆ (0,∞) with R ≥ ρLα(y0), there exists a constant C > 0 such
that |QR(x)| ≤

∑
Qk∈Q,Qk∩QR(x),∅ |Qk| ≤ C|QR(x)|.

Lemma 2.3. ( [20], p346) Let α > −1
2 and 0 ≤ β ≤ 1. An operator S defined on BMOβLα((0,∞)) is

bounded from BMOβLα((0,∞)) into BMOβ+γLα
((0,∞)), β + γ ≤ 1, γ > 0, if there exists a constant C > 0

such that for every f ∈ BMOβLα((0,∞)) and k ∈ N,

(Ak) 1
|Qk |1+β+γ

∫
Qk
|S f (x)|dx ≤ C∥ f ∥BMOβLα

,

(Bk) ∥S f ∥BMOβ+γ(Q∗k) ≤ C∥ f ∥BMOβLα
,

where BMOβ(Q∗k) denotes the usual BMOβ space (see [1]) on the ball Q∗k.

Lemma 2.4. Let ρLα(x) denote the auxiliary function defined in (1.1). Assume that B = B(x, r) with
r < ρLα(x). Then

(1) (see [26], p.141) If f ∈ BMOLα((0,∞)), α > −1
2 , then

| fB| ≤ C
(
1 + log

ρLα(x)
r

)
∥ f ∥BMOLα

.

(2) If f ∈ BMOβLα((0,∞)), α > −1
2 , 0 < β ≤ 1, then | fB| ≤ CβρLα(x)∥ f ∥BMOLα

.
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Proof. (1) The detailed proof of (1) can be seen in [8].
(2) Let 2nr < ρLα(x) < 2n+1r with n be a positive integer. For f ∈ BMOβLα((0,∞)), α > −1

2 , 0 < β ≤ 1,
we obtain that

| fB| ≤
1
|B|

∫
B
| f (y) − f2B|dy +

n∑
i=1

| f2iB − f2i+1B| + | f2i+1B|

≤ C∥ f ∥BMOβLα
|B|β

n∑
i=1

(2β)i

≤ C|2|β(2nr)β∥ f ∥BMOβLα

≤ CβρLα(x)β∥ f ∥BMOβLα
.

The proof of this lemma is completed. □

Lemma 2.5. Let B = B(x, r) with r > 0 and x ∈ (0,∞). Then, f ∈ BMOβLα((0,∞)), α > −1
2 , 0 < β < 1,

if and only if f satisfies (1) in Definition 2.1, and for all balls Qk in Lemma 2.2, it satisfies | f |Qk ≤ C|Qk|
β.

Proof. If | f |Qk ≤ C|Qk|
β, let B = B(x, r) with x ∈ (0,∞) and r ≥ ρLα(x). From Lemma 2.2, it holds that∑

k∈K

∫
Qk

| f | ≤ (N + 1)
∫
⋃

k∈K
Qk

| f |,

where N is the constant controlling the overlapping, and K = {k : B ∩ Qk , ∅} is finite. It is easy to
know that there exists a constant C such that Qk ⊂ CB with k ∈ K. Then we have∫

B
| f | ≤

∑
k∈K

∫
B∩Qk

| f | ≤
∑
k∈K

∫
Qk

| f | ≤ (N + 1)
∫
⋃

k∈K
Qk

| f | ≤ C|Qk|
1+β ≤ C|B|1+β.

Hence, f ∈ BMOβLα((0,∞)). If r < ρLα(x), by combining the above derivation and ( [26], Corollary 1),
we have f ∈ BMOβLα((0,∞)). It is easy to check that the opposite statement holds. □

Lemma 2.6. Let ρLα denote the auxiliary function defined in (1.1). Assume that x0 ∈ (0,∞) and
0 < r0 < ρLα(x0). Then, there exists a constant C > 0 such that for x ∈ (0,∞),

(1) the function

g(x0,r0)(x) =: χ[0,r0](|x − x0|) log
(ρLα(x0)

r0

)
+ χ[r0,ρLα (x0)](|x − x0|) log

(ρLα(x0)
|x − x0|

)
belongs to BMOLα((0,∞)) and ∥gx0,r0(x)∥BMOLα

≤ C.

(2) the function

h(x0,r0)(x) =:χ[0,r0](|x − x0|)(ρLα(x0)β − r0
β)

+ χ[r0,ρLα (x0)](|x − x0|)(ρLα(x0)β − |x − x0|
β)

belongs to BMOβLα((0,∞)) and ∥hx0,r0(x)∥BMOβLα
≤ C.

Proof. The proof of (1) is similar to the proof of Lemma 2.1 in [17]. The proof of (2) is similar to that
of Lemma 2.5 in [3]. Here we omit these details. □
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3. Proof of the main results

We divide this section into two subsections. In the first subsection, in order to prove Theorems 1.2
and 1.3, we first introduce the definition of the operator T in (3.1). Then we export an expression for
T f , where T1 appears, which will play an important role in our main results. In the second subsection,
we first prove Theorems 1.2 and 1.3. Then we will characterize the pointwise multipliers of the spaces
BMOβLα((0,∞)).

