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Abstract: For a > —%, the Laguerre differential operator is defined as

For sufficiently good function f, the maximal functions associated with heat and Poisson semigroups
are defined by

Tf(x) = Sungtf(X)I, x € (0, c0),

where {T},-0 is the heat semigroup {e~"’},., or Poisson semigroup {e™ ‘/LTY},>0 related to the Laguerre
differential operator L,. In this paper, we first established a 7'1 criterion for the boundedness of the
v-Laguerre-Calderén-Zygmund operator on BM OIIZ((O’ )) (0 < B < 1) spaces related to the Laguerre
differential operator L,. As applications, using this 71 criterion, we proved the boundedness on
BM OZ((O, )) (0 < B < 1) of the maximal operators for semigroups related to the Laguerre differential
operator L,.

Keywords: Laguerre operators; heat semigroup; Poisson semigroup; T1 theorem; Campanato type spaces

1. Introduction

In the research of harmonic analysis and partial differential equations, the regularity estimates for the
second-order differential operators play an important role and have been studied extensively by many


http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2025275

6220

scholars. Sobolev and Schauder estimates for the second-order differential operators are fundamental
results in this context and can be interpreted as the boundedness of Holder spaces under negative powers
of differential operators.

It is well-known that the classical Holder space C*(R") can be identified with the Campanato space
BMO“(R"); see [1]. Bongioanni et al. [2] obtained the analogous results for the Schrédinger operator
H := —A + |x>. They identified the Holder space related to the Schrodinger operator with a
Campanato-type BMO$(R") space. The authors derived Holder regularity estimates for
time-independent Schrodinger operators via the 7'1 theorem method, and gave some applications [3].
Recently, Wang et al. studied the regularity of fractional heat semigroup associated with the Schrodinger
operator H := —A + V, for which the nonnegative potential V satisfies the reverse Holder inequality [4].

For n € N and @ > —1, the Laguerre function of Hermite type ¢, on (0, +c0) is defined as

T(n+1)

12 5
T 7 ) ey Ly 2y) 2
F(n+1+a,)) € 2y n(.y )( y) ’ y€(0,+00),

¢y = (
where L{(x) represents the Laguerre polynomial of degree n and order « [5]. It is well-known that
for every @ > —1, the system {¢?}* ) forms an orthonormal basis of L*((0, «)). Furthermore, these
functions are eigenfunctions of the Laguerre differential operator

1 & @ -3
Lo==|-— +y*+ 4)
2( dy? Y y?

satisfying L,¢? = (2n+a+ 1)¢?, and L, can be extended to a positive self-adjoint operator on L2((0, o))
by specifying a suitable domain of definition; see [6].

This paper is devoted to studying the boundedness of maximal operators of semigroups associated
with the Laguerre operator L,(a > —1/2) on the Campanato-type spaces via the T'1 theorem. Inspired
by the work of Stinga and collaborators in [3], we first establish a simple 7'1 criterion of the y-Laguerre-
Calder6n-Zygmund operator 7 given in Definition 1.1 to be bounded on Campanato-type spaces
BM Olz ((0, 00)) related to the Laguerre operator, and then use this 71 criterion to obtain the boundedness

of maximal operators of semigroups associated with the Laguerre operator on BM Oﬁa ((0, 0)).
Let @ > —1/2, and the auxiliary function p;, related to the Laguerre operator L, is defined as

1 1
or,(x) = —min(x,—), x> 0. (1.1)
8 X

Definition 1.1. Set0 <y < 1,1 <p<g<oo, 1 = 1‘—7 — 7. Let T be a bounded linear operator from

q
L?(0, c0) into L7(0, co) such that

Tf(x)= j(: K(x,y)f(y)dy, f € LP((0, 00)) and a.e. x ¢ supp(f).

Then, T is a y-Laguerre-Calderén-Zygmund operator if there exists a constant C > 0 and regularity
exponent o > 0,

(1) |K(x,y)| < =S=e P for all x, y € (0, o) with x # y,

[x—y[!=7

(i) |K(x,y) = K(x,2)| + |K(y, %) = K(z, )] < C-22— when |x — y| > 2|y — 2.

|x_y|1+(r—y s
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Remark 1.1. The y-Laguerre-Calder6n-Zygmund operator is also the classical Calderon-Zygmund operator.

Our first main result is the following 7 1-type theorem for the Laguerre-Calderén-Zygmund operator
T, given in Definition 1.1, concerning its boundedness on BMOZ((O, o)) related to the Laguerre
operator L,. For the definition and properties of BM OZ((O, 00)), we refer to Definition 2.1.

Theorem 1.2. (T'1 criterion for BM OZ((O, 0)) (0 < B < 1). Let T be ay-Laguerre-Calderon-Zygmund
operator given in Definition 1.1, where the real number y > 0 and smoothness exponent § satisfies
B+ v < min{l,6}((0, 00)). Then the operator T is bounded from BMOZ((O, 00)) into BMO?:"((O, ©0))
if and only if there exists a constant C > 0 such that, for every ball B = B(x,r),x € (0,00) and
0<r<3pL,(x),

(i) IT1(»ldy < C,

)
|B(x, oL, )| JBixpr, (09)

.. L0V 1
(i) (222) f IT1() = (T)ldy < C,
|BI'*Y Jp
where (T1)g = é fB T'1(y)dy, the auxiliary function p;,(x) is defined in (1.1), and the BMO‘ZH((O, 00))

space is defined in Definition 2.1.
Remark 1.2. Some further comments on Theorem 1.2:

(i) Theorem 1.2 also holds for vector-valued setting. For the Hermite operator case, see Remark 1.1
in [8]; for the Schrodinger operators case, see [3].

