Citation: Hamdani Umar, Samsul Rizal, Medyan Riza, Teuku Meurah Indra Mahlia. Mechanical properties of concrete containing beeswax/dammar gum as phase change material for thermal energy storage[J]. AIMS Energy, 2018, 6(3): 521-529. doi: 10.3934/energy.2018.3.521
[1] | Ernest Greene, Michael J. Hautus . Demonstrating Invariant Encoding of Shapes Using A Matching Judgment Protocol. AIMS Neuroscience, 2017, 4(3): 120-147. doi: 10.3934/Neuroscience.2017.3.120 |
[2] | Hannah Nordberg, Michael J Hautus, Ernest Greene . Visual encoding of partial unknown shape boundaries. AIMS Neuroscience, 2018, 5(2): 132-147. doi: 10.3934/Neuroscience.2018.2.132 |
[3] | Ernest Greene, Michael J. Hautus . Evaluating persistence of shape information using a matching protocol. AIMS Neuroscience, 2018, 5(1): 81-96. doi: 10.3934/Neuroscience.2018.1.81 |
[4] | Sherry Zhang, Jack Morrison, Wei Wang, Ernest Greene . Recognition of letters displayed as successive contour fragments. AIMS Neuroscience, 2022, 9(4): 491-515. doi: 10.3934/Neuroscience.2022028 |
[5] | Mirela Dubravac, Beat Meier . Stimulating the parietal cortex by transcranial direct current stimulation (tDCS): no effects on attention and memory. AIMS Neuroscience, 2021, 8(1): 33-46. doi: 10.3934/Neuroscience.2021002 |
[6] | Robert Friedman . Themes of advanced information processing in the primate brain. AIMS Neuroscience, 2020, 7(4): 373-388. doi: 10.3934/Neuroscience.2020023 |
[7] | Ernest Greene . Comparing methods for scaling shape similarity. AIMS Neuroscience, 2019, 6(2): 54-59. doi: 10.3934/Neuroscience.2019.2.54 |
[8] | Paul G. Nestor, Toshiyuki Ohtani, James J. Levitt, Dominick T. Newell, Martha E. Shenton, Margaret Niznikiewicz, Robert W. McCarley . Prefrontal Lobe Gray Matter, Cognitive Control and Episodic Memory in Healthy Cognition. AIMS Neuroscience, 2016, 3(3): 338-355. doi: 10.3934/Neuroscience.2016.3.338 |
[9] | Siri-Maria Kamp, Melissa Lehman, Kenneth J. Malmberg, Emanuel Donchin . A Buffer Model Account of Behavioral and ERP Patterns in the Von Restorff Paradigm. AIMS Neuroscience, 2016, 3(2): 181-202. doi: 10.3934/Neuroscience.2016.2.181 |
[10] | Timothy J. Ricker . The Role of Short-term Consolidation in Memory Persistence. AIMS Neuroscience, 2015, 2(4): 259-279. doi: 10.3934/Neuroscience.2015.4.259 |
[1] | BPPT Indonesia, Indonesia Energy OutLook 2017. Clean Energy Technology Development Initiatives, 83, 2017. |
[2] |
Karaipekli A, Sari A (2008) Capric-myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage. Renew Energ 33: 2599–2605. doi: 10.1016/j.renene.2008.02.024
![]() |
[3] |
Zhang N, Yuan Y, Yuan Y, et al. (2014) Effect of carbon nanotubes on the thermal behavior of palmitic-stearic acid eutectic mixtures as phase change materials for energy storage. Sol Energy 110: 64–70. doi: 10.1016/j.solener.2014.09.003
![]() |
[4] |
Zhang N, Yuan Y, Li T, et al. (2014) Lauric-palmitic-stearic acid/expanded perlite composite as form-stable phase change material: Preparation and thermal properties. Energ Buildings 82: 505–511. doi: 10.1016/j.enbuild.2014.07.049
![]() |
[5] |
Zhang X, Yuan N, Wang Y, et al. (2013) Preparation and characterization of lauric-myristic-palmitic acid ternary eutectic mixtures/expanded graphite composite phase change material for thermal energy storage. Chem Eng J 231: 214–219. doi: 10.1016/j.cej.2013.07.008
![]() |
[6] |
Sar A, Karaipekli A (2009) Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Sol Energ Mater Sol Cells 93: 571–576. doi: 10.1016/j.solmat.2008.11.057
