Processing math: 100%
Research article

Mechanical properties of concrete containing beeswax/dammar gum as phase change material for thermal energy storage

  • Received: 18 April 2018 Accepted: 05 June 2018 Published: 12 June 2018
  • This study aims to investigate the mechanical properties of concrete containing phase change materials (PCM). This research begins with the investigation of melting temperature, enthalpy, the thermal conductivity of the phase change materials using the T-history method, followed by preparation of concrete containing PCM, and finally testing of mechanical properties of concrete through compressive strength test. This study used beeswax, tallow, and dammar gum as PCM mixture. From the results of the PCM properties test, shows that the latent heat energy content from beeswax and tallow exhibit an excellent potential to be used as PCM, while dammar gum is benefited in increasing the thermal conductivity of concrete containing PCM. From concrete specimen test containing 10%, 20% and 30% PCM with 7 days and 28 days aged, the results exhibit that the mechanical properties of the concrete decreased along with the increasing of PCM content. The same test also conducted at the PCM melting temperature. Therefore, the concrete compressive strength test conducted at 45 oC. From the test results, the concrete compressive strength decreased about 3–24% of PCM-0% concrete compressive strength. Drastic compressive strength reduction tends to occur in PCM-Tallow concrete mixture. This study concluded that the PCM is potentially useful as a heat energy absorber material in buildings and lightweight concrete rather than construction structures.

    Citation: Hamdani Umar, Samsul Rizal, Medyan Riza, Teuku Meurah Indra Mahlia. Mechanical properties of concrete containing beeswax/dammar gum as phase change material for thermal energy storage[J]. AIMS Energy, 2018, 6(3): 521-529. doi: 10.3934/energy.2018.3.521

    Related Papers:

    [1] Ernest Greene, Michael J. Hautus . Demonstrating Invariant Encoding of Shapes Using A Matching Judgment Protocol. AIMS Neuroscience, 2017, 4(3): 120-147. doi: 10.3934/Neuroscience.2017.3.120
    [2] Hannah Nordberg, Michael J Hautus, Ernest Greene . Visual encoding of partial unknown shape boundaries. AIMS Neuroscience, 2018, 5(2): 132-147. doi: 10.3934/Neuroscience.2018.2.132
    [3] Ernest Greene, Michael J. Hautus . Evaluating persistence of shape information using a matching protocol. AIMS Neuroscience, 2018, 5(1): 81-96. doi: 10.3934/Neuroscience.2018.1.81
    [4] Sherry Zhang, Jack Morrison, Wei Wang, Ernest Greene . Recognition of letters displayed as successive contour fragments. AIMS Neuroscience, 2022, 9(4): 491-515. doi: 10.3934/Neuroscience.2022028
    [5] Mirela Dubravac, Beat Meier . Stimulating the parietal cortex by transcranial direct current stimulation (tDCS): no effects on attention and memory. AIMS Neuroscience, 2021, 8(1): 33-46. doi: 10.3934/Neuroscience.2021002
    [6] Robert Friedman . Themes of advanced information processing in the primate brain. AIMS Neuroscience, 2020, 7(4): 373-388. doi: 10.3934/Neuroscience.2020023
    [7] Ernest Greene . Comparing methods for scaling shape similarity. AIMS Neuroscience, 2019, 6(2): 54-59. doi: 10.3934/Neuroscience.2019.2.54
    [8] Paul G. Nestor, Toshiyuki Ohtani, James J. Levitt, Dominick T. Newell, Martha E. Shenton, Margaret Niznikiewicz, Robert W. McCarley . Prefrontal Lobe Gray Matter, Cognitive Control and Episodic Memory in Healthy Cognition. AIMS Neuroscience, 2016, 3(3): 338-355. doi: 10.3934/Neuroscience.2016.3.338
    [9] Siri-Maria Kamp, Melissa Lehman, Kenneth J. Malmberg, Emanuel Donchin . A Buffer Model Account of Behavioral and ERP Patterns in the Von Restorff Paradigm. AIMS Neuroscience, 2016, 3(2): 181-202. doi: 10.3934/Neuroscience.2016.2.181
    [10] Timothy J. Ricker . The Role of Short-term Consolidation in Memory Persistence. AIMS Neuroscience, 2015, 2(4): 259-279. doi: 10.3934/Neuroscience.2015.4.259
  • This study aims to investigate the mechanical properties of concrete containing phase change materials (PCM). This research begins with the investigation of melting temperature, enthalpy, the thermal conductivity of the phase change materials using the T-history method, followed by preparation of concrete containing PCM, and finally testing of mechanical properties of concrete through compressive strength test. This study used beeswax, tallow, and dammar gum as PCM mixture. From the results of the PCM properties test, shows that the latent heat energy content from beeswax and tallow exhibit an excellent potential to be used as PCM, while dammar gum is benefited in increasing the thermal conductivity of concrete containing PCM. From concrete specimen test containing 10%, 20% and 30% PCM with 7 days and 28 days aged, the results exhibit that the mechanical properties of the concrete decreased along with the increasing of PCM content. The same test also conducted at the PCM melting temperature. Therefore, the concrete compressive strength test conducted at 45 oC. From the test results, the concrete compressive strength decreased about 3–24% of PCM-0% concrete compressive strength. Drastic compressive strength reduction tends to occur in PCM-Tallow concrete mixture. This study concluded that the PCM is potentially useful as a heat energy absorber material in buildings and lightweight concrete rather than construction structures.