3.1. The operators related to Laguerre operator Lα

In this subsection, in order to prove Theorems 1.2 and 1.3, we first introduce the definition of the
operator T . We denote by Lp

c ((0,∞)) the set of functions f ∈ Lp((0,∞)) whose support supp( f ) is a
compact subset of (0,∞), 1 ≤ p ≤ ∞.

Definition of Tf for f ∈ BMOβLα((0,∞)), α > −1
2 , 0 < β < 1. Let BR := B(0,R) for every R > 0.

Assume that f ∈ Lp((0,∞)), we define

T f (x) = T ( fχBR)(x) + T ( fχBc
R
)(x) = T ( fχBR)(x) +

∫
Bc

R

K(x, y) f (y)dy. (3.1)

Observe that the first term in the right-hand side of (3.1) makes sense since fχR ∈ Lp
c ((0,∞)). The

integral in the second side of (3.1) is absolutely convergent. In fact, suppose that f ∈ BMOLα((0,∞))
and R > 1. For every x ∈ BR, by using Definition 1.1(1), it follows that∫

Bc
R

|K(x, y)|| f (y)|dy ≤ C
∞∑
j=1

∫
2 jR<|y|<2 j+1R

e−|x−y|2

|x − y|1−γ
| f (y)|dy

≤ C
∞∑
j=1

1
(2 jR)2−γ

∫
2 jR<|y|<2 j+1R

| f (y)|dy

≤ C
∞∑
j=1

1
(2 jR)1−β−γ

1
(2 jR)1+β

∫
2 jR<|y|<2 j+1R

| f (y)|dy

≤
C

R1−β−γ ∥ f ∥BMOLα
, a.e. x ∈ BR.

The definition of T f (x) is independent of R in the sense that if BR ⊂ BS with R < S , then the
definition using BS coincides almost everywhere in BR with the one just given, because in that case, for
a.e. x ∈ BR, we have

T ( fχBS ) − T ( fχBR) = T ( fχBS \BR)(x)

=

∫
BS \BR

K(x, y) f (y)dy

=

∫
Bc

R

K(x, y) f (y)dy −
∫

Bc
S

K(x, y) f (y)dy.

In particular, the definition just given above is equally valid for f ≡ 1 ∈ BMOLα((0,∞)).
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Next we export an expression for T f , where T1 appears, which will play an important role in our
main results. Let B = B(x0, r0) where x0 ∈ (0,∞) and r0 > 0, we have

f = ( f − fB)χB∗∗ + ( f − fB)χ(B∗∗)c + fB =: f1 + f2 + f3 (3.2)

Let us choose R > 0 such that B∗∗ ⊂ BR. Using (3.2) and the definition of T f given in (3.1), it is clearly
that for a.e. x ∈ B∗∗,

T f (x) = T ( fχBR)(x) +
∫

Bc
R

K(x, y) f (y)dy

= T (( f − fB)χB∗∗)(x) + T (( f − fB)χBR\B∗∗)(x) + fBT (χBR)(x)

+

∫
Bc

R

K(x, y)( f (y) − fB)dy + fB

∫
Bc

R

K(x, y)dy

= T (( f − fB)χB∗∗)(x) +
∫

(B∗∗)c
K(x, y)( f (y) − fB)dy + fBT1(x).

(3.3)

3.2. Proof of the main results

In this section, we first prove Theorems 1.2 and 1.3. Then we will characterize the pointwise
multipliers of the spaces BMOβLα((0,∞)).

Proof of Theorem 1.2. First we will see that the condition on T1 means that T is bounded from
BMOβLα((0,∞)) to BMOβ+γLα

((0,∞)). In order to do this, we shall prove that there exists a constant C > 0
such that the conditions (Ak) and (Bk) in Lemma 2.3 hold for every k ∈ N and f ∈ BMOβLα((0,∞)).

We first prove the condition (Ak) in Lemma 2.3. According to (3.3) with B = Qk, Qk standing for a
ball with center xk and radius rk, it follows that

T f (x) = T (( f − fQk)χQ∗∗k
)(x) +

∫
(Q∗∗k )c

K(x, y)( f (y) − fQk)dy + fQkT1(x)

=: I1 + I2 + I3, a.e. x ∈ Qk.

(3.4)

We begin with I1. As T : Lp(0,∞) → Lq(0,∞), where 1
q + γ =

1
p , thanks to Hölder’s inequality and

John-Nirenberg’s inequality, it holds that

1
|Qk|

1+β+γ

∫
Qk

I1dx ≤ C
( 1

|Qk|
1
q+β+γ

∫
Qk

|T (( f − fQk)χQ∗∗)(x)|qdx
) 1

q

≤
C
|Qk|

β

( 1
|Qk|

∫
Q∗∗k

|( f (x) − f (Qk))|
pdx
) 1

p

≤ C∥ f ∥BMOLα
.