![]() |
[7] |
Mills FA, Farid M, Selman JR, et al. (2006) Thermal conductivity enhancement of phase change materials using a graphite matrix. Appl Therm Eng 26: 1652–1661. doi: 10.1016/j.applthermaleng.2005.11.022
![]() |
[8] |
Wang W, Yang X, Fang Y, et al. (2009) Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride. Appl Energ 86: 1196–1200. doi: 10.1016/j.apenergy.2008.10.020
![]() |
[9] |
Cavallaro G, Lazzara G, Milioto S, et al. (2015) Thermal and dynamic mechanical properties of beeswax-halloysite nanocomposites for consolidating waterlogged archaeological woods. Polym Degrad Stabi 120: 220–225. doi: 10.1016/j.polymdegradstab.2015.07.007
![]() |
[10] | Zhao Y, Thapa S, Weiss L, et al. (2015) Phase Change Heat Insulation Based on Wax-Clay Nanotube Composites. Adv Eng Mater 16: 1391–1399. |
[11] | Cui Y, Xie J, Liu J, et al. (2017) A review on phase change material application in building. Adv Mech Eng 9: 1–15. |
[12] |
Vicente R, Silva T (2014) Brick masonry walls with PCM macrocapsules: An experimental approach. Appl Therm Eng 67: 24–34. doi: 10.1016/j.applthermaleng.2014.02.069
![]() |
[13] |
Shi X, Memon SA, Tang W, et al. (2014) Experimental assessment of position of macro encapsulated phase change material in concrete walls on indoor temperatures and humidity levels. Energ Buildings 71: 80–87. doi: 10.1016/j.enbuild.2013.12.001
![]() |
[14] |
Cabeza LF, Castellón C, Nogués M, et al. (2007) Use of microencapsulated PCM in concrete walls for energy savings. Energ Buildings 39: 113–119. doi: 10.1016/j.enbuild.2006.03.030
![]() |
[15] |
Feldman D, Shapiro M, Fazio P, et al. (1984) The compressive strength of cement blocks permeated with an organic-phase change material. Energ Buildings 6: 85–92. doi: 10.1016/0378-7788(84)90009-4
![]() |
[16] |
Xu B, Li Z (2013) Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Appl Energ 105: 229–237. doi: 10.1016/j.apenergy.2013.01.005
![]() |
[17] |
Fauzi H, Metselaar HSC, Mahlia TMI, et al. (2016) Preparation and thermal characteristics of eutectic fatty acids/Shorea javanica composite for thermal energy storage. Appl Therm Eng 100: 62–67. doi: 10.1016/j.applthermaleng.2016.01.146
![]() |
[18] |
Amin M, Putra N, Kosasih EA, et al. (2017) Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Appl Therm Eng 112: 273–280. doi: 10.1016/j.applthermaleng.2016.10.085
![]() |
[19] | Liu Y, Yang Y (2017) Preparation and thermal properties of Na2CO3.10H2O-Na2HPO4.12H2O eutectic hydrate salt as a novel phase change material for energy storage. Appl Therm Eng 112: 606–609. |
[20] | Paksoy H, Kardas G, Konuklu Y, et al. (2017) Characterization of concrete mixes containing phase change materials. IOP Conf Ser Mater Sci Eng 251: 1. |
[21] |
Yang HB, Liu TC, Chern JC, et al. (2016) Mechanical properties of concrete containing phase-change material. J Chin Inst Eng 39: 521–530. doi: 10.1080/02533839.2015.1134280
![]() |
[22] |
Ye R, Fang X, Zhang Z, et al. (2015) Preparation, mechanical and thermal properties of cement board with expanded perlite based composite phase change material for improving buildings thermal behavior. Materials 8: 7702–7713. doi: 10.3390/ma8115408
![]() |
[23] |
Lázaro A, Günther E, Mehling H, et al. (2006) Verification of a T-history installation to measure enthalpy versus temperature curves of phase change materials. Meas Sci Technol 17: 2168–2174. doi: 10.1088/0957-0233/17/8/016
![]() |
