This paper proposes a modified Rivaie-Mohd-Ismail-Leong (RMIL)-type conjugate gradient algorithm for solving nonlinear systems of equations with convex constraints. The proposed algorithm offers several key characteristics: (1) The modified conjugate parameter is non-negative, thereby enhancing the proposed algorithm's stability. (2) The search direction satisfies sufficient descent and trust region properties without relying on any line search technique. (3) The global convergence of the proposed algorithm is established under general assumptions without requiring the Lipschitz continuity condition for nonlinear systems of equations. (4) Numerical experiments indicated that the proposed algorithm surpasses existing similar algorithms in both efficiency and stability, particularly when applied to large scale nonlinear systems of equations and signal recovery problems in compressed sensing.
Citation: Yan Xia, Songhua Wang. Global convergence in a modified RMIL-type conjugate gradient algorithm for nonlinear systems of equations and signal recovery[J]. Electronic Research Archive, 2024, 32(11): 6153-6174. doi: 10.3934/era.2024286
[1] | Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096 |
[2] | Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710 |
[3] | Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly $ (\alpha, m) $-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661 |
[4] | Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407 |
[5] | Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially $ (\alpha, h-m) $-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521 |
[6] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[7] | Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637 |
[8] | Arshad Iqbal, Muhammad Adil Khan, Noor Mohammad, Eze R. Nwaeze, Yu-Ming Chu . Revisiting the Hermite-Hadamard fractional integral inequality via a Green function. AIMS Mathematics, 2020, 5(6): 6087-6107. doi: 10.3934/math.2020391 |
[9] | Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon . On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals. AIMS Mathematics, 2023, 8(1): 1833-1847. doi: 10.3934/math.2023094 |
[10] | Atiq Ur Rehman, Ghulam Farid, Sidra Bibi, Chahn Yong Jung, Shin Min Kang . $k$-fractional integral inequalities of Hadamard type for exponentially $(s, m)$-convex functions. AIMS Mathematics, 2021, 6(1): 882-892. doi: 10.3934/math.2021052 |
This paper proposes a modified Rivaie-Mohd-Ismail-Leong (RMIL)-type conjugate gradient algorithm for solving nonlinear systems of equations with convex constraints. The proposed algorithm offers several key characteristics: (1) The modified conjugate parameter is non-negative, thereby enhancing the proposed algorithm's stability. (2) The search direction satisfies sufficient descent and trust region properties without relying on any line search technique. (3) The global convergence of the proposed algorithm is established under general assumptions without requiring the Lipschitz continuity condition for nonlinear systems of equations. (4) Numerical experiments indicated that the proposed algorithm surpasses existing similar algorithms in both efficiency and stability, particularly when applied to large scale nonlinear systems of equations and signal recovery problems in compressed sensing.
The wighted version of Hadamard inequality known as Fejér-Hadamard inequality was established by Fejér in 1906. It is stated as follows:
Theorem 1. [1] Let ψ:[a,b]→R be a convex function. Further, let η:[a,b]→R be integrable non-negative function which is symmetric about a+b2. Then we have
ψ(a+b2)∫baη(x)dx≤∫baψ(x)η(x)dx≤ψ(a)+ψ(b)2∫baη(x)dx. | (1.1) |
The Hadamard inequality is obtained if we consider η(x)=1 in the inequality (1.1). The following definition of "convex function with respect to a strictly monotone function" is the key factor of this paper.
Definition 1. [2] If φ is strictly monotone function, then ψ is called convex with respect to φ if ψoφ−1 is a convex function.
Alternatively the Definition 1 can be taken as follows:
Let I,J be intervals in R and ψ:I→R be the convex function, also let φ:J⊂I→R be strictly monotone function. Then ψ is called convex with respect to φ if
ψ(φ−1(tx+(1−t)y))≤tψ(φ−1(x))+(1−t)ψ(φ−1(y)), | (1.2) |
for t∈[0,1],x,y∈Range(φ), provided Range(φ) is convex set. Therefore Definition 1 is equivalently defined by inequality (1.2).