To estimate I2, if x ∈ Qk, then x ∼ xk. Applying the size condition of K(x, y) in Definition 1.1, for
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β + γ < 1, we have

1
|Qk|

1+β+γ

∫
Qk

|I2|dx =
1

|Qk|
β+γ

∣∣∣∣∣ ∫
(Q∗∗k )c

K(x, y)( f (y) − fQk)dy
∣∣∣∣∣

≤
1

|Qk|
β+γ

∫
(Q∗∗k )c
|K(x, y)|| f (y) − fQk |dy

≤
C
|Qk|

β+γ

∞∑
j=2

∫
2 jrk<|y|<2 j+1rk

1
|x − y|1−γ

| f (y) − fQk |dy

≤
1

|Qk|
β+γ

∞∑
j=2

1
(2 jrk)1−γ

∫
|y|<2 j+1rk

| f (y) − fQk |dy

≤ C
∞∑
j=2

2− j(1−β−γ) 1
(2 jrk)1+β

∫
|y|<2 j+1rk

| f (y) − fQk |dy

≤ C
∞∑
j=2

2− j(1−β−γ)∥ f ∥BMOβLα

≤ C∥ f ∥BMOβLα
.

Finally, in order to prove
1

|Qk|
1+γ

∫
Qk

|T1(x)|dx ≤ C, (3.5)

it is enough to show that
1

|Qk|
1+β+γ

∫
Qk

|I3|dx ≤ C∥ f ∥BMOβLα
.

Indeed, we have

1
|Qk|

1+β+γ

∫
Qk

|I3|dx =
| fQk |

|Qk|
β

1
|Qk|

1+γ

∫
Qk

|T1(x)|dx ≤ C∥ f ∥BMOβLα
.

According to the definition of T1, T1(x) = T (χQ∗∗k
)(x)+ T (χ(Q∗∗k )c)(x), x ∈ Qk. Hence, by T maps Lp into

Lq, and applying Hölder’s inequality, we derive that

1
|Qk|

1+γ

∫
Qk

|T (χQ∗∗k
)(x)|dx ≤

1

|Qk|
1
q+γ

( ∫
Qk

|T (χQ∗∗k
)(x)|qdx

) 1
q

≤ C
|Qk|

1
p

|Qk|
1
q+γ
.

Observe that |xk − y| ∼ |x − y| when x ∈ Qk, using the size condition (1) of K(x, y), then

T (χ(Q∗∗k )c)(x) ≤ C
∞∑
j=2

∫
2 jrk<|xk−y|<2 j+1rk

1
|x − y|2−γ

dy

≤ C
∞∑
j=2

2 jrk

(2 jrk)2−γ ≤ C(rk)γ.

Thus we obtain that the inequality (3.5) holds. Hence, it follows that

1
|Bk|

∫
Bk

|I3|dx = | fBk |
1
|Bk|

∫
Bk

|T̃1(x)|dx ≤ C| fBk | ≤ C∥ f ∥BMOLα
.
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To sum up, we conclude that (Ak) in Lemma 2.3 holds for T with a constant that does not depend on k.
Next we prove that T satisfies the condition (Bk) in Lemma 2.3. Let B = B(x0, r0) ⊆ Q∗∗k where

x0 ∈ (0,∞) and r0 > 0. We separate into the two cases: r0 ≥ ρLα(x0) and r0 < ρLα(x0).
If r0 ≥ ρLα(x0). Notice that ρLα(x0) ∼ ρLα(xk) ∼ r0. Combining with the computation above, we

obtain that T satisfies (Ak),

1
|B|1+β+γ

∫
B
|T f (x) − (T f )B|dx ≤ C

1
|B|1+β+γ

∫
B
|T f (x)|dx ≤ C∥ f ∥BMOβLα

.

If r0 < ρLα(x0). By f = f1+ f2+ f3 as in (3.2) and the decomposition of T f in (3.3), we have for x, z ∈ B,

1
|B|1+β+γ

∫
B
|T f (x) − (T f )B|dx ≤

1
|B|1+β+γ

∫
B

1
|B|

∫
B
|T f1(x) − T f1(z)|dzdx

+
1

|B|1+β+γ

∫
B

1
|B|

∫
B
|F(x) − F(z)|dzdx

+
1

|B|1+β+γ

∫
B
|T f3(x) − (T f3)B|dx

=:J1 + J2 + J3.

(3.6)

Here we write

F(x) =
∫

(B∗∗)c
K(x, y) f2(y)dy.

For the first term J1, note that T is bounded from Lp into Lq; applying Hölder’s inequality, it follows that

J1 ≤
2

|B|1+β+γ

∫
B
|T1 f (x)|dx

≤
C

|B|
1
q+β+γ

( ∫
B∗
| f (x) − fB|

qdx
) 1

q
≤ C∥ f ∥BMOβLα

.
(3.7)

For the second term J2. Let x, z ∈ B, then |x − z| < r0. Note that |x − y| ∼ |x0 − y| when y ∈ (B∗∗)c.
Applying the smoothness of the kernel in Definition 1.1, it holds that