[24] |
Yinping Z, Yi J (1999) A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas Sci Technol 10: 201–205. doi: 10.1088/0957-0233/10/3/015
![]() |
[25] |
Peck JH, Kim JJ, Kang C, et al. (2006) A study of accurate latent heat measurement for a PCM with a low melting temperature using T-history method. Int J Refrig 29: 1225–1232. doi: 10.1016/j.ijrefrig.2005.12.014
![]() |
[26] |
Hong H, Kim SK, Kim YS (2004) Accuracy improvement of T-history method for measuring heat of fusion of various materials. Int J Refrig 27: 360–366. doi: 10.1016/j.ijrefrig.2003.12.006
![]() |
[27] |
Marin JM, Zalba B, Cabeza LF, et al. (2003) Determination of enthalpy temperature curves of phase change materials with the temperature-history method: Improvement to temperature dependent properties. Meas Sci Technol 14: 184–189. doi: 10.1088/0957-0233/14/2/305
![]() |
[28] | Xie J, Li Y, Wang W, et al. (2013) Comments on thermal physical properties testing methods of phase change materials. Adv Mech Eng 2013: 1255–1260. |
[29] | D'Avignon K, Kummert M (2015) Assessment of T-history Method Variants to Obtain Enthalpy-Temperature Curves for Phase Change Materials With Significant Subcooling. J Therm Sci Eng Appl 7: 1–9. |
1. | Jana L. Gevertz, Peter S. Kim, Joanna R. Wares, Mentoring Undergraduate Interdisciplinary Mathematics Research Students: Junior Faculty Experiences, 2017, 27, 1051-1970, 352, 10.1080/10511970.2016.1191571 | |
2. | Daniel Santiago, Johannes Heidbuechel, Wendy Kandell, Rachel Walker, Julie Djeu, Christine Engeland, Daniel Abate-Daga, Heiko Enderling, Fighting Cancer with Mathematics and Viruses, 2017, 9, 1999-4915, 239, 10.3390/v9090239 | |
3. | Hang Xie, Yang Jiao, Qihui Fan, Miaomiao Hai, Jiaen Yang, Zhijian Hu, Yue Yang, Jianwei Shuai, Guo Chen, Ruchuan Liu, Liyu Liu, Nils Cordes, Modeling three-dimensional invasive solid tumor growth in heterogeneous microenvironment under chemotherapy, 2018, 13, 1932-6203, e0206292, 10.1371/journal.pone.0206292 | |
4. | Syndi Barish, Michael F. Ochs, Eduardo D. Sontag, Jana L. Gevertz, Evaluating optimal therapy robustness by virtual expansion of a sample population, with a case study in cancer immunotherapy, 2017, 114, 0027-8424, E6277, 10.1073/pnas.1703355114 | |
5. | Raluca Eftimie, Joseph J. Gillard, Doreen A. Cantrell, Mathematical Models for Immunology: Current State of the Art and Future Research Directions, 2016, 78, 0092-8240, 2091, 10.1007/s11538-016-0214-9 | |
6. | Adrianne L. Jenner, Chae-Ok Yun, Peter S. Kim, Adelle C. F. Coster, Mathematical Modelling of the Interaction Between Cancer Cells and an Oncolytic Virus: Insights into the Effects of Treatment Protocols, 2018, 80, 0092-8240, 1615, 10.1007/s11538-018-0424-4 | |
7. | Victor Cervera-Carrascon, Riikka Havunen, Akseli Hemminki, Oncolytic adenoviruses: a game changer approach in the battle between cancer and the immune system., 2019, 19, 1471-2598, 443, 10.1080/14712598.2019.1595582 | |
8. | Elzbieta Ratajczyk, Urszula Ledzewicz, Heinz Schättler, Optimal Control for a Mathematical Model of Glioma Treatment with Oncolytic Therapy and TNF-α Inhibitors, 2018, 176, 0022-3239, 456, 10.1007/s10957-018-1218-4 | |
9. | Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier, On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach, 2017, 14, 1551-0018, 217, 10.3934/mbe.2017014 | |
10. | Jiantao Zhao, Jianjun Paul Tian, Spatial Model for Oncolytic Virotherapy with Lytic Cycle Delay, 2019, 81, 0092-8240, 2396, 10.1007/s11538-019-00611-2 | |