(i) Suppose that 7'1 is a bounded function in (0, c0). Then T'1 satisfies the first condition of Theorem
1.2. The second condition of Theorem 1.2 is fulfilled whenever there exists O < a < 1 such that
IT1(x) — T1(y)| < Clx —y|* for x,y € (0, ). For example, if VT'1 € L*(0, o), then the condition
(i1) holds.

For endpoint case 8 = 0, we get the following theorem.
Theorem 1.3. (T'1 criterion for BM Oy, ((0, 00))). Let T be a y-Laguerre-Calderon-Zygmund operator
given in Definition 1.1, 0 < y < min{l, 8}, with smoothness exponent 6. Then T is bounded from

BMO,, ((0, o)) into BM OZ&((O, 00)) if and only if there exists a constant C > 0 such that, for every ball
B=B(x,r),x€(0,0)and 0 <r < %pLa(x),

(i) IT1(yldy < C;

el
|B(X’PL(,(X))| B(x,p1,(x))

PLQ(X)) 1
|B|1+y

where (T1)g = & [, T1(y)dy and py,(x) is defined in (1.1).

(ii) Tog f T10) - (TDldy < C,
B

Notice that, by tracking down the exact constant in the proof, we can see that Theorem 1.3 can be
viewed as the limiting case of Theorem 1.2. This phenomenon is analogous to known results for other
operators. For the Schrodinger operator case due to [3] and for the Laguerre operator, see [7].

As a by-product of our main results, we also characterize the pointwise multipliers on BM OZ((O, 00)).
That is, we obtain the following pointwise multiplier theorem.
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Corollary 1. Assume that g is a measurable function on (0, o). We define the multiplier operator
T,(f) := fg. Then

(i) T, is a bounded operator in BMOZ ((0,00)) for 0 < B < 1 if and only if g € L*(0, 00), and there
exists a constant C > 0 such that, for all ball B = B(xy, y), X € (0,00) and 0 < ry < %pL(,(xo),

o, (x0)\ 1
(T) B fBlg(y) —gsldy < C.

(ii) T, is a bounded operator in BMO;,((0, o)) if and only if g € L*((0, 00)) and there exists a constant
C > 0 such that, for all ball B = B(x, 1), xo € (0,00) and 0 < ry < %pL(,(Xo),

pr,(xo)\ 1
log (2220 fB 10 — gsldy < C.

Remark 1.3. If g € C%%((0,)) N L*((0,)), 0 < a < 1, then T, is bounded on BM Oy, ((0, 0)).
Moreover, if for some y-Laguerre-Calderén-Zygmund operator 7 we have that 7'1 defines a pointwise
multiplier in BM O[Za(((), 00)), then Corollary 1 and Theorems 1.2 and 1.3 imply that 7" is a bounded

operator on BM Oza((O, 00)).

Before introducing some applications, we first review some recent works about 7'1 theorem. Betancor
et al. [8] established a T'1 criterion for Calderén-Zygmund operators on BMOy(R") related to the
Hermite operator H = —A + |x>. They then utilized this T'1 criterion to obtain the BMOy(R")-
boundedness of several singular integral operators associated with H, including maximal operators,
Littlewood-Paley g-functions, Riesz transforms, and variation operators. Ma et al. [3] established an
analogous T'1 criterion for Schrodinger operator. They obtained the boundedness on Campanato-type
space BMO,(R") of maximal operators, square functions, Laplace transform-type multipliers, negative
powers, and Riesz transforms. The authors provided necessary and sufficient conditions in terms of 7'1
criteria for generalized Calderén-Zygmund-type operators to be bounded on H}(R") and BMO,(R")
with respect to the Schrodinger operator L = —A + V with nonnegative potential V, which satisfies the
reverse Holder inequality. Wang et al. [4] studied the boundedness of the operator generated by the
fractional semigroup related to the Schrédinger operators on Campanato-type space via the 7'1 theorem.
More recently, Fan et al. proved the boundedness of variation operators for semigroups related to the
Laguerre operator on BM Oy _((0, 0)); see [7]. Ma et al. [9] established the oscillation of the Poisson
semigroup associated with the parabolic Bessel operator by the vector-valued Calderén-Zygmund
theorem. Ye et al. [10] also established the oscillation of the Poisson semigroup associated with a
parabolic Bessel operator. Xiao and Li [11] studied the oscillation of Poisson semigroup related to
discrete Laplacian by the discrete vector-valued Calderén-Zygmund theorem. For square functions and
potential spaces associated with the discrete Laplacian, see [12].

Now, we turn to our applications. We shall show the boundedness of the maximal operators generated
by semigroups associated with the Laguerre operator on BM OZZQ((O, o0)). We have the following theorem.

Theorem 1.4. Let 0 < 8 < 1. The maximal operators generated by the heat semigroup {WtL “}s0 and
Poisson semigroup {P,L"}t>0 related to the Laguerre operator are bounded from BM OZ((O, 00)) into itself.
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Note that the authors in [13] proved that the maximal operators of the heat semigroup and Poisson
semigroup, as well as the Littlewood-Paley g-functions of the heat and Poisson semigroups related to
the Laguerre operator, are bounded on BMOy_((0, o)) space.