1
|B|β+γ

|F(x)−F(z)| ≤
C
|B|β+γ

∫
(B∗∗)c
|K(x, y) − K(z, y)|| f (y) − fB|dy

≤
C
|B|β+γ

∞∑
j=2

∫
2 jr0<|x0−y|<2 j+1r0

|x − z|δ

|x − y|1−γ+δ
| f (y) − fB|dy

≤
C
|B|β+γ

∞∑
j=2

rδ0
(2 jr0)1−γ+δ

∫
|x0−y|<2 j+1r0

| f (y) − fB|dy

≤C
∞∑
j=2

(2 j)γ+β−δ

(2 jr0)1+β

∫
|x0−y|<2 j+1r0

∣∣∣∣ f (y) − f2 j+1B +

j∑
k=0

( f2k+1B − f2k B)
∣∣∣∣dy.
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Moreover, we have

1
|B|β+γ

|F(x) − F(z)| ≤C
∞∑
j=2

(2 j)γ+β−δ
( 1
(2 jr0)1+β

∫
|x0−y|<2 j+1r0

| f (y) − f2 j+1B|dy

+

j∑
k=0

1
(2k+1r0)1+β

∫
2k+1r0

| f (y) − f2k+1B|dy
)

≤C
∞∑
j=2

(2 j)γ+β−δ
(
∥ f ∥BMOβLα

+ ( j + 1)∥ f ∥BMOβLα

)
≤C∥ f ∥BMOβLα

.

Hence, we obtain that J2 ≤ C|| f ||BMOβLα
. Now we turn to estimate J3. Thanks to Lemma 2.4 (1) and the

hypothesis condition of T1, we get

J3 ≤
| fB|

|B|1+β+γ

∫
B
|T1(x) − (T1)B|dx

≤ C∥ f ∥BMOβLα

(ρLα(x)
r

)β 1
|B|1+γ

∫
B
|T1(x) − (T1)B|dx

≤ C∥ f ∥BMOβLα
.

Combining with all the computation above, we obtain that the condition in Lemma 2.3 holds. Hence T
is bounded from BMOβLα((0,∞)) into BMOβ+γLα

((0,∞)).
Now we start to show the opposite statement. Suppose that the operator T is bounded from

BMOβLα((0,∞)) into BMOβ+γLα
((0,∞)). Let B = B(x0, r0) where x0 ∈ (0,∞) and 0 < r0 < ρLα(x0). We

write the function f̃ (x) ≡ f (x, x0, r0) defined in Lemma 2.6, by using (3.2), and it follows that

f̃ = ( f̃ − ( f̃ )B)χ(B∗∗) + ( f̃ − ( f̃ )B)χ(B∗∗)c + ( f̃ )B =: f̃1 + f̃2 + f̃B.

Then f̃BT1(y) = T f̃ (y) − T f̃1(y) − T f̃2(y). Hence we have

f̃B
1

|B|1+β+γ

∫
B
|T1(y) − (T1)B|dy ≤

1
|B|1+β+γ

∫
B
|T f̃ (y) − (T f̃ )B|dy

+
1

|B|1+β+γ

∫
B
|T f̃1(y) − (T f̃1)B|dy

+
1

|B|1+β+γ

∫
B
|T f̃2(y) − (T f̃2)B|dy

= : H1 + H2 + H3.

We can check that each of Hi(i = 1, 2, 3) above is controlled by ∥ f̃ ∥BMOβLα
≤ C, where C is independent

of x0 and r0. Indeed, for the first term H1, it holds that H1 is controlled by ∥ f̃ ∥BMOβLα
≤ C because T is

bounded from BMOβLα((0,∞)) into BMOβ+γLα
((0,∞)). The second term H2 follows by Hölder’s inequality

and Lp → Lq boundedness of T . The last term H3 is done as J2 in (3.6). Note that f̃B ∼

(
ρLα(x0)β − r0

β
)
,

we obtain that (ρLα(x0)
r0

)β 1
|B|1+γ

∫
B
|T1(y) − (T1)B|dy ≤ C.
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Hence the proof of this theorem is completed. □

Proof of Theorem 1.3. The proof of this theorem is similar to Theorem 1.2, putting β = 0 everywhere,
and expecting just two differences. The first one is the estimation of the term J3; here, we need to apply
Lemma 2.4. The second difference is the proof of the opposite statement, where we need to consider the
function h(x0, r0)(x) of Lemma 2.6. □

Proof of Corollary 1. Suppose that g is a measurable function on (0,∞) satisfying the conditions (1)
and (2) of Corollary 1. From the proof of Theorem 1.2, we know that g is a pointwise multiplier on
BMOβLα((0,∞)). In particular, the kernel of operator T is zero.

Now we suppose that g satisfies the above condition. Let the function f (r, x0)(x) of Lemma 2.6,
where x, x0 ∈ (0,∞) and 0 < r0 < ρLα(x0), belong to BMOβLα((0,∞)), then ρLα(x0)β ≤ Cβ(ρLα(x0)β − rβ0).
Applying Lemma 2.4 (h = hg), it follows that(ρLα(x0)

r

)β 1
|B|

∫
B
|g(x)|dx = Cβ

ρLα(x0)β − rβ0
|B|1+β

∫
B
|h(x)g(x)|dx

≤
Cβ
|B|1+β

∫
B
|(hg)(x) − (hg)B|dx +

Cβ
|B|β

(hg)B

≤ Cβ∥hg∥BMOβLα

≤ Cβ∥h∥BMOβLα
.