11. | Regina Padmanabhan, Nader Meskin, Ala-Eddin Al Moustafa, 2021, Chapter 8, 978-981-15-8639-2, 157, 10.1007/978-981-15-8640-8_8 | |
12. | Jana L. Gevertz, Joanna R. Wares, Developing a Minimally Structured Mathematical Model of Cancer Treatment with Oncolytic Viruses and Dendritic Cell Injections, 2018, 2018, 1748-670X, 1, 10.1155/2018/8760371 | |
13. | Adrianne L. Jenner, Federico Frascoli, Chae-Ok Yun, Peter S. Kim, Optimising Hydrogel Release Profiles for Viro-Immunotherapy Using Oncolytic Adenovirus Expressing IL-12 and GM-CSF with Immature Dendritic Cells, 2020, 10, 2076-3417, 2872, 10.3390/app10082872 | |
14. | Anna Park, Sangil Kim, Il Hyo Jung, Jong Hyuk Byun, Pinyi Lu, An immune therapy model for effective treatment on inflammatory bowel disease, 2020, 15, 1932-6203, e0238918, 10.1371/journal.pone.0238918 | |
15. | Joseph Malinzi, Kevin Bosire Basita, Sara Padidar, Henry Ademola Adeola, Prospect for application of mathematical models in combination cancer treatments, 2021, 23, 23529148, 100534, 10.1016/j.imu.2021.100534 | |
16. | Adrianne L. Jenner, Peter S. Kim, Federico Frascoli, Oncolytic virotherapy for tumours following a Gompertz growth law, 2019, 480, 00225193, 129, 10.1016/j.jtbi.2019.08.002 | |
17. | Michael C. Luo, Elpiniki Nikolopoulou, Jana L. Gevertz, From Fitting the Average to Fitting the Individual: A Cautionary Tale for Mathematical Modelers, 2022, 12, 2234-943X, 10.3389/fonc.2022.793908 | |
18. | Olivia Cardinal, Chloé Burlot, Yangxin Fu, Powel Crosley, Mary Hitt, Morgan Craig, Adrianne L. Jenner, Establishing combination PAC‐1 and TRAIL regimens for treating ovarian cancer based on patient‐specific pharmacokinetic profiles usingin silicoclinical trials, 2022, 2, 2689-9655, 10.1002/cso2.1035 | |
19. | Christine E. Engeland, Johannes P.W. Heidbuechel, Robyn P. Araujo, Adrianne L. Jenner, Improving immunovirotherapies: the intersection of mathematical modelling and experiments, 2022, 6, 26671190, 100011, 10.1016/j.immuno.2022.100011 | |
20. | Morgan Craig, Jana L. Gevertz, Irina Kareva, Kathleen P. Wilkie, A practical guide for the generation of model-based virtual clinical trials, 2023, 3, 2674-0702, 10.3389/fsysb.2023.1174647 | |
21. | Mary P Choules, Peter L. Bonate, Nakyo Heo, Jared Weddell, Prospective approaches to gene therapy computational modeling – spotlight on viral gene therapy, 2023, 1567-567X, 10.1007/s10928-023-09889-1 | |
22. | Deivasundari P, M Kabong Nono, E B Megam Ngouonkadi, H B Fotsin, Anitha Karthikeyan, Bistability and chaotic behaviors in a 4D cancer oncolytic Virotherapy mathematical model: Pspice and FPGA implementations, 2024, 99, 0031-8949, 035227, 10.1088/1402-4896/ad25cb | |
23. | Mohammed A. Hussein, Ekhlas H. Karam, Design immune robust integral signum of the error controller for cancer tumor growth treatment based on improved crow search algorithm, 2024, 7, 27726711, 100472, 10.1016/j.prime.2024.100472 | |
24. | Donggu Lee, Aurelio A. de los Reyes V, Yangjin Kim, Optimal strategies of oncolytic virus-bortezomib therapy via the apoptotic, necroptotic, and oncolysis signaling network, 2024, 21, 1551-0018, 3876, 10.3934/mbe.2024173 | |
25. | Anna Park, Jong Hyuk Byun, Il Hyo Jung, Shingo Iwami, Kwang Su Kim, Ning Cai, Quantification of the Synergistic Inhibitory Effects of an Oncolytic Herpes Virus Plus Paclitaxel on Anaplastic Thyroid Cancer Cells, 2024, 2024, 1076-2787, 10.1155/cplx/3899849 |