Here, we also review recent progress in harmonic analysis associated with the Laguerre operator.
Betancor et al. [14] studied a transference principle between the Laguerre and Hermite settings, and
obtained some new properties of the Laguerre operators. Dziubanski [15] studied the Hardy space
H za(((), o0)) related to the Laguerre operator L, for @ > —1/2 and used the maximal function related to
the heat-diffusion semigroup generated by L, and atomic decompositions to characterize this Hardy
space. In the sequel, Betancor et al. [16] characterized the Hardy space associated with certain
Laguerre expansions by means of the Laguerre-Riesz transform. Betancor et al. [17] studied the L”-
boundedness of area Littlewood-Paley g-functions associated with Hermite and Laguerre operators.
Dziubarnski et al. [18] studied the BMO spaces related to Schrodinger operators with potentials satisfying
a reverse Holder inequality. Cha and Liu [19] studied the BMO,, ((0, o)) space related to L, for
a > —1/2, which is identified as the dual space of H Ly((O, 00)) associated with L,. They characterized
the BMO,,_((0, 0)) by Carleson measures related to appropriate square functions, and obtained the
boundedness on BMO,((0, )) of the fractional integral operator and the Riesz transform related to the
Laguerre operator. Dong and Liu in [20] established the boundedness of the Riesz transform associated
with the Laguerre operator on BMOy ((0, o0)). Wang and Li in [21] considered the fractional integral of
variable exponent space associated with the Schrodinger operators. For more references, see [22-25].

The outline of this paper is as follows: in Section 2, we introduce the definition and some properties
of BM 02((0, 00)). In Section 3, we show the proofs of Theorems 1.2 and 1.3. In Section 4, we establish
the boundedness of the maximal operators generated by semigroups associated with the Laguerre
operator L, on BM O‘Za((O, 00)).

Throughout this paper, we denote by C and c suitable positive constants that may change at each
occurrence. We will repeatedly use the inequality e < C, a > 0,8 > 0.

2. The space BMO,; ((0,00)),0 <f <1

In this section, we first introduce the definition of BM 02((0, o)) related to the Laguerre operator
L, for a > —%, and then give some properties that will be used frequently later; see e.g., [20].

We first introduce several notations. Denote by B,(x) = B(x, r) a ball with center x and radius r in
(0, 00), B* denotes B,,(x); x ~ ymeans x < Cy and y < Cx for some constant.

Definition 2.1. Let o > —% and 0 < B8 < 1. Denote by B,(x) a ball with center x and radius r in (0, o).
We say a locally integrable function f on (0, o) belongs to BM Oia((O, 00)) if there exists a constant
C > 0 independent of r and x such that

@) | (%) = f,0ldx < C|B.(x)F, for every ball B,.(x) in (0, c0),
|B,(x)| B,(x)
(i1) |f(0)ldx < CIB.(x)F’, for r > py, (x),
|B,(x)| B(x)
where fp(y = m 5,00 |f(x)|ldx, and the auxiliary function p;, (x) is defined in (1.1). The norm

fllgper ©f f is defined as the minimum C > 0 such that (i) and (ii) above hold. Specially, we have
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BM 020((0, o)) = BMOy,((0, o)), where BM O, ((0, 00)) is the BMO space related to the Laguerre
operator, see [19].

Thanks to the John-Nirenberg inequality, it can be seen that if in (i) and (ii) L'-norms are replaced
by LP-norms for 1 < p < oo, then the space BM OZ((O, 00)) does not change, and equivalent norms
appear. In this case, the conditions are expressed as:

1

(p (m 8.9 |f(x)— fBr(x)lpdx)p < C|B.(x)%, for every ball B,(x) in (0, o),

1

i) (s Jy 0 COPR)” < CUBLOP, for r 2 pr, ().

Note that if (i1) (resp. (ii),) above is true for some ball B, then (i) (resp. (i),) holds for the same
ball, so we might ask for (i) (resp. (i),) only for balls with radii smaller that p;(x). If 8 > 1, then the
space BM Oﬁa ((0, 00)) only contains constant functions. Hence, the restriction 8 < 1 in the definition
above is necessary.

Lemma 2.2. (According to [18], Lemma 1) Let p;,,(x) denote the auxiliary function defined in (1.1).
Assume that xo = 1,x; = xj41 + pr,(xj-1) for j > 1, and x; = xj. — pr,(xj1) for j < 1. We define the
family of “critical balls” of Q = {Qk};2_.., where Oy := {x € (0,00) : |x — x| < pr,(x)}. Then

1) Uil_ Ok = (0, 00);
2) Foreveryk € Z, Ox N Q; = 0 provided that j & {k — 1,k k + 1};
3) For any y, € (0, 00), at most three balls in Q have nonempty intersection with Q(¥o, Pr,(y))-

It is not hard to check that for every Qr(x) C (0, c0) with R > p;,, (o), there exists a constant C > 0 such
that |Qr(X)| < X 0,e0.0i00r20 |Gkl < ClOr(X).

Lemma 2.3. ( [20], p346) Let a > —% and 0 < B < 1. An operator S defined on BMO[ZQ(((), 00)) is
bounded from BM OZ((O, 00)) into BM 0‘2:7((0, ®)), B+ vy < 1,y >0, if there exists a constant C > 0
such that for every f € BM 02((0, o0)) and k € N,

(A0 Gt Jo, 1S Fldx < Clifllgyep -
(By) ||Sf||BM0ﬁ+V(Q;) < C”f“BMo‘Z ,

where BM Oﬂ(Q,*() denotes the usual BMOP space (see [1]) on the ball 0;.

Lemma 2.4. Let p; (x) denote the auxiliary function defined in (1.1). Assume that B = B(x,r) with
r < pr,(x). Then

(1) (see [26], p.141) If f € BMO;,((0,)), @ > =1, then

pr,(x)
r

fil < C(l + log )||f||BMoL(,.

(2) If f € BMOS ((0,0)), @ > =%, 0 < B < 1, then | fy| < Copr, (Ol|llamron, -
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Proof. (1) The detailed proof of (1) can be seen in [8].
(2) Let 2" < py,(x) < 2"*'r with n be a positive integer. For f € BMO; ((0,e0)), @ > -3,0<B <1,
we obtain that

1 n
o1 < o [ 1709 = oy + Y s = Fonsl + s
B i=1

< Cllfllpyer 1BF )2
{2 l:l

< CRPQ" TP gy
< C/gpLa(x)'B”f”BMdz :
The proof of this lemma is completed. ’

Lemma 2.5. Let B = B(x,r) withr > 0 and x € (0, c0). Then, f € BMOZ((O, ), a>-1,0<B<1,
if and only if f satisfies (1) in Definition 2.1, and for all balls Qy in Lemma 2.2, it satisfies | flg, < C|Of’.