Hence |g|B ≤ C, which does not depend on B.
On the other hand, if x0 ∈ (0,∞) and 0 < r0 < ρLα(x0), by the boundedness in BMOβLα((0,∞)) of Tg,

we obtain that(ρLα(x0)

r0

)β 1
|B|

∫
B
|g(x) − gB|dx ≤Cβ

(ρLα(x0))β − rβ0
|B|1+β

∫
B
|g(x) − gB|dx

≤
Cβ
|B|1+β

∫
B
|g(x)h(x, r, x0) − (gh(x, r, x0))B|dx

≤Cβ∥gh(·, r, x0)∥BMOβLα

≤Cβ∥h(·, r, x0)∥BMOβLα
,

where Cβ is independent of B. □

4. Proof of Theorem 1.4

In this section, we establish the boundedness on BMOβLα((0,∞)) (0 ≤ β ≤ 1) of the maximal operators
for semigroups related to the Laguerre differential operator Lα by using the T1 criterion.

4.1. Maximal operators for the heat-diffusion semigroup e−tLα .

In this subsection, we establish the boundedness on BMOβLα((0,∞)) (0 ≤ β ≤ 1) of the maximal
operator for heat semigroup related to the Laguerre operator. In order to prove BMOβLα-boundedness
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of the maximal operator WLα
∗ f (x) := sup

t>0
|WLα

t f (x)|, then it is enough to prove that the vector-valued

operator Λ( f ) := {WLα
t f }t>0 is bounded from BMOβLα((0,∞)) into BMOβLα((0,∞); E). By the spectral

theorem, it is easy to check that the vector-valued operatorΛ is bounded from L2((0,∞)) into L2((0,∞); E).
Hence, we only need to estimate the vector-valued kernel ∥Wα

t (x, y)∥E; see Proposition 4.1.
Now we introduce the properties of the heat-diffusion semigroup generated by Lα, α > −1

2 . Let
{WLα

t }t≥0 be the heat-diffusion semigroup generated by Lα. For f ∈ L2((0,∞)), we have

WLα
t f (x) ≡ etLα f (x) =

∫ ∞

0
Wα

t (x, y) f (y)dy, x ∈ (0,∞), t > 0, (4.1)

where the kernel

Wα
t (x, y) =

( 2e−t

1 − e−2t

) 1
2
( 2xye−t

1 − e−2t

) 1
2

Iα
( 2xye−t

1 − e−2t

)
e−

1
2

1+e−2t

1−e−2t (x2+y2), (4.2)

Iα is the modified Bessel function of the first kind and order α, see, e.g., [20].
In order to estimate the heat kernel Wα

t (x, y) conveniently, we introduce some properties of the Bessel
function Iα (see [5]):

Iα(z) ∼ zα z→ 0, (4.3)

z
1
2 Iα(z) =

1
√

2π
ez(1 + O(

1
z

)) z→ ∞, (4.4)

d
dz

(
z−αIα(z)

)
= z−αIα+1(z) z ∈ (0,∞). (4.5)

Let r = e−2t. Based on the discussion of Wα
t (x, y) in [20], the heat kernel can be decomposed as

Wα
t (x, y) = H(r, x, y)Φ(r, x, y)Ψα(r, x, y) (4.6)

where

H(r, x, y) = e−t(2α+1) (1 + r)1/2

(1 − r)1/2 e−
1
2

1+r
1−r |x−y|2 ,

Φ(r, x, y) =

√
2

(1 + r)1/2r(2α+1)/4 e−
1−r

(1+
√

r)2
xy
,

Ψα(r, x, y) =
(2r1/2xy

(1 − r)

)1/2
e−

2r1/2 xy
(1−r) Iα

(2r1/2xy
(1 − r)

)
.

If x, y ∈ (0,∞) and t > 1, notice that r < e−2, and from (4.3) and (4.6), it follows that

Wα
t (x, y) ≤ Ce−cte−c |x−y|2

t

( 2xye−t

1 − e−2t

) 1
2+α

e−
2xye−t

1−e−2t

≤ Ce−cte−c|x−y|2 .

If x, y ∈ (0,∞) and 0 < t < 1, applying (4.4) and (4.6), we have

Wα
t (x, y) ≤ Ct−

1
2 e−c |x−y|2

t e−txy 1
√

2π
e

2xye−t

1−e−2t e−
2xye−t

1−e−2t (1 + O(
1
z

))

≤ Ct−
1
2 e−c |x−y|2

t e−txy.
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Hence, we have for x, y ∈ (0,∞) and t > 0,

Wα
t (x, y) ≤ Ct−

1
2 e−c |x−y|2

t e−txyχ(0,1](t) +Ce−cte−c|x−y|2χ(1,∞)(t). (4.7)

We write W̃α
t (x, y) = 1

√
4πt

e−
|x−y|2

4t , then W̃α
t f (x) =

∫ ∞
0

W̃α
t (x, y) f (y)dy.

Lemma 4.1. There exists a constant C > 0 such that

|Wα
t (x, y) − W̃α

t (x, y)| ≤ C
( √t
ρLα(x)

)2
t−

1
2 e−c |x−y|2

t .