Examples: [3] 1. Let φ(x)=x. Then φ−1(x)=x, the inequality (1.2) takes the form
ψ(tx+(1−t)y)≤tψ(x)+(1−t)ψ(y). | (1.3) |
2. Let φ(x)=lnx. Then φ−1(x)=expx, the inequality (1.2) takes the form
ψ(exp(tx+(1−t)y))≤tψ(exp(x))+(1−t)ψ(exp(y)). | (1.4) |
By replacing x with lnx and y with lny in (1.4), we get
ψ(xty1−t)≤tψ(x)+(1−t)ψ(y). | (1.5) |
3. Let φ(x)=1x. Then φ−1(x)=1x, the inequality (1.2) takes the form
ψ((tx+(1−t)y)−1)≤tψ(1x)+(1−t)ψ(1y). | (1.6) |
By replacing x with 1x and y with 1y in (1.6), we get
ψ(xyty+(1−t)x)≤tψ(x)+(1−t)ψ(y). | (1.7) |
4. Let φ(x)=xp,p>0. Then φ−1(x)=x1p, the inequality (1.2) takes the form
ψ((tx+(1−t)y)1p)≤tψ(x1p)+(1−t)ψ(y1p). | (1.8) |
By replacing x with xp and y with yp in (1.8), we get
ψ((txp+(1−t)yp)1p)≤tψ(x)+(1−t)ψ(y). | (1.9) |
5. By replacing x with φ(x), y with φ(y), the inequality (1.2) takes the form
ψ(φ−1(tφ(x)+(1−t)g(y)))≤tψ(x)+(1−t)ψ(y). | (1.10) |
Inequalities (1.3), (1.5), (1.7) and (1.9) give convexity, GA-convexity, harmonic convexity and p-convexity given in [4,5,6]. Hence these independently defined notions are actually examples of a convex function with respect to a strictly monotone function.
Definition 2. [7] A function ψ will be called symmetric with respect to a strictly monotone function h about h(a)+h(b)2,a,b∈Domain(h), if
ψ(h−1(h(a)+h(b)−x)=ψ(h−1(x)) | (1.11) |
holds for all x∈Rang(h).
The notions of symmetric, harmonically symmetric, p-symmetric, geometrically symmetric are examples of Definition 2. These are defined explicitly in [8,9,10].
We have obtained the following versions of the Fejér-Hadamard inequality for convex function with respect to a strictly monotone function.
Theorem 2. [7] Let I,J be intervals in R and ψ:[a,b]⊂I→R be a convex function, also let φ:J⊃[a,b]→R be a strictly monotone function. Further, let ψ be convex with respect to φ, and η:[a,b]→R be non-negative integrable and symmetric with respect to φ about φ(a)+φ(b)2. Then the following inequality holds:
ψ(φ−1(φ(a)+φ(b)2))∫φ(b)φ(a)η(φ−1(t))dξ≤∫φ(b)φ(a)ψ(φ−1(t))η(φ−1(t))dξ≤ψ(a)+ψ(b)2∫φ(b)φ(a)η(φ−1(t))dξ. | (1.12) |
The aim of this paper is to give two Riemann-Liouville fractional versions of the Fejér-Hadamard inequality for convex function with respect to a strictly monotone function by using symmetricity with respect to strictly monotone function. These Fejér-Hadamard inequalities for specific strictly monotone functions will give results for convex, geometric convex, harmonically convex and p-convex functions published by different authors in [5,7,8,9,10,11,12,13,14,15,16]. The following definition gives the left as well as right Riemann-Liouville fractional integral operators:
Definition 3. [17] Let μ>0 and ψ∈L1[a,b]. Then Riemann-Liouville fractional integral operators of order μ are defined by:
Iμa+ψ(x):=1Γ(μ)∫xaψ(t)(x−t)1−μdt,x>a | (1.13) |
Iμb−ψ(x):=1Γ(μ)∫bxψ(t)(t−x)1−μdt,x<b, | (1.14) |
where Γ(.) is notation for the gamma function.
The following theorem gives first fractional version of the Hadamard inequality for Riemann-Liouville fractional integrals.
Theorem 3. [15] Let ψ:[a,b]→R be a positive function with 0≤a<b and ψ∈L[a,b]. If ψ is a convex function on [a,b], then the following fractional integral inequality holds:
ψ(a+b2)≤Γ(μ+1)2(b−a)μ[Iμa+ψ(b)+Iμb−ψ(a)]≤ψ(a)+ψ(b)2, | (1.15) |
with μ>0.
Another version of the Hadamard inequality for Riemann-Liouville fractional integrals is given in the following theorem.
Theorem 4. [16] Under the assumptions of Theorem 3, the following fractional integral inequality holds:
ψ(a+b2)≤2μ−1Γ(μ+1)(b−a)μ[Iμ(a+b2)+ψ(b)+Iμ(a+b2)−ψ(a)]≤ψ(a)+ψ(b)2, | (1.16) |
with μ>0.
We have obtained the following fractional versions of the Hadamard inequality for Riemann-Liouville fractional integrals of convex function with respect to a strictly monotone function.