Proof. If |flg, < C |OkP, let B = B(x, r) with x € (0, 00) and r > p;_(yy. From Lemma 2.2, it holds that

Y[ mswan [
kek ¥ Ok U Ok

keK

where N is the constant controlling the overlapping, and K = {k : BN Q, # 0} is finite. It is easy to
know that there exists a constant C such that Q;, ¢ CB with k € K. Then we have

I/l < f Ifl < fIIS(N+1) If1 < CIOW"* < CIB|'*.
Lf ;( Banf Z Qkf UQkf ‘

keK K

Hence, f € BM 02((0, o0)). If r < p;,(x), by combining the above derivation and ( [26], Corollary 1),
we have f € BMOZ((O, 00)). It is easy to check that the opposite statement holds. O

Lemma 2.6. Let p;, denote the auxiliary function defined in (1.1). Assume that xy € (0, ) and
0 < ro < pr,(x0). Then, there exists a constant C > 0 such that for x € (0, 00),

(1) the function

PL, (x0)

£10)

) +X["O’PL(y(x0)](|x ~ Xol) 1Og(lx - Xol

0 () = o = o) Tog
belongs to BMOy,,((0, 00)) and ||gx, ,(llzmo,, < C-
(2) the function

Ry (X) =:X10.01 (1% = XD (oL, (0 — 1)
+ Xtropr, o1 (1X = X0 (oL, (x0)’ = |x = xo’)

belongs to BMO; ((0,0)) and Wr.ro (Ol gpger < €

Proof. The proof of (1) is similar to the proof of Lemma 2.1 in [17]. The proof of (2) is similar to that
of Lemma 2.5 in [3]. Here we omit these details. O
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3. Proof of the main results

We divide this section into two subsections. In the first subsection, in order to prove Theorems 1.2
and 1.3, we first introduce the definition of the operator 7 in (3.1). Then we export an expression for
T f, where T'1 appears, which will play an important role in our main results. In the second subsection,
we first prove Theorems 1.2 and 1.3. Then we will characterize the pointwise multipliers of the spaces

BMO;, ((0,)).

3.1. The operators related to Laguerre operator L,

In this subsection, in order to prove Theorems 1.2 and 1.3, we first introduce the definition of the
operator T. We denote by LZ((0, 0)) the set of functions f € LF((0, o)) whose support supp(f) is a
compact subset of (0, 0), 1 < p < co.

Definition of Tf for f € BMO, ((0,0)), @ > —1,0 < g < 1. Let Bg := B(0, R) for every R > 0.
Assume that f € L?((0, 0)), we define

Tf(x) = T(fxp)(®) + T(fxs)(x) = T(fxp)(x) + f K@y fO)dy. (3.1)

By

Observe that the first term in the right-hand side of (3.1) makes sense since fyz € LZ((0, )). The
integral in the second side of (3.1) is absolutely convergent. In fact, suppose that f € BMO,,((0, o))
and R > 1. For every x € Bg, by using Definition 1.1(1), it follows that

ol e_lx_ylz
[ wenron<cy, [ fyldy
B, 2iR<pyl<2i+1R [X = )

=1

SR
<L f FG)ldy
jZl (2JR)2_’Y 2/R<|y|<2/*IR

1 1
<C ' ' p
< ]Z:; (2/R)!-B~ (2/R)+B LR<|y|<2/+1R |fO)ldy

<

Rl_ﬁ_y”fHBMOLH, a.e.x € Bg.

The definition of 7 f(x) is independent of R in the sense that if By C Bg with R < §, then the
definition using Bs coincides almost everywhere in Bg with the one just given, because in that case, for
a.e. x € By, we have

T(fXBs) - T(f/\/BR) = T(fXBs\BR)(x)

- [ kensou
Bs\Br
- [ Koy [ Koy,
By By
In particular, the definition just given above is equally valid for f = 1 € BM O, ((0, 0)).
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Next we export an expression for T f, where T'1 appears, which will play an important role in our
main results. Let B = B(xy, rp) where x( € (0, c0) and ry > 0, we have

f=U-faxp+(f—feaxex+fe=fi+tHL+f (3.2)

Let us choose R > 0 such that B** C Bg. Using (3.2) and the definition of 7 f given in (3.1), it is clearly
that for a.e.x € B*,

TH) = T(rn)0)+ | K)oy
=TWf = fe)xs=)X)+ T((f — fe)xBe\B=)(X) + [BT (x B )(X)
+ f KCuy)(FO) — fody + f f K(x,y)dy
B;% -

By

(3.3)

=T((f = fedxp)(x) + f K(x, y)(f(y) = fo)dy + fsT 1(x).

(B**)¢

3.2. Proof of the main results

In this section, we first prove Theorems 1.2 and 1.3. Then we will characterize the pointwise
multipliers of the spaces BMO’, ((0,0)).

Proof of Theorem 1.2. First we will see that the condition on 71 means that 7' is bounded from
BM Olzw((O, 00)) to BM oﬁj((o, o0)). In order to do this, we shall prove that there exists a constant C > 0

such that the conditions (A) and (By) in Lemma 2.3 hold for every k € N and f € BM 0@0((0, 00)).