    [1] BPPT Indonesia, Indonesia Energy OutLook 2017. Clean Energy Technology Development Initiatives, 83, 2017.
    [2] Karaipekli A, Sari A (2008) Capric-myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage. Renew Energ 33: 2599–2605. doi: 10.1016/j.renene.2008.02.024
    [3] Zhang N, Yuan Y, Yuan Y, et al. (2014) Effect of carbon nanotubes on the thermal behavior of palmitic-stearic acid eutectic mixtures as phase change materials for energy storage. Sol Energy 110: 64–70. doi: 10.1016/j.solener.2014.09.003
    [4] Zhang N, Yuan Y, Li T, et al. (2014) Lauric-palmitic-stearic acid/expanded perlite composite as form-stable phase change material: Preparation and thermal properties. Energ Buildings 82: 505–511. doi: 10.1016/j.enbuild.2014.07.049
    [5] Zhang X, Yuan N, Wang Y, et al. (2013) Preparation and characterization of lauric-myristic-palmitic acid ternary eutectic mixtures/expanded graphite composite phase change material for thermal energy storage. Chem Eng J 231: 214–219. doi: 10.1016/j.cej.2013.07.008
    [6] Sar A, Karaipekli A (2009) Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Sol Energ Mater Sol Cells 93: 571–576. doi: 10.1016/j.solmat.2008.11.057
    [7] Mills FA, Farid M, Selman JR, et al. (2006) Thermal conductivity enhancement of phase change materials using a graphite matrix. Appl Therm Eng 26: 1652–1661. doi: 10.1016/j.applthermaleng.2005.11.022
    [8] Wang W, Yang X, Fang Y, et al. (2009) Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride. Appl Energ 86: 1196–1200. doi: 10.1016/j.apenergy.2008.10.020
    [9] Cavallaro G, Lazzara G, Milioto S, et al. (2015) Thermal and dynamic mechanical properties of beeswax-halloysite nanocomposites for consolidating waterlogged archaeological woods. Polym Degrad Stabi 120: 220–225. doi: 10.1016/j.polymdegradstab.2015.07.007
    [10] Zhao Y, Thapa S, Weiss L, et al. (2015) Phase Change Heat Insulation Based on Wax-Clay Nanotube Composites. Adv Eng Mater 16: 1391–1399.
    [11] Cui Y, Xie J, Liu J, et al. (2017) A review on phase change material application in building. Adv Mech Eng 9: 1–15.
    [12] Vicente R, Silva T (2014) Brick masonry walls with PCM macrocapsules: An experimental approach. Appl Therm Eng 67: 24–34. doi: 10.1016/j.applthermaleng.2014.02.069
    [13] Shi X, Memon SA, Tang W, et al. (2014) Experimental assessment of position of macro encapsulated phase change material in concrete walls on indoor temperatures and humidity levels. Energ Buildings 71: 80–87. doi: 10.1016/j.enbuild.2013.12.001
    [14] Cabeza LF, Castellón C, Nogués M, et al. (2007) Use of microencapsulated PCM in concrete walls for energy savings. Energ Buildings 39: 113–119. doi: 10.1016/j.enbuild.2006.03.030
    [15] Feldman D, Shapiro M, Fazio P, et al. (1984) The compressive strength of cement blocks permeated with an organic-phase change material. Energ Buildings 6: 85–92. doi: 10.1016/0378-7788(84)90009-4
    [16] Xu B, Li Z (2013) Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Appl Energ 105: 229–237. doi: 10.1016/j.apenergy.2013.01.005
    [17] Fauzi H, Metselaar HSC, Mahlia TMI, et al. (2016) Preparation and thermal characteristics of eutectic fatty acids/Shorea javanica composite for thermal energy storage. Appl Therm Eng 100: 62–67. doi: 10.1016/j.applthermaleng.2016.01.146
    [18] Amin M, Putra N, Kosasih EA, et al. (2017) Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Appl Therm Eng 112: 273–280. doi: 10.1016/j.applthermaleng.2016.10.085
    [19] Liu Y, Yang Y (2017) Preparation and thermal properties of Na2CO3.10H2O-Na2HPO4.12H2O eutectic hydrate salt as a novel phase change material for energy storage. Appl Therm Eng 112: 606–609.
    [20] Paksoy H, Kardas G, Konuklu Y, et al. (2017) Characterization of concrete mixes containing phase change materials. IOP Conf Ser Mater Sci Eng 251: 1.
    [21] Yang HB, Liu TC, Chern JC, et al. (2016) Mechanical properties of concrete containing phase-change material. J Chin Inst Eng 39: 521–530. doi: 10.1080/02533839.2015.1134280
    [22] Ye R, Fang X, Zhang Z, et al. (2015) Preparation, mechanical and thermal properties of cement board with expanded perlite based composite phase change material for improving buildings thermal behavior. Materials 8: 7702–7713. doi: 10.3390/ma8115408
    [23] Lázaro A, Günther E, Mehling H, et al. (2006) Verification of a T-history installation to measure enthalpy versus temperature curves of phase change materials. Meas Sci Technol 17: 2168–2174. doi: 10.1088/0957-0233/17/8/016
    [24] Yinping Z, Yi J (1999) A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas Sci Technol 10: 201–205. doi: 10.1088/0957-0233/10/3/015
    [25] Peck JH, Kim JJ, Kang C, et al. (2006) A study of accurate latent heat measurement for a PCM with a low melting temperature using T-history method. Int J Refrig 29: 1225–1232. doi: 10.1016/j.ijrefrig.2005.12.014
    [26] Hong H, Kim SK, Kim YS (2004) Accuracy improvement of T-history method for measuring heat of fusion of various materials. Int J Refrig 27: 360–366. doi: 10.1016/j.ijrefrig.2003.12.006
    [27] Marin JM, Zalba B, Cabeza LF, et al. (2003) Determination of enthalpy temperature curves of phase change materials with the temperature-history method: Improvement to temperature dependent properties. Meas Sci Technol 14: 184–189. doi: 10.1088/0957-0233/14/2/305
    [28] Xie J, Li Y, Wang W, et al. (2013) Comments on thermal physical properties testing methods of phase change materials. Adv Mech Eng 2013: 1255–1260.
    [29] D'Avignon K, Kummert M (2015) Assessment of T-history Method Variants to Obtain Enthalpy-Temperature Curves for Phase Change Materials With Significant Subcooling. J Therm Sci Eng Appl 7: 1–9.
  • This article has been cited by:

    1. Jana L. Gevertz, Peter S. Kim, Joanna R. Wares, Mentoring Undergraduate Interdisciplinary Mathematics Research Students: Junior Faculty Experiences, 2017, 27, 1051-1970, 352, 10.1080/10511970.2016.1191571
    2. Daniel Santiago, Johannes Heidbuechel, Wendy Kandell, Rachel Walker, Julie Djeu, Christine Engeland, Daniel Abate-Daga, Heiko Enderling, Fighting Cancer with Mathematics and Viruses, 2017, 9, 1999-4915, 239, 10.3390/v9090239
    3. Hang Xie, Yang Jiao, Qihui Fan, Miaomiao Hai, Jiaen Yang, Zhijian Hu, Yue Yang, Jianwei Shuai, Guo Chen, Ruchuan Liu, Liyu Liu, Nils Cordes, Modeling three-dimensional invasive solid tumor growth in heterogeneous microenvironment under chemotherapy, 2018, 13, 1932-6203, e0206292, 10.1371/journal.pone.0206292
    4. Syndi Barish, Michael F. Ochs, Eduardo D. Sontag, Jana L. Gevertz, Evaluating optimal therapy robustness by virtual expansion of a sample population, with a case study in cancer immunotherapy, 2017, 114, 0027-8424, E6277, 10.1073/pnas.1703355114
    5. Raluca Eftimie, Joseph J. Gillard, Doreen A. Cantrell, Mathematical Models for Immunology: Current State of the Art and Future Research Directions, 2016, 78, 0092-8240, 2091, 10.1007/s11538-016-0214-9
    6. Adrianne L. Jenner, Chae-Ok Yun, Peter S. Kim, Adelle C. F. Coster, Mathematical Modelling of the Interaction Between Cancer Cells and an Oncolytic Virus: Insights into the Effects of Treatment Protocols, 2018, 80, 0092-8240, 1615, 10.1007/s11538-018-0424-4
    7. Victor Cervera-Carrascon, Riikka Havunen, Akseli Hemminki, Oncolytic adenoviruses: a game changer approach in the battle between cancer and the immune system., 2019, 19, 1471-2598, 443, 10.1080/14712598.2019.1595582
    8. Elzbieta Ratajczyk, Urszula Ledzewicz, Heinz Schättler, Optimal Control for a Mathematical Model of Glioma Treatment with Oncolytic Therapy and TNF-α Inhibitors, 2018, 176, 0022-3239, 456, 10.1007/s10957-018-1218-4
    9. Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier, On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach, 2017, 14, 1551-0018, 217, 10.3934/mbe.2017014
    10. Jiantao Zhao, Jianjun Paul Tian, Spatial Model for Oncolytic Virotherapy with Lytic Cycle Delay, 2019, 81, 0092-8240, 2396, 10.1007/s11538-019-00611-2
    11. Regina Padmanabhan, Nader Meskin, Ala-Eddin Al Moustafa, 2021, Chapter 8, 978-981-15-8639-2, 157, 10.1007/978-981-15-8640-8_8
    12. Jana L. Gevertz, Joanna R. Wares, Developing a Minimally Structured Mathematical Model of Cancer Treatment with Oncolytic Viruses and Dendritic Cell Injections, 2018, 2018, 1748-670X, 1, 10.1155/2018/8760371
    13. Adrianne L. Jenner, Federico Frascoli, Chae-Ok Yun, Peter S. Kim, Optimising Hydrogel Release Profiles for Viro-Immunotherapy Using Oncolytic Adenovirus Expressing IL-12 and GM-CSF with Immature Dendritic Cells, 2020, 10, 2076-3417, 2872, 10.3390/app10082872