Theorem 5. [7] Let I,J be intervals in R and ψ:[a,b]⊂I→R be a convex function, also let φ:J⊃[a,b]→R be a strictly monotone function. Further, let ψ be convex with respect to φ. Then for μ>0 the following inequality holds for Riemann-Liouville fractional integrals:
ψ(φ−1(φ(a)+φ(b)2))≤Γ(μ+1)2(φ(b)−φ(a))μ(Jμφ(a)+ψ(b)+Jμφ(b)−ψ(a))≤ψ(a)+ψ(b)2. | (1.17) |
Theorem 6. [7] Under the assumptions of Theorem 5, the following inequality holds for Riemann-Liouville fractional integrals:
ψ(φ−1(φ(a)+φ(b)2))≤2μ−1Γ(μ+1)(φ(b)−φ(a))μ(Jμφ(a)+φ(b)2+ψ(b)+Jμφ(a)+φ(b)2−ψ(a))≤ψ(a)+ψ(b)2. | (1.18) |
In the upcoming section we establish two versions of the Fejér-Hadamard inequality for convex function with respect to a strictly monotone function by using Riemann-Liouville fractional integrals. These inequalities generate new inequalities by selecting different strictly increasing and decreasing functions of our choice. Several results published in [5,7,8,9,10,11,12,13,14,15,16,18,19] are deducible from the results presented in this paper.
First we prove the following lemma:
Lemma 1. Let ψ be symmetric with respect to strictly monotone function φ about φ(a)+φ(b)2, and φ∈L[a,b]. Then the following identity holds for Riemann-Liouville fractional integrals:
Iμφ(a)+ψ(b)=Iμφ(b)−ψ(a)=Iμφ(a)+ψ(b)+Iμφ(b)−ψ(a)2. | (2.1) |
Proof. From definition of Riemann-Liouville fractional integrals we have
Iμφ(a)+ψ(b)=Iμφ(a)+ψ(φ−1(φ(b)))=1Γ(μ)∫φ(b)φ(a)ψ(φ−1(u))du(φ(b)−u)1−μ. | (2.2) |
By setting φ(a)+φ(b)−u=z in (1.13) we get
Iμφ(a)+ψ(b)=1Γ(μ)∫φ(b)φ(a)ψ(φ−1(φ(a)+φ(b)−z))dz(z−φ(a))1−μ. | (2.3) |
By using symmetricity of ψ with respect to strictly monotone function φ about φ(a)+φ(b)2, we get Iμφ(a)+ψ(b)=Iμφ(b)−ψ(φ−1(φ(a))) and hence (2.1) is obtained.
Remark 1. (i) By setting φ(x)=1x in (2.1), we get [20,Lemma 2].
(ii) By setting φ(x)=xp,p≠0 in (2.1), we get [21,Lemma 1].
By using Lemma 1 we prove the following Riemann-Liouville fractional Fejér-Hadamard inequality for convex function ψ with respect to a strictly monotone function φ.
Theorem 7. Let I,J be intervals in R and ψ,η:[a,b]⊂I→R be real valued functions. Let ψ be convex and w be the positive and symmetric about φ(a)+φ(b)2. Let φ:J⊃[a,b]→R be a strictly monotone function. If ψ is convex with respect to φ, then the following inequality holds for Riemann-Liouville fractional integrals:
ψ(φ−1(φ(a)+φ(b)2))(Iμφ(a)+η(b)+Iμφ(b)−η(a))≤Iμφ(a)+(ψ.η)(b)+Iμφ(b)−(ψ.η)(a)≤ψ(a)+ψ(b)2(Iμφ(a)+η(b)+Iμφ(b)−η(a)). | (2.4) |
Proof. Let K be the interval with end points φ(a) and φ(b). Since ψ is convex with respect to φ, for all x,y∈K, the inequality
ψ(φ−1(x+y2))≤ψ(φ−1(x))+ψ(φ−1(y))2 | (2.5) |
holds. By setting x=ξφ(a)+(1−ξ)φ(b),y=(1−ξ)φ(a)+ξφ(b), ξ∈[0,1], we find the following inequality:
2ψ(φ−1(φ(a)+φ(b)2))≤ψ(φ−1(ξφ(a)+(1−ξ)φ(b)))+ψ(φ−1((1−ξ)φ(a)+ξφ(b))). | (2.6) |
By multiplying with ξμ−1η(φ−1(ξφ(a)+(1−ξ)φ(b))) on both sides of (2.6) and then integrating over [0,1], the following inequality is obtained:
2ψ(φ−1(φ(a)+φ(b)2))∫10ξμ−1η(φ−1(ξφ(a)+(1−ξ)φ(b))dξ≤∫10ξμ−1(ψ.η)(φ−1(ξφ(a)+(1−ξ)φ(b)))dξ+∫10ξμ−1ψ(φ−1((1−ξ)φ(a)+ξφ(b)))η(φ−1(ξφ(a)+(1−ξ)φ(b)))dξ. | (2.7) |
Now setting again u=ξφ(a)+(1−ξ)φ(b) that is ξ=φ(b)−uφ(b)−φ(a) and v=(1−ξ)φ(a)+ξφ(b) that is ξ=v−φ(a)φ(b)−φ(a) in (2.7), we find the following inequality:
2ψ(φ−1(φ(a)+φ(b)2))∫φ(b)φ(a)η(φ−1(u))du(φ(b)−u)1−μ≤∫φ(b)φ(a)(ψ.η)(φ−1(u))du(φ(b)−u)1−μ+∫φ(b)φ(a)ψ(φ−1(v))η(φ−1(φ(a)+φ(b)−v))dv(v−φ(a))1−μ. |
From which by using symmericity of w with respect to φ, one can get the first inequality of (2.4). On the other hand by using convexity of ψ with respect to φ, the following inequality can be derived:
ψ(φ−1(ξφ(a)+(1−ξ)φ(b)))+ψ(φ−1((1−ξ)φ(a)+ξφ(b)))≤ψ(a)+ψ(b),ξ∈[0,1]. | (2.8) |
By multiplying with ξμ−1η(φ−1(ξφ(a)+(1−ξ)φ(b))) on both sides of (2.8) and then integrating over [0,1], the following inequality is obtained:
∫10ξμ−1(ψ.η)(φ−1(ξφ(a)+(1−ξ)φ(b)))dξ+∫10ξμ−1ψ(φ−1((1−ξ)φ(a)+ξφ(b)))η(φ−1(ξφ(a)+(1−ξ)φ(b)))dξ≤[ψ(a)+ψ(b)]∫10ξμ−1η(φ−1(ξφ(a)+(1−ξ)φ(b)))dξ. | (2.9) |
By making substitution u=ξφ(a)+(1−ξ)φ(b) and v=(1−ξ)φ(a)+ξφ(b) in first and second integrals respectively of the left hand side of the inequality (2.9), and making substitution of u=ξφ(a)+(1−ξ)φ(b) for integral appearing on right side of this inequality we obtain
∫φ(b)φ(a)ψ(φ−1(u))du(φ(b)−u)1−μ+∫φ(b)φ(a)ψ(φ−1(v))η(φ−1(φ(a)+φ(b)−v))dv(v−φ(a))1−μ≤ψ(a)+ψ(b)2∫φ(b)φ(a)η(φ−1(u))du(φ(b)−u)1−μ. | (2.10) |
From which by using symmericity of w with respect to φ, one can get the second inequality of (2.4).
In the following we give consequences the above theorem.
Corollary 1. The following Fejér-Hadamard inequality holds for GA-convex function:
ψ(√ab)(Iμlna+η(b)+Iμlnb−η(a))≤Iμlna+(ψ.η)(b)+Iμlnb−(ψ.η)(a)≤ψ(a)+ψ(b)2(Iμlna+η(b)+Iμlnb−η(a)). | (2.11) |
Proof. Let φ(x)=expx. Then φ−1(x)=lnx, the inequality (2.4) reduces to (2.11) for GA-convex functions.
Corollary 2. The following Fejér-Hadamard inequality holds for ψ∘ln-convex function:
ψ(ln(exp(a)+exp(b)2))(Iμexp(a)+η(b)+Iμexp(b)−η(a))≤Iμexp(a)+(ψ.η)(b)+Iμexp(b)−(ψ.η)(a)≤ψ(a)+ψ(b)2(Iμexp(a)+η(b)+Iμexp(b)−η(a)). | (2.12) |
Proof. Let φ(x)=lnx. Then φ−1(x)=expx, the inequality (2.4) reduces to (2.12) for GA-convex functions.
Remark 2. (i) By choosing η(x)=1, Theorem 5 is obtained.
(ii) By choosing φ(x)=1x, [20,Theorem 5] is obtained.
(iii) By choosing η(x)=1 and φ(x)=x, Theorem 3 is obtained.
(iv) By choosing η(x)=1 and φ(x)=1x, [12,Theorem 4] is obtained.
(v) By choosing η(x)=1 and φ(x)=xp,μ=1, [11,Theorem 6] is obtained.
(vi) By choosing η(x)=1 and φ(x)=1x,μ=1, [5,Theorem 2.4] is obtained.
(vii) By choosing φ(x)=xp,μ=1, [9,Theorem 5] is obtained.
(viii) By choosing η(x)=1 and φ(x)=lnx,μ=1, [10,Theorem 2.2] is obtained.
(ix) By choosing η(x)=1 and φ(x)=x,μ=1, the classical Hadamard inequality is obtained.