We first prove the condition (A;) in Lemma 2.3. According to (3.3) with B = O, O standing for a
ball with center x; and radius ry, it follows that

TS =T - fo o))+ [ K@(GO) - fody + faT109)

Q) 3.4)
L+ L+ 13, ae.x€ Qk-

We begin with ;. As T : LP(0,00) — L%(0, o0), where +y =2, thanks to Holder’s inequality and
John-Nirenberg’s inequality, it holds that

1

1

QB kaWSC Iq% f IT((f = faeg-)ldx)

’d
|le,, o f (FGO) = F(oO)] x)
< Cllfllzmoy, -

To estimate I, if x € O, then x ~ x;. Applying the size condition of K(x,y) in Definition 1.1, for
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B+ vy <1, wehave

K(x, )(f() = fo)dy
@

f K IO — fouldy
'

1 f 1
_— |LLldx =
1018+ Jp 2 0P

< 1
| QP
C <& f 1
= ) - fold
|Qk|ﬁ+y ; 2jrk<|y|<2j+1rk |.x - y|1_7 f y ka y

1 - 1
- — fold
< |Qk|’8+7;(21rk)1—7 f|y iy, lf ) = foldy

1 f
3 lf ) - fold
QIr) ™ Jyycpiiy, FO) = foldy

<C Z 2—]’(1—13—7)”f”BMdz

J=2

<c N gty

g TMe

< Cllllpuep -
Finally, in order to prove

o |1+Vf IT1(x)ldx < C, (3.5)

it is enough to show that

1
WL |I3ldx < C”f”BMOZ'
k

Indeed, we have

1 fol 1
Lsldx = =%

J— X = [
|02+ J o, | Ok 1Okl

According to the definition of T'1, T'1(x) = T(x ;- )(x) + T (x(0;))(x), x € Ok. Hence, by 7' maps L” into
L1, and applying Holder’s inequality, we derive that

IT1(0ldx < Cllfllgp06 -
Ok @

1 |Qk|
IT (v )(0)ldx < ( Ty )(x)lqu)
|le“7 f % o\ Jo Naa
Observe that |x; — y| ~ |x — y| when x € O, using the size condition (1) of K(x,y), then

= 1

T (o )(x) < C f —dy

@ ; 2/ re<|xg—yl<2/t 1y |)C - y|2_7
= 2jrk
<CY) —* <cwmy.

2 @irgrr = €W

Thus we obtain that the inequality (3.5) holds. Hence, it follows that

1

1 _
— | |Gldx = |fg |7~ | [T1(0ldx < Clfp| < Cllfllzmoy, -
|Bi| Jg, |B

il J,
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To sum up, we conclude that (A;) in Lemma 2.3 holds for T with a constant that does not depend on k.
Next we prove that T satisfies the condition (By) in Lemma 2.3. Let B = B(xo,r9) € Q;" where
Xo € (0, 00) and ry > 0. We separate into the two cases: ry > p; (xo) and ry < pr_(Xp).
If ro > pr,(x0). Notice that p;_(x9) ~ pr, (xx) ~ ro. Combining with the computation above, we
obtain that T satisfies (Ay),

1 1
i | 00 =@ty < Cop [ 1700 < Clfle

If ro < pr,(x0). By f = fi + fo+ f3 as in (3.2) and the decomposition of 7' f in (3.3), we have for x,z € B,

1 1 1
WL'Tf(x)_(Tf)Bldx Smﬁﬁfﬁfl(ﬁc)—Tﬁ(Z)WZdﬁC

1
+|B|1+,6'+yf|B|f|F(x) F(2)|dzdx (3.6)
|B|1+ﬂ+v f IT () — (T f)sldx
=i+, + .13.

Here we write

Fx) = f K ) 0.
(B*x)¢

For the first term J;, note that T is bounded from L” into L7; applying Holder’s inequality, it follows that

2
I < [T
’ 1 (3.7)

C :
- |B|zlz+ﬁ+7( L* () = fqudx) = C”f”BMO’Za'

For the second term J,. Let x,z € B, then |x — z| < ry. Note that |[x — y| ~ |xo — y| when y € (B*)".
Applying the smoothness of the kernel in Definition 1.1, it holds that

B FO-FQ@I <

x =2
< _— d
< ]Z;‘ fz s oyl 0) = foldy

_|B|’B+7 Z (211’0)1 r+o Lo—ykz/“m /) = foldy

f ., |K(x,y) = Kz, VI f(y) — faldy
B

(2/)yr+B=2 J
S Mty (R VOB ST y Ry
= 2710)™F Jpyicaiing =0
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Moreover, we have

1
+pB— 6 — frin
| BWIF ()~ F@) <€ Z(w (G sz FG) = forsldy

Z (2k+1,, B f lf) - f2k+|3|dy)

<C Z@W (g, + G+ Dilfllgyor )

=2
<Cllfllgyrep -

Hence, we obtain that J, < C||f]l,,,# - Now we turn to estimate J3. Thanks to Lemma 2.4 (1) and the
Lo
hypothesis condition of T'1, we get

Js < |B||{%ﬁl+7 f IT1(x) = (T1)pldx

< C”f”BMOBa(er(X) |B|l+7 f|T1(x)—(T1)B|dX

< Cllflgprep

Combining with all the computation above, we obtain that the condition in Lemma 2.3 holds. Hence T’
is bounded from BM O] ((0, %)) into BMO; "7 ((0, 0)).

Now we start to show the opposite statement. Suppose that the operator 7 is bounded from
BMO; ((0,0)) into BMO}7((0,0)). Let B = B(x, ro) where x € (0,00) and 0 < ry < py, (x0). We
write the function f(x) = f(x, xo, rp) defined in Lemma 2.6, by using (3.2), and it follows that

[ = =Usxe + (f = Dpxe + (N = fi+ o+ 5

Then E;Tl(y) = Tf(y) - Tfl(y) — Tﬁ(y). Hence we have

fnglHM f IT1(y) - (T1)3|dy_|B|1+ﬁ+y f IT f(y) — (T f)sldy

+W fB ITHO) - (T F)sldy

1 — —
s | ITO) = (T Fdy
=:H + H, + H;.
We can check that each of H;(i = 1,2, 3) above is controlled by ||ﬂ| o < C, where C is independent
of xy and ry. Indeed, for the first term Hj, it holds that H; is controlled by ||]7|| B0’ < C because T is
bounded from BM 02((0, 00)) into BM 0@:7((0, o0)). The second term H, follows by Holder’s inequality

and L?” — L7 boundedness of T'. The last term Hj3 is done as J, in (3.6). Note that ﬁ; ~ (pLa(xo)ﬁ - roﬁ),
we obtain that

(PL(, (Xo)

ro |B|1+Y

f T10) - (T1)ldy < C.
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Hence the proof of this theorem is completed. O

Proof of Theorem 1.3. The proof of this theorem is similar to Theorem 1.2, putting 8 = 0 everywhere,
and expecting just two differences. The first one is the estimation of the term J3; here, we need to apply
Lemma 2.4. The second difference is the proof of the opposite statement, where we need to consider the
function h(xy, ro)(x) of Lemma 2.6. |

Proof of Corollary 1. Suppose that g is a measurable function on (0, o) satisfying the conditions (1)
and (2) of Corollary 1. From the proof of Theorem 1.2, we know that g is a pointwise multiplier on
BM OLZ”((O, ©0)). In particular, the kernel of operator T is zero.

Now we suppose that g satisfies the above condition. Let the function f(r, xo)(x) of Lemma 2.6,
where x, xg € (0,0) and 0 < ry < py, (%), belong to BMO; ((0,0)), then pr, (xo¥’ < Cylpr, (xo)’ = 15).
Applying Lemma 2.4 (h = hg), it follows that

pr,(xo)f =15
IBI f lg(x)ldx = cﬁTﬁ" fB [h(x)g(0)ldx

Cp
< Cylllyp0, -

(PL (xo)

Hence |g|p < C, which does not depend on B.

On the other hand, if xy € (0, 00) and 0 < ry < pr, (xp), by the boundedness in BM OZ((O, 00)) of T,
we obtain that

p_L"““’))Bi f _ o P, (x x)f -1} f
( ro ) 1Bl Blg(x) gpldx <Cg—rr— B lg(x) — ggldx

SIBI—“ﬁ f lg(x)h(x, 1, X0) — (8h(x, 1, X0))pldx
B

<Cgllgh(-, , Xo)”BMoﬁ
<Cgllh(, r, xO)”BMO‘Z ’

where Cg is independent of B. m|

4. Proof of Theorem 1.4

In this section, we establish the boundedness on BM OZ((O, )) (0 < B < 1) of the maximal operators
for semigroups related to the Laguerre differential operator L, by using the 7’1 criterion.

4.1. Maximal operators for the heat-diffusion semigroup e

In this subsection, we establish the boundedness on BM OZ ((0,00)) (0 < B < 1) of the maximal
operator for heat semigroup related to the Laguerre operator. In order to prove BM OZ -boundedness
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of the maximal operator W-* f(x) := sup |WIL “ f(x)|, then it is enough to prove that the vector-valued
>0

operator A(f) := { W,L * 10 1s bounded from BM 0[20((0, 00)) into BM 0‘;((0, o); E). By the spectral
theorem, it is easy to check that the vector-valued operator A is bounded from L?((0, 00)) into L2((0, o0); E).
Hence, we only need to estimate the vector-valued kernel ||W*(x, y)||g; see Proposition 4.1.

Now we introduce the properties of the heat-diffusion semigroup generated by L,, o > —%. Let
{W,L"},Zo be the heat-diffusion semigroup generated by L,. For f € L*((0, o)), we have

Wﬁf@)zé@ﬂﬂzif W2 () )y, x € (0, 00),1 > 0, (“.1)
0
where the kernel
" 27" \i(2xye™t \? [ 2xyel\ _1is SN )
Witxy) = (1 —e ) (1 - e‘2f) Ia(l - e‘z’)e S +-2)

1, 1s the modified Bessel function of the first kind and order «, see, e.g., [20].
In order to estimate the heat kernel W/ (x, y) conveniently, we introduce some properties of the Bessel
function I, (see [5]):

I,(2) ~z" z—-0, 4.3)
| 1 1
221(2) = —=€*(1 + O(=)) z — oo, 4.4
Von E 4.4)
d
d—z(z“’la(z)) =7 "Io11(z) 7z €(0,00). 4.5)
Let r = ¢ . Based on the discussion of Wi (x,y) in [20], the heat kernel can be decomposed as
Wi (x,y) = H(r, x,y)0(r, x, y)¥o (7, x,y) (4.6)
where i
_ ey LA ey
H(r, x,y) = e """ = r)l/ze 2Tl
\/z -1 xy
Orxy) = G
zrl/zxy 1/2 2112,y 2r1/2xy
llja’ s Ny = ( ) D) Ia( ).
ren=\a=y) ¢ (1-7)

If x,y € (0,00) and ¢ > 1, notice that r < e~2, and from (4.3) and (4.6), it follows that

1
zxye—t )2+a _2:()'971‘

e -2

—c I\}I
W (x,y) < Ce e (l—e‘zf

< Ce ™ttt
If x,y € (0,00) and 0 < ¢ < 1, applying (4.4) and (4.6), we have

-y 1 2ne!

Wo(x,y) < Crie 7 ™ \/Z_ele-”e u-2r(1+0( L
T

-y

1 _
<Ctie i ™,
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Hence, we have for x,y € (0,00) and t > 0,

=yl

W2 X
Wo(xy) < Ctie 7 e ™y + Ce ey ) (0). 4.7)

We write W2 (x, y) = \/%e! then W £(x) = [i° We(x, y)f()dy.