Proof. Using definition of ρLα(x) and (4.7),

|Wα
t (x, y) − W̃α

t (x, y)| ≤C|t−
1
2 e−c |x−y|2

t e−txyχ(0,1](t) −
1
√

4πt
e−c |x−y|2

4t |

+C|e−cte−c|x−y|2χ(1,∞)(t) −
1
√

4πt
e−c |x−y|2

4t |

≤C(|e−txyχ(0,1](t) − 1| + |
√

te−ctχ(1,∞)(t) − 1|)t−
1
2 e−c |x−y|2

t

≤C(|txyχ(0,1](t)| + |tχ(1,∞)(t)|)t−
1
2 e−c |x−y|2

t

≤C
( √t
ρLα(x)

)2
t−

1
2 e−c |x−y|2

t .

The proof of this lemma is completed. □

Combining the above Lemma and its proof, we can get the following lemma.

Lemma 4.2. Suppose that 0 < δ < 2, x, y ∈ (0,∞) and t > 0. If |y − z| < ρLα(y) and |y − z| < 1
4 |x − y|,

then

|Wα
t (x, y) − W̃α

t (x, y) − (Wα
t (x, z) − W̃α

t (x, z))| ≤ C
(
|y − z|
ρLα(x)

)δ
t−

1
2 e−c |x−y|2

t .

Lemma 4.3. Let 0 < δ < 2. If |y − z| <
√

t, then there exists a constant C > 0 such that

|Wα
t (x, y) −Wα

t (x, z)| ≤ C
(
|y − z|
√

t

)δ
t−

1
2 e−c |x−y|2

t .

Proof. If |y − z| <
√

t and 1
4 |x − y| ≥ |y − z|, by applying Lemma 4.2, it follows that

|Wα
t (x, y) −Wα

t (x, z)| ≤C
(
|y − z|
√

t

)δ(
1 +

√
t

ρLα(x)

)δ
t−

1
2 e−c |x−y|2

t

≤C
(
|y − z|
√

t

)δ
t−

1
2 e−c |x−y|2

t .

If 1
4 |x − y| ≤ |y − z| <

√
t, we can obtain that the conclusion above holds by the semigroup property. □
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The semigroup {WLα
t }t≥0 is contractive in Lp(0,∞) for (1 ≤ p ≤ ∞, and selfadjoint in L2((0,∞)) but

it is not Markovian. On the other hand, for every f ∈ Lp((0,∞)), 1 ≤ p ≤ ∞, lim
t→0+

Wα
t f (x) = f (x) in

Lp((0,∞)), and a. e. x ∈ (0,∞). Suppose that f ∈ BMOβLα((0,∞)), the integral

WLα
t f (x) ≡

∫ ∞

0
Wα

t (x, y) f (y)dy

is absolutely convergent, for every t ∈ (0,∞) and x ∈ (0,∞).
For enough good function f , we define the maximal operators WLα

∗ associated with heat semigroup by

WLα
∗ f (x) := sup

t>0
|WLα

t f (x)|.

Obviously, we have WLα
∗ f (x) = ∥WLα

t f ∥E, where E = L∞((0,∞), dx). Applying Theorem 1.2 and
Remark 1.2, in order to prove that the maximal operator WLα

∗ is bounded from BMOβLα((0,∞)) into itself,
it is enough to prove that the vector-valued operator

Λ( f ) := {WLα
t f }t>0

is bounded from BMOβLα((0,∞)) into BMOβLα((0,∞); E), where the space BMOβLα((0,∞); E) is defined
in the obvious way by replacing the absolute values | · | by norms ∥ · ∥E. By the spectral theorem, it
is easy to check that the vector-valued operator Λ is bounded from L2((0,∞)) into L2((0,∞); E), see,
e.g., [25]. Hence, we need to estimate the vector-valued kernel ∥Wα

t (x, y)∥E. For vector-vector kernel
Wα

t (x, y), we have the following estimates.

Proposition 4.1. There exists a constant C such that for x, y, z ∈ (0,∞),

(i) ∥Wα
t (x, y)∥E ≤ C

|x−y|e
−c|x−y|2 , x , y;

(ii) ∥Wα
t (x, y) −Wα

t (x, z)∥E + ∥Wα
t (y, x) −Wα

t (z, x)∥E ≤ Cδ
|y−z|δ

|x−y|1+δ , x , y and |x − y| > 2|y − z|, for all
0 < δ < 1;

(iii) For all B = B(x, r) with 0 < r < ρLα(x), then

log
(ρLα(x)

r

) 1
|B|

∫
B
∥Wα

t 1(y) − (Wα
t 1)B∥Edy ≤ C.

In particular, suppose that β < min{1, δ}, then(ρLα(x)
r

)β 1
|B|

∫
B
∥Wα

t 1(y) − (Wα
t 1)B∥Edy ≤ C.