Lemma 2. Let ψ be symmetric with respect to strictly monotone function φ about φ(a)+φ(b)2, and φ∈L[a,b]. Then the following identity holds for Riemann-Liouville fractional integrals:
Iμφ(a)+φ(b)2+ψ(b)=Iμφ(a)+φ(b)2−ψ(a)=Iμφ(a)+φ(b)2+ψ(b)+Iμφ(a)+φ(b)2−ψ(a)2. | (2.13) |
Proof. From definition of Riemann-Liouville fractional integrals we have
Iμφ(a)+φ(b)2+ψ(b)=Iμφ(a)+φ(b)2+ψ(φ−1(φ(b)))=∫φ(b)φ(a)+φ(b)2ψ(φ−1(u))du(φ(b)−u)1−μ. | (2.14) |
By setting φ(a)+φ(b)−u=z in (2.14) we get
Iμφ(a)+φ(b)2+ψ(b)=∫φ(a)+φ(b)2φ(a)ψ(φ−1(φ(a)+φ(b)−z))dz(z−φ(a))1−μ. | (2.15) |
By using symmetricity of ψ with respect to strictly monotone function φ about φ(a)+φ(b)2, we get Iμφ(a)+φ(b)2+ψ(b)=Iμφ(a)+φ(b)2−ψ(φ−1(φ(a))) and hence (2.13) is obtained.
Remark 3. (i) By setting φ(x)=1x in (2.13), we get [14,Lemma 2].
(ii) By setting φ(x)=xp,p≠0 in (2.13), we get the identity for p-symmetric functions.
In the next theorem we establish another version of the Fejér-Hadamard inequality for convex function with respect to a strictly monotone function.
Theorem 8. Under the assumptions of Theorem 7, the following inequality holds for Riemann-Liouville fractional integrals:
ψ(φ−1(φ(a)+φ(b)2))(Iμφ(a)+φ(b)2+η(b)+Iμφ(a)+φ(b)2−η(a))≤Iμφ(a)+φ(b)2+(ψ.η)(b)+Iμφ(a)+φ(b)2−(ψ.η)(a)≤ψ(a)+ψ(b)2(Iμφ(a)+φ(b)2+η(b)+Iμφ(a)+φ(b)2−η(a)). | (2.16) |
Proof. Let x=ξ2φ(a)+2−ξ2φ(b),y=2−ξ2φ(a)+ξ2φ(b), ξ∈[0,1]. Then from (2.5) we get the following inequality:
2ψ(φ−1(φ(a)+φ(b)2))≤ψ(φ−1(ξ2φ(a)+2−ξ2φ(b)))+ψ(φ−1(2−ξ2φ(a)+ξ2φ(b))). | (2.17) |
By multiplying with ξμ−1η(φ−1(ξ2φ(a)+2−ξ2φ(b))) on both sides of (2.17) and then integrating over [0,1], the following inequality is obtained:
2ψ(φ−1(φ(a)+φ(b)2))∫10ξμ−1η(φ−1(ξ2φ(a)+2−ξ2φ(b)))dξ≤∫10ξμ−1ψ(φ−1(ξ2φ(a)+2−ξ2φ(b)))η(φ−1(ξ2φ(a)+2−ξ2φ(b)))dξ+∫10ξμ−1ψ(φ−1(2−ξ2φ(a)+ξ2φ(b)))η(φ−1(ξ2φ(a)+2−ξ2φ(b)))dξ. | (2.18) |
Taking u=ξ2φ(a)+2−ξ2φ(b) that is ξ=2(φ(b)−u)φ(b)−φ(a) and v=2−ξ2φ(a)+ξ2φ(b) that is ξ=2(v−φ(a))φ(b)−φ(a) in (2.18), we find the following inequality:
2ψ(φ−1(φ(a)+φ(b)2))∫φ(a)+φ(b)2φ(a)η(φ−1(u))du(φ(b)−u)1−μ≤∫φ(a)+φ(b)2φ(a)(ψ.η)(φ−1(u))du(φ(b)−u)1−μ+∫φ(a)+φ(b)2φ(a)ψ(φ−1(v))η(φ−1(φ(a)+φ(b)−v))dv(v−φ(a))1−μ. |
From which by using symmericity of w with respect to φ, one can get the first inequality of (2.16). Again by using convexity of ψ with respect to φ, the following inequality is derived for ξ∈[0,1]:
ψ(φ−1(ξ2φ(a)+2−ξ2φ(b)))+ψ(φ−1(2−ξ2φ(a)+ξ2φ(b)))≤ψ(a)+ψ(b). | (2.19) |
By multiplying with ξμ−1η(φ−1(ξ2φ(a)+2−ξ2φ(b))) on both sides of (2.8) and then integrating over [0,1], the following inequality is obtained:
∫10ξμ−1ψ(φ−1(ξ2φ(a)+2−ξ2φ(b)))η(φ−1(ξ2φ(a)+2−ξ2φ(b)))dξ+∫10ξμ−1ψ(φ−1(2−ξ2φ(a)+ξ2φ(b)))η(φ−1(ξ2φ(a)+2−ξ2φ(b)))dξ.≤[ψ(a)+ψ(b)]∫10ξμ−1(φ−1(ξ2φ(a)+2−ξ2φ(b)))dξ. | (2.20) |
By making substitution u=ξ2φ(a)+2−ξ2φ(b) and v=2−ξ2φ(a)+ξ2φ(b) in first and second integrals respectively of the left hand side of the inequality (2.20), and making substitution of u=ξ2φ(a)+2−ξ2φ(b) in the integral appearing in the right hand side of this inequality we will get
∫φ(a)+φ(b)2φ(a)(ψ.η)(φ−1(u))du(φ(b)−u)1−μ+∫φ(a)+φ(b)2φ(a)ψ(φ−1(v))η(φ−1(φ(a)+φ(b)−v))dv(v−φ(a))1−μ≤ψ(a)+ψ(b)2∫φ(a)+φ(b)2φ(a)η(φ−1(u))du(φ(b)−u)1−μ. | (2.21) |
From which by using symmericity of w with respect to φ, one can get the second inequality of (2.16).
The consequences of above theorem are given in the following corollaries and remark.
Corollary 3. The following Fejér-Hadamard inequality holds for GA-convex function:
ψ(√ab)(Iμln√ab+η(b)+Iμln√ab−η(a))≤Iμln√ab+(ψ.η)(b)+Iμln√ab−(ψ.η)(a)≤ψ(a)+ψ(b)2(Iμln√ab+η(b)+Iμln√ab−η(a)). | (2.22) |
Proof. Let φ(x)=expx. Then φ−1(x)=lnx, the inequality (2.16) reduces to (2.22) for GA-convex functions.
Corollary 4. The following Fejér-Hadamard inequality holds for ψ∘ln-convex function:
ψ(ln(exp(a)+exp(b)2))(Iμexp(a)+exp(b)2+η(b)+Iμexp(a)+exp(b)2−η(a))≤Iμexp(a)+exp(b)2+(ψ.η)(b)+Iμexp(a)+exp(b)2−(ψ.η)(a)≤ψ(a)+ψ(b)2(Iμexp(a)+exp(b)2+η(b)+Iμexp(a)+exp(b)2−η(a)). | (2.23) |
Proof. Let φ(x)=lnx. Then φ−1(x)=expx, the inequality (2.16) reduces to (2.23) for GA-convex functions.
Remark 4. (i) By choosing η(x)=1, Theorem 6 is obtained.
(i) By choosing η(x)=1 and φ(x)=x, Theorem 4 is obtained.
(ii) By choosing η(x)=1 and φ(x)=1x, [14,Theorem 4] is obtained.
(iii) By choosing η(x)=1 and φ(x)=xp,p≠0, [13,Theorem 7] is obtained.
(iv) By choosing η(x)=1 and φ(x)=1x,μ=1, [5,Theorem 2.4] is obtained.
(v) By choosing η(x)=1 and φ(x)=xp,p≠=1, [11,Theorem 6] is obtained.
We have studied the Riemann-Liouville fractional integral versions of Fejér-Hadamard inequalities for convex function with respect to strictly monotone function. The established inequalities provide the Hadamard and Fejér-Hadamard inequalities for Riemann-Liouville fractional integrals of convex, harmonically convex, p-convex and GA-convex functions. For specific increasing/decreasing functions the reader can produce corresponding Fejér-Hadamard inequalities from results of this paper. Further, we are investigating such results for other kinds of fractional integrals for future work.
This work was supported by the Key Laboratory of Key Technologies of Digital Urban-Rural Spatial Planning of Hunan Province.
It is declared that the author have no competing interests.
[1] |
M. Sun, Y. Wang, General five-step discrete-time Zhang neural network for time-varying nonlinear optimization, Bull. Malays. Math. Sci. Soc., 43 (2020), 1741–1760. https://doi.org/10.1007/s40840-019-00770-4 doi: 10.1007/s40840-019-00770-4
![]() |
[2] |
K. Meintjes, A. P. Morgan, A methodology for solving chemical equilibrium systems, Appl. Math. Comput., 22 (1987), 333–361. https://doi.org/10.1016/0096-3003(87)90076-2 doi: 10.1016/0096-3003(87)90076-2
![]() |
[3] |
D. Li, S. Wang, Y. Li, J. Wu, A projection-based hybrid PRP-DY type conjugate gradient algorithm for constrained nonlinear equations with applications, Appl. Numer. Math., 195 (2024), 105–125. https://doi.org/10.1016/j.apnum.2023.09.009 doi: 10.1016/j.apnum.2023.09.009
![]() |
[4] |
D. Li, J. Wu, Y. Li, S. Wang, A modified spectral gradient projection-based algorithm for large-scale constrained nonlinear equations with applications in compressive sensing, J. Comput. Appl. Math., 424 (2023), 115006. https://doi.org/10.1016/j.cam.2022.115006 doi: 10.1016/j.cam.2022.115006
![]() |
[5] | M. W. Yusuf, L. W. June, M. A. Hassan, Jacobian-free diagonal Newton's method for solving nonlinear systems with singular Jacobian, Malays. J. Math. Sci., 5 (2011), 241–255. |
[6] |
Q. Yan, X. Peng, D. Li, A globally convergent derivative-free method for solving large-scale nonlinear monotone equations, J. Comput. Appl. Math., 234 (2010), 649–657. https://doi.org/10.1016/j.cam.2010.01.001 doi: 10.1016/j.cam.2010.01.001
![]() |
[7] | H. Abdullahi, A. S. Halilu, M. Y. Waziri, A modified conjugate gradient method via a double direction approach for solving large-scale symmetric nonlinear equations, J. Numer. Math. Stoch., 10 (2018), 32–44. |
[8] |
I. Yusuf, A. S. Halilu, M. Y. Waziri, Efficient matrix-free direction method with line search for solving large scale systems of nonlinear equations, Yugosl. J. Oper. Res., 30 (2020), 399–412. https://doi.org/10.2298/YJOR160515005H doi: 10.2298/YJOR160515005H
![]() |
[9] |
D. Q. Huynh, F. N. Hwang, An accelerated structured quasi-Newton method with a diagonal second-order Hessian approximation for nonlinear least squares problems, J. Comput. Appl. Math., 442 (2024), 115718. https://doi.org/10.1016/j.cam.2023.115718 doi: 10.1016/j.cam.2023.115718
![]() |
[10] |
X. Wu, H. Shao, P. Liu, An efficient conjugate gradient-based algorithm for unconstrained optimization and its projection extension to large-scale constrained nonlinear equations with applications in signal recovery and image denoising problems, J. Comput. Appl. Math., 422 (2023), 114879. https://doi.org/10.1016/j.cam.2022.114879 doi: 10.1016/j.cam.2022.114879
![]() |
[11] |
G. Ma, J. Jiang, J. Jian, A modified inertial three-term conjugate gradient projection method for constrained nonlinear equations with applications in compressed sensing, Numer. Algor., 92 (2023), 1621–1653. https://doi.org/10.1007/s11075-022-01356-1 doi: 10.1007/s11075-022-01356-1
![]() |
[12] |
W. Liu, J. Jian, J. Yin, An inertial spectral conjugate gradient projection method for constrained nonlinear pseudo-monotone equations, Numer. Algor., 97 (2024), 985–1015. https://doi.org/10.1007/s11075-023-01736-1 doi: 10.1007/s11075-023-01736-1
![]() |
[13] |
S. B. Salihu, A. S. Halilu, M. Abdullahi, An improved spectral conjugate gradient projection method for monotone nonlinear equations with application, J. Appl. Math. Comput., 70 (2024), 3879–3915. https://doi.org/10.1007/s12190-024-02121-4 doi: 10.1007/s12190-024-02121-4
![]() |
[14] |
Y. Narushima, H. Yabe, J. A. Ford, A three-term conjugate gradient method with sufficient descent property for unconstrained optimization, SIAM J. Optim., 21 (2011), 212–230. https://doi.org/10.1137/080743573 doi: 10.1137/080743573
![]() |
[15] |
Y. Narushima, A smoothing conjugate gradient method for solving systems of nonsmooth equations, Appl. Math. Comput., 219 (2013), 8646–8655. https://doi.org/10.1016/j.amc.2013.02.060 doi: 10.1016/j.amc.2013.02.060
![]() |
[16] |
R. Huang, Y. Qin, K. Liu, G. Yuan, Biased stochastic conjugate gradient algorithm with adaptive step size for nonconvex problems, Expert Syst. Appl., 238 (2024), 121556. https://doi.org/10.1016/j.eswa.2023.121556 doi: 10.1016/j.eswa.2023.121556
![]() |
[17] |
X. Jiang, Y. Zhu, J. Jian, Two efficient nonlinear conjugate gradient methods with restart procedures and their applications in image restoration, Nonlinear Dyn., 111 (2023), 5469–5498. https://doi.org/10.1007/s11071-022-08013-1 doi: 10.1007/s11071-022-08013-1
![]() |
[18] |
W. Cheng, A PRP type method for systems of monotone equations, Math. Comput. Model., 50 (2009), 15–20. https://doi.org/10.1016/j.mcm.2009.04.007 doi: 10.1016/j.mcm.2009.04.007
![]() |
[19] |
G. Yu, A derivative-free method for solving large-scale nonlinear systems of equations, J. Ind. Manag. Optim., 6 (2009), 149–160. https://doi.org/10.3934/jimo.2010.6.149 doi: 10.3934/jimo.2010.6.149
![]() |
[20] |
M. Y. Waziri, K. Ahmed, J. Sabi'u, A family of Hager-Zhang conjugate gradient methods for system of monotone nonlinear equations, Appl. Math. Comput., 361 (2019), 645–660. https://doi.org/10.1016/j.amc.2019.06.012 doi: 10.1016/j.amc.2019.06.012
![]() |
[21] |
P. Liu, H. Shao, Z. Yuan, T. Zheng, A family of three-term conjugate gradient projection methods with a restart procedure and their relaxed-inertial extensions for the constrained nonlinear pseudo-monotone equations with applications, Numer. Algor., 94 (2023), 1055–1083. https://doi.org/10.1007/s11075-023-01527-8 doi: 10.1007/s11075-023-01527-8
![]() |
[22] |
A. Ibrahim, M. Alshahrani, S. Al-Homidan, Two classes of spectral three-term derivative-free method for solving nonlinear equations with application, Numer. Algor., 96 (2024), 1625–1645. https://doi.org/10.1007/s11075-023-01679-7 doi: 10.1007/s11075-023-01679-7
![]() |
[23] |
M. Rivaie, M. Mamat, L. W. June, I. Mohd, A new class of nonlinear conjugate gradient coefficients with global convergence properties, Appl. Math. Comput., 218 (2012), 11323–11332. https://doi.org/10.1016/j.amc.2012.05.030 doi: 10.1016/j.amc.2012.05.030
![]() |
[24] |
Z. Dai, Comments on a new class of nonlinear conjugate gradient coefficients with global convergence properties, Appl. Math. Comput., 276 (2016), 297–300. https://doi.org/10.1016/j.amc.2015.11.085 doi: 10.1016/j.amc.2015.11.085
![]() |
[25] |
A. B. Abubakar, P. Kumam, H. Mohammad, A modified Fletcher-Reeves conjugate gradient method for monotone nonlinear equations with some applications, Mathematics, 7 (2019), 745. https://doi.org/10.3390/math7080745 doi: 10.3390/math7080745
![]() |
[26] |
J. Yin, J. Jian, X. Jiang, M. Liu, L. Wang, A hybrid three-term conjugate gradient projection method for constrained nonlinear monotone equations with applications, Numer. Algor., 88 (2021), 389–418. https://doi.org/10.1007/s11075-020-01043-z doi: 10.1007/s11075-020-01043-z
![]() |
[27] |
E. D. Dolan, J. Jorge, Benchmarking optimization software with performance profiles, Math. Program., 91 (2001), 201–213. https://doi.org/10.1007/s101070100263 doi: 10.1007/s101070100263
![]() |
[28] |
D. Li, S. Wang, Y. Li, J. Wu, A convergence analysis of hybrid gradient projection algorithm for constrained nonlinear equations with applications in compressed sensing, Numer. Algor., 95 (2024), 1325–1345. https://doi.org/10.1007/s11075-023-01610-0 doi: 10.1007/s11075-023-01610-0
![]() |
1. | Li Xu, Lu Chen, Ti-Ren Huang, Monotonicity, convexity and inequalities involving zero-balanced Gaussian hypergeometric function, 2022, 7, 2473-6988, 12471, 10.3934/math.2022692 | |
2. | Ghulam Farid, Josip Pec̆arić, Kamsing Nonlaopon, Inequalities for fractional Riemann–Liouville integrals of certain class of convex functions, 2022, 2022, 2731-4235, 10.1186/s13662-022-03682-z | |
3. | Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, A Comprehensive Review on the Fejér-Type Inequality Pertaining to Fractional Integral Operators, 2023, 12, 2075-1680, 719, 10.3390/axioms12070719 | |
4. | Muhammad Samraiz, Maria Malik, Saima Naheed, Ahmet Ocak Akdemir, Error estimates of Hermite‐Hadamard type inequalities with respect to a monotonically increasing function, 2023, 46, 0170-4214, 14527, 10.1002/mma.9334 |