Lemma 4.1. There exists a constant C > 0 such that

W ry i
W) - Wl = o) et
pL,(x)

Proof. Using definition of p; (x) and (4.7),

W LS 1 o2
W (e, y) = Wi eyl <Clrze™ e ™ xou(t) = —=e ™ 7 |
t t Vart
+Cle™e _Clx_ylz/\/ (1.00)(2) — ! e € ‘XZ‘Z |
Vant

Loyl

iy e _1 oo
<C(le™™x011()) = 1] + | Ve ™y (1.00y() = 1Dt 2e7

1.
<Cltxyx @] + [ty a.c0 (DDt 2™

2 2
(e

PL, (x)

The proof of this lemma is completed. O

Combining the above Lemma and its proof, we can get the following lemma.

Lemma 4.2. Suppose that 0 < 6 < 2, x,y € (0,00) and t > 0. If |y —z| < pr,(y) and |y — 2| < ilx -y,
then

0
|y _Z|) t—%e—(:ﬁ.

|wmw—me%Wﬂ@—W“@““&mm

Lemma 4.3. Let 0 < 6 < 2. If|y — z| < W, then there exists a constant C > 0 such that

|y_Z|)(S 1 —c@

Wi (x,y) = Wi(x,2)| < C( I Ze

ro0f. —zl< Vtand |x—y| = |y — 7, a ing Lemma 4.2, 1t tollows that
Proof. If [y — z] < ¥rand §|x — y| > |y — z|, by applying L 4.2, it follows th

_ ) t ) o2
Wre) - Wit ol <o E2Y (10 Yt

Vi )V oL@
— NG -

(M=) e
Vi

If i|x —y| < |y =zl < V1, we can obtain that the conclusion above holds by the semigroup property. O
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The semigroup {WtL “},s0 18 contractive in LP(0, o0) for (1 < p < oo, and selfadjoint in L2((0, c0)) but
it is not Markovian. On the other hand, for every f € L?((0,00)), 1 < p < oo, lilgl Wi f(x) = f(x)in
t—0*

LP((0, 0)), and a. e. x € (0, c0). Suppose that f € BMOZ((O, 00)), the integral

Wl f(x) = fo We (. ) £ (3)dy

is absolutely convergent, for every ¢ € (0, o) and x € (0, 00).
For enough good function f, we define the maximal operators W associated with heat semigroup by

Wk f(x) 1= sup [W/ f(x)l.

>0

Obviously, we have Wke f(x) = ||W,L “fllg, where E = L*((0,),dx). Applying Theorem 1.2 and
Remark 1.2, in order to prove that the maximal operator Wk is bounded from BM OZZQ((O, 00)) into itself,
it is enough to prove that the vector-valued operator

A(f) = AW fliso

is bounded from BMO] ((0,0)) into BMO’, ((0, 00); E), where the space BMO,; ((0,0); E) is defined
in the obvious way by replacing the absolute values | - | by norms || - ||[z. By the spectral theorem, it
is easy to check that the vector-valued operator A is bounded from L2((0, o)) into L?((0, 0); E), see,
e.g., [25]. Hence, we need to estimate the vector-valued kernel ||[W*(x, y)||g. For vector-vector kernel
Wi (x,y), we have the following estimates.

Proposition 4.1. There exists a constant C such that for x,y,z € (0, 00),

(D) IWF(x, )lle < We —clx—y? X E Yy

(ii) W (x.y) = WG Dl + IWE G x) = W 0)lle < ColShs, x # y and |x = y| > 2|y - 2|, for all
0<d6<1;

(iii) For all B = B(x,r) with O < r < py_(x), then

pr, (0 1 N P
og () fB W 10) — (W Dlsdy < C.

In particular, suppose that f < min{1, 6}, then

(PL(,( 0V 1

fIIW"l(y) — (W Dglledy < C.
r IBI

Proof. Let us start to prove (i). For every x,y,t € (0, c0), by applying (4.7), we have

R = et —elx—yl?
We(x,y) < Ct2e™ 7 e ™y n(0) + Ce™e ™y (1)

|2 aly—l2
< Ce My @) + Ce™ ™y (0)

< Ce_C|x_y|2
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Therefore, it is easy to deduce the desired conclusion.

(i1) The simple fact that |[x —y| ~ |[x —z| when |[x —y| > 2|y —z|. Forall0 < 6 < 1, if [y —z| < V1, from

Lemma 4.3, it follows that

— 7\¢ 2
W) = Wit 2 <02 rdees
t

ly —zl° (lx -l )”5 el
e t

= Ix_y|1+5 \/;
ly —zl°
- |x_y|l+5'

If |y — 2] < V¢, from (4.7), it follows that

byl

1 2
W (x, )] <Ct2e™ 7 ey on(®) + Ce ey o0 (0)
W‘df—‘fﬁ*

tr2e

<

ly—zP°

By the same argument, we can be obtained |[W;'(x,z)| < C ol

5. Combining with the computation

above, and noting that the symmetry of the kernel W (x,y) = W{(y, x), we obtain the desired estimates.
Next, we turn to prove (iii). Let B = B(x,r) with 0 < r < p;_(x). We have p;_(y) ~ p,(z) ~ pr,(X)

when y, z € B. Notice that W/'1(x) = 1, by Lemma 4.1, it holds that

IWEL(y) = W@l <IWEL(y) = WL + (W 1(z) — W 1(2)

o0 2 a2 2 2
[ G e e
0 PLQ()’) qu(Z)

2 © —uj 1 z—u
S( \/(;)) f t_%e_clyr|2 +t‘§e_64du
Pr, X 0
t 2
:C( v )

Pr, (%)

Hence, when v < 2r, we have

Wﬂ@—%ﬂdédmby.

If V¢ > 2rand Vt > p;, (x), then vt > 2r > |y — z|. Applying Lemma 4.3, we get
Wi 1(y) — Wi (2)| Sf (Wi (v, u) — Wi (z, w)ldu
0

c( ly\_/;l )‘5 < C(%)‘S

o
),0<5<1.

IA

IA

C&M@

(4.8)

4.9)
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If 2r < Vit < pr,(x), we obtain that

W) = Wi L@) =W 1) = W) = (W 1) - Wi @)

A0S o)
[u=y|>cpr, (x) 4y—zl<lu—y|<Cpr, () [u—yl<4ly—z|

We(y, u) — Wy, u) — (We(z, u) — W2(z, u))
=:|Ly + Ly + Lj].

For the first term L;, we use the smoothness proved in Part (ii) of this proposition. Note that the same
smoothness estimate is valid for the classical heat kernel. So we get

S0 §
Lis | p R TEYe Py
[u=y|>cpr, (x) Iu - yl PL, (X)

For L,, note that p;, («) ~ pr,(y) when |u — y| < cpr,(y), applying Lemma 4.2, we obtain that

1 M_AVZ
|Ly] < Cly — Zléf e auc< C(
4

r )5
—el<tu-yl<Cpr, o) (OL, (1))° pr,(x))

For the last term L;, observe that V¢ < pr,(x), from Lemma 4.1, it holds that

t 2 u_).Z u—ZZ
|Ls] SC( AL ) (f rre T du+f t_%e_c%du)
pr,(X) =yl <dly—2] lu—z|<dly—z]
2
) [
pr, (X)) Jgcio-

Vi
Vi \ly -z
<C
= (pLa(x)) Vi
<C .
=

Hence, for 2r < vVt < pr,(x), we obtain that

r )
WeL(y) — W ()] < C( ) . (4.10)
Pr,(x)
Combining (4.8)—(4.10), we have
7 0
IW10) = W@l < O(——) . @.11)
por,(x)

Therefore, we have

pr,(0)\ 1 N e
log( 2 - fB W 10) = (W D)ledy

x)\ 1 1
<tog (=0 [ [ w100 = stz
r /Bl Jg |Bl Jg

)6 log (pL’T(x)) <C.

SC(po,(x)
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The first part of (iii) has been attained. For the second estimate, by (4.11), we have

pL,(x ) . . P
(P2 5 [ 19109 = Wy Daledy < (=) =c
r IBI Pr, (%)
as soon as 0 — 8 > 0, which can be guaranteed if 8 < min{1, ¢}. m|

Proof of Theorem 1.4 for the heat semigroup case. Note that W' f(x) = ||W"* f||z, and the operator A
above is bounded from L?((0, 00)) into L*((0, co); E); applying Theorem 1.2, Remark 1.2, and Proposition
4.1, we obtain that the maximal operator Wk is bounded from BM OZ((O, 00)) into itself. O

4.2. Maximal operators for Poisson semigroup e~ VLo,

In this subsection, we will establish the boundedness on BM OZ((O, ))(0 < B < 1) of the maximal
operator for Poisson semigroup related to the Laguerre operator. Applying Bochner’s subordination
formula, the Poisson semigroup P= = ¢ VI« associated with the Laguerre differential operator L, is
given by

Lo NI _ t 0 _Li Lo ds
P f(x) =e "V f(x) = ﬁfo e sW, f(x)m, x € (0,00), t> 0. (4.12)

Thanks to (4.1), for enough good function f, we obtain that

L= [ [ e w9
Ph f(x) = fo o fo W (3, 3) -5 F )y
- [ Prnsony, (4.13)

0
where the Poisson kernel

t e 2 ds
PY(x,y) = —— TEWx,y)—=, x € (0,0), t > 0.
1 (X5Y) zﬁfo e SWilxy) 57, x € (0, 0)

To get the boundedness of the maximal operator

Pl f(x) := sup [P{ fOl = 1P fllieoonan (4.14)

>0

in BM Oﬁa((O, 00)), we proceed using a vector-valued approach and the boundedness of maximal heat
semigroup WX*. The following proposition is completely analogous to Proposition 4.1.

Proposition 4.2. Let E = L*((0, 00), dx). Then, there exists a constant C such that for x,y, z € (0, ),

(i) 1P (x, e < |x—_y|€ o s, XEY,

(id) 11PEx, ) = PG Dlle + 1P (v, ) = P 0l < Cofsils, x # yand |x =yl > 2y =], for0 < 6 < 1.
(iii) for all B = B(x,r) with 0 < r < pr (x), then

(y(x) 1 103 102
tog (222) - [ 1P710) - P Dleay <
r 1Bl Jp
In particular, if B < min{1, 8}, then
(PL(Y( Xx)

|BlfllPo‘l(y) (P Dplledy < C.
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Proof. The estimate of W/ (x,y) is transferred to Py (x,y) by the formula (4.11) and the proposition 4.1.
It is easy to check that (i) and (ii) hold. We just sketch the proof of (iii). For any y,z € B = B(x,r), x €
(0,00) and r < p;(x), by Minkowski’s integral, we get

1P 1) = (P Dslle

1
=Ef||P?1(Y)—P?1(Z)IIEdZ
B
1 1 « du
<C— ——= W (y) - W, 1 —5d
< Bfm%)fo e IW10) = Wl D75z

SC(pL:oo )5'

Hence, we obtain that

1
og (252 g J, V100 - Pl < €
r Bl Js

and OV 1
p 3 X Q 02
(=) & [P0 - @riatay <
Bl Jg
The proof of this proposition is completed. O
Proof of Theorem 1.4 for the Poisson semigroup case. Note that PX f(x) = ||P,L"f llz; applying

Proposition 4.2, by the same argument with the proof of Theorem 1.4 of the Poisson semigroup case,
we immediately obtain that the maximal operator P is bounded from BM OZ((O, o0)) into itself. O
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