Proof. Let us start to prove (i). For every x, y, t ∈ (0,∞), by applying (4.7), we have

Wα
t (x, y) ≤ Ct−

1
2 e−c |x−y|2

t e−txyχ(0,1](t) +Ce−cte−c|x−y|2χ(1,∞)(t)

≤ Ce−c|x−y|2χ(0,1](t) +Ce−c|x−y|2χ(1,∞)(t)

≤ Ce−c|x−y|2 .
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Therefore, it is easy to deduce the desired conclusion.
(ii) The simple fact that |x− y| ∼ |x− z| when |x− y| > 2|y− z|. For all 0 < δ < 1, if |y− z| ≤

√
t, from

Lemma 4.3, it follows that

|Wα
t (x, y) −Wα

t (x, z)| ≤C
(
|y − z|
√

t

)δ
t−

1
2 e−c |x−y|2

t

≤C
|y − z|δ

|x − y|1+δ

(
|x − y|
√

t

)1+δ
e−c |x−y|2

t

≤C
|y − z|δ

|x − y|1+δ
.

If |y − z| ≤
√

t, from (4.7), it follows that

|Wα
t (x, y)| ≤Ct−

1
2 e−c |x−y|2

t e−txyχ(0,1](t) +Ce−cte−c|x−y|2χ(1,∞)(t)

≤C
(
|y − z|
√

t

)δ
t−

1
2 e−c |x−y|2

t

≤C
|y − z|δ

|x − y|1+δ
.

By the same argument, we can be obtained |Wα
t (x, z)| ≤ C |y−z|δ

|x−y|1+δ . Combining with the computation
above, and noting that the symmetry of the kernel Wα

t (x, y) = Wα
t (y, x), we obtain the desired estimates.

Next, we turn to prove (iii). Let B = B(x, r) with 0 < r ≤ ρLα(x). We have ρLα(y) ∼ ρLα(z) ∼ ρLα(x)
when y, z ∈ B. Notice that Wα

t 1(x) ≡ 1, by Lemma 4.1, it holds that

|Wα
t 1(y) −Wα

t 1(z)| ≤|Wα
t 1(y) − W̃α

t 1(y)| + |(Wα
t 1(z) − W̃α

t 1(z))|

≤

∫ ∞

0

( √t
ρLα(y)

)2
t−

1
2 e−c |y−u|2

t +

( √t
ρLα(z)

)2
t−

1
2 e−c |z−u|2

t du

≤

( √t
ρLα(x)

)2 ∫ ∞

0
t−

1
2 e−c |y−u|2

t + t−
1
2 e−c |z−u|2

t du

=C
( √t
ρLα(x)

)2
.

Hence, when
√

t < 2r, we have

|Wα
t 1(y) −Wα

t 1(z)| ≤ C
( r
ρLα(x)

)2
. (4.8)

If
√

t > 2r and
√

t > ρLα(x), then
√

t > 2r > |y − z|. Applying Lemma 4.3, we get

|Wα
t 1(y) −Wα

t 1(z)| ≤
∫ ∞

0
|Wα

t (y, u) −Wα
t (z, u)|du

≤C
(
|y − z|
√

t

)δ
≤ C
( r
√

t

)δ
≤C
( r
ρLα(x)

)δ
, 0 < δ < 1.

(4.9)
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If 2r <
√

t < ρLα(x), we obtain that

|Wα
t 1(y) −Wα

t 1(z)| =|Wα
t 1(y) − W̃α

t 1(y) − (Wα
t 1(z) − W̃α

t 1(z))|

=
∣∣∣∣( ∫

|u−y|>cρLα (x)
+

∫
4|y−z|<|u−y|<CρLα (y)

+

∫
|u−y|<4|y−z|

)
Wα

t (y, u) − W̃α
t (y, u) − (Wα

t (z, u) − W̃α
t (z, u))

∣∣∣∣
=:|L1 + L2 + L3|.

For the first term L1, we use the smoothness proved in Part (ii) of this proposition. Note that the same
smoothness estimate is valid for the classical heat kernel. So we get

|L1| ≤

∫
|u−y|>cρLα (x)

|y − z|δ

|u − y|1+δ
du ≤ C

( r
ρLα(x)

)δ
.

For L2, note that ρLα(u) ∼ ρLα(y) when |u − y| < cρLα(y), applying Lemma 4.2, we obtain that

|L2| ≤ C|y − z|δ
∫

4|y−z|<|u−y|<CρLα (y)

1
(ρLα(u))δ

t−
1
2 e−c |u−y|2

t du ≤ C
( r
ρLα(x)

)δ
.

For the last term L3, observe that
√

t < ρLα(x), from Lemma 4.1, it holds that

|L3| ≤C
( √t
ρLα(x)

)2( ∫
|u−y|<4|y−z|

t−
1
2 e−c |u−y|2

t du +
∫
|u−z|<4|y−z|

t−
1
2 e−c |u−z|2

t du
)

≤C
( √t
ρLα(x)

)2 ∫
|ξ|≤

4|y−z|
√

t

e−c|ξ|2dξ

≤C
( √t
ρLα(x)

)2 |y − z|
√

t

≤C
r

ρLα(x)
.

Hence, for 2r <
√

t < ρLα(x), we obtain that

|Wα
t 1(y) −Wα

t 1(z)| ≤ C
( r
ρLα(x)

)δ
. (4.10)

Combining (4.8)–(4.10), we have

∥Wα
t 1(y) −Wα

t 1(z)∥E ≤ C
( r
ρLα(x)

)δ
. (4.11)

Therefore, we have

log
(ρLα(x)

r

) 1
|B|

∫
B
||Wα

t 1(y) − (Wα
t 1)B||Edy

≤ log
(ρLα(x)

r

) 1
|B|

∫
B

1
|B|

∫
B
||Wα

t 1(y) − (Wα
t 1)B||Edzdy

≤C
( r
ρLα(x)

)δ
log
(ρLα(x)

r

)
≤ C.
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The first part of (iii) has been attained. For the second estimate, by (4.11), we have(ρLα(x)
r

)β 1
|B|

∫
B
∥Wα

t 1(y) − (Wα
t 1)B∥Edy ≤ C

( r
ρLα(x)

)δ−β
≤ C,

as soon as δ − β ≥ 0, which can be guaranteed if β ≤ min{1, δ}. □

Proof of Theorem 1.4 for the heat semigroup case. Note that WLα
∗ f (x) = ∥WLα

t f ∥E , and the operatorΛ
above is bounded from L2((0,∞)) into L2((0,∞); E); applying Theorem 1.2, Remark 1.2, and Proposition
4.1, we obtain that the maximal operator WLα

∗ is bounded from BMOβLα((0,∞)) into itself. □

4.2. Maximal operators for Poisson semigroup e−t
√

Lα .

In this subsection, we will establish the boundedness on BMOβLα((0,∞))(0 ≤ β ≤ 1) of the maximal
operator for Poisson semigroup related to the Laguerre operator. Applying Bochner’s subordination
formula, the Poisson semigroup PLα

t ≡ e−t
√

Lα associated with the Laguerre differential operator Lα is
given by

PLα
t f (x) = e−t

√
Lα f (x) =

t
2
√
π

∫ ∞

0
e−

t2
4s WLα

s f (x)
ds
s3/2 , x ∈ (0,∞), t > 0. (4.12)

Thanks to (4.1), for enough good function f , we obtain that

PLα
t f (x) =

∫ ∞

0

t
2
√
π

∫ ∞

0
e−

t2
4s Wα

s (x, y)
ds
s3/2 f (y)dy

=

∫ ∞

0
Pαt (x, y) f (y)dy, (4.13)

where the Poisson kernel

Pαt (x, y) =
t

2
√
π

∫ ∞

0
e−

t2
4s Wα

s (x, y)
ds
s3/2 , x ∈ (0,∞), t > 0.

To get the boundedness of the maximal operator

PLα
∗ f (x) := sup

t>0
|PLα

t f (x)| = ∥PLα
t f ∥L∞((0,∞),dx) (4.14)

in BMOβLα((0,∞)), we proceed using a vector-valued approach and the boundedness of maximal heat
semigroup WLα

∗ . The following proposition is completely analogous to Proposition 4.1.

Proposition 4.2. Let E = L∞((0,∞), dx). Then, there exists a constant C such that for x, y, z ∈ (0,∞),

(i) ∥Pαt (x, y)∥E ≤ C
|x−y|e

−|x−y|2 , x , y;

(ii) ∥Pαt (x, y)−Pαt (x, z)∥E + ∥Pαt (y, x)−Pαt (z, x)∥E ≤ Cδ
|y−z|δ

|x−y|1+δ , x , y and |x− y| > 2|y− z|, for 0 < δ < 1.

(iii) for all B = B(x, r) with 0 < r < ρLα(x), then

log
(ρLα(x)

r

) 1
|B|

∫
B
∥Pαt 1(y) − (Pαt 1)B∥Edy ≤ C.

In particular, if β < min{1, δ}, then(ρLα(x)
r

)β 1
|B|

∫
B
∥Pαt 1(y) − (Pαt 1)B∥Edy ≤ C.
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Proof. The estimate of Wα
t (x, y) is transferred to Pαt (x, y) by the formula (4.11) and the proposition 4.1.

It is easy to check that (i) and (ii) hold. We just sketch the proof of (iii). For any y, z ∈ B = B(x, r), x ∈
(0,∞) and r ≤ ρLα(x), by Minkowski’s integral, we get

∥Pαt 1(y) − (Pαt 1)B∥E

=
1
B

∫
B
∥Pαt 1(y) − Pαt 1(z)∥Edz

≤C
1
B

∫
B

1
Γ( 1

2 )

∫ ∞

0
e−u∥Wu1(y) −Wu1(z)∥E

du
u1/2 dz

≤C
( r
ρLα(x)

)δ
.

Hence, we obtain that

log
(ρLα(x)

r

) 1
|B|

∫
B
∥Pαt 1(y) − (Pαt 1)B∥Edy ≤ C

and (ρLα(x)
r

)β 1
|B|

∫
B
∥Pαt 1(y) − (Pαt 1)B∥Edy ≤ C.

The proof of this proposition is completed. □

Proof of Theorem 1.4 for the Poisson semigroup case. Note that PLα
∗ f (x) = ∥PLα

t f ∥E; applying
Proposition 4.2, by the same argument with the proof of Theorem 1.4 of the Poisson semigroup case,
we immediately obtain that the maximal operator PLα

∗ is bounded from BMOβLα((0,∞)) into itself. □
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