    14. Anna Park, Sangil Kim, Il Hyo Jung, Jong Hyuk Byun, Pinyi Lu, An immune therapy model for effective treatment on inflammatory bowel disease, 2020, 15, 1932-6203, e0238918, 10.1371/journal.pone.0238918
    15. Joseph Malinzi, Kevin Bosire Basita, Sara Padidar, Henry Ademola Adeola, Prospect for application of mathematical models in combination cancer treatments, 2021, 23, 23529148, 100534, 10.1016/j.imu.2021.100534
    16. Adrianne L. Jenner, Peter S. Kim, Federico Frascoli, Oncolytic virotherapy for tumours following a Gompertz growth law, 2019, 480, 00225193, 129, 10.1016/j.jtbi.2019.08.002
    17. Michael C. Luo, Elpiniki Nikolopoulou, Jana L. Gevertz, From Fitting the Average to Fitting the Individual: A Cautionary Tale for Mathematical Modelers, 2022, 12, 2234-943X, 10.3389/fonc.2022.793908
    18. Olivia Cardinal, Chloé Burlot, Yangxin Fu, Powel Crosley, Mary Hitt, Morgan Craig, Adrianne L. Jenner, Establishing combination PAC‐1 and TRAIL regimens for treating ovarian cancer based on patient‐specific pharmacokinetic profiles usingin silicoclinical trials, 2022, 2, 2689-9655, 10.1002/cso2.1035
    19. Christine E. Engeland, Johannes P.W. Heidbuechel, Robyn P. Araujo, Adrianne L. Jenner, Improving immunovirotherapies: the intersection of mathematical modelling and experiments, 2022, 6, 26671190, 100011, 10.1016/j.immuno.2022.100011
    20. Morgan Craig, Jana L. Gevertz, Irina Kareva, Kathleen P. Wilkie, A practical guide for the generation of model-based virtual clinical trials, 2023, 3, 2674-0702, 10.3389/fsysb.2023.1174647
    21. Mary P Choules, Peter L. Bonate, Nakyo Heo, Jared Weddell, Prospective approaches to gene therapy computational modeling – spotlight on viral gene therapy, 2023, 1567-567X, 10.1007/s10928-023-09889-1
    22. Deivasundari P, M Kabong Nono, E B Megam Ngouonkadi, H B Fotsin, Anitha Karthikeyan, Bistability and chaotic behaviors in a 4D cancer oncolytic Virotherapy mathematical model: Pspice and FPGA implementations, 2024, 99, 0031-8949, 035227, 10.1088/1402-4896/ad25cb
    23. Mohammed A. Hussein, Ekhlas H. Karam, Design immune robust integral signum of the error controller for cancer tumor growth treatment based on improved crow search algorithm, 2024, 7, 27726711, 100472, 10.1016/j.prime.2024.100472
    24. Donggu Lee, Aurelio A. de los Reyes V, Yangjin Kim, Optimal strategies of oncolytic virus-bortezomib therapy via the apoptotic, necroptotic, and oncolysis signaling network, 2024, 21, 1551-0018, 3876, 10.3934/mbe.2024173
    25. Anna Park, Jong Hyuk Byun, Il Hyo Jung, Shingo Iwami, Kwang Su Kim, Ning Cai, Quantification of the Synergistic Inhibitory Effects of an Oncolytic Herpes Virus Plus Paclitaxel on Anaplastic Thyroid Cancer Cells, 2024, 2024, 1076-2787, 10.1155/cplx/3899849
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5363) PDF downloads(1011) Cited by(13)

Article outline

Figures and Tables

Figures(4)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog