Review Special Issues

Embryonic stem cell therapy applications for autoimmune, cardiovascular, and neurological diseases: A review

  • Parkinson’s disease, type 1 diabetes, and coronary artery disease are some of the few difficult diseases to control. As a result, there has been pressure in the scientific community to develop new technologies and techniques that can treat, or ultimately cure these life-threatening diseases. One such scientific advancement in bridging the gap is the use of stem cell therapy. In recent years, stem cell therapy has gained the spotlight in becoming a possible intervention for combating chronic diseases due to their unique ability to differentiate into almost any cell line. More precisely, embryonic stem cell therapy may hold the potential for becoming the ideal treatment for a multitude of diseases as embryonic stem cells are not limited in their ability to differentiate like their counterpart adult stem cells. Although there has been controversy around the usage of embryonic stem cells, there has been found a great deal of potential within the usage of these cells to treat a multitude of life-threatening diseases. In this article, we will break down the categories of diseases in which embryonic stem cell therapy can be applied into: autoimmune, neurological, and cardiovascular with three diseases relating to each category. Our aim is to provide a comprehensive review on the advantages of embryonic stem cells (ESCs) that can solve current obstacles and push advances towards stem cell therapies in the field for the most common diseases.

    Citation: Edgar J. Cubillo, Sang M. Ngo, Alejandra Juarez, Joshuah Gagan, Gisel D. Lopez, David A. Stout. Embryonic stem cell therapy applications for autoimmune, cardiovascular, and neurological diseases: A review[J]. AIMS Cell and Tissue Engineering, 2017, 1(3): 191-223. doi: 10.3934/celltissue.2017.3.191

    Related Papers:

    [1] Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096
    [2] Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710
    [3] Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly (α,m)-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661
    [4] Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407
    [5] Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially (α,hm)-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521
    [6] Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546
    [7] Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637
    [8] Arshad Iqbal, Muhammad Adil Khan, Noor Mohammad, Eze R. Nwaeze, Yu-Ming Chu . Revisiting the Hermite-Hadamard fractional integral inequality via a Green function. AIMS Mathematics, 2020, 5(6): 6087-6107. doi: 10.3934/math.2020391
    [9] Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon . On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals. AIMS Mathematics, 2023, 8(1): 1833-1847. doi: 10.3934/math.2023094
    [10] Atiq Ur Rehman, Ghulam Farid, Sidra Bibi, Chahn Yong Jung, Shin Min Kang . k-fractional integral inequalities of Hadamard type for exponentially (s,m)-convex functions. AIMS Mathematics, 2021, 6(1): 882-892. doi: 10.3934/math.2021052
  • Parkinson’s disease, type 1 diabetes, and coronary artery disease are some of the few difficult diseases to control. As a result, there has been pressure in the scientific community to develop new technologies and techniques that can treat, or ultimately cure these life-threatening diseases. One such scientific advancement in bridging the gap is the use of stem cell therapy. In recent years, stem cell therapy has gained the spotlight in becoming a possible intervention for combating chronic diseases due to their unique ability to differentiate into almost any cell line. More precisely, embryonic stem cell therapy may hold the potential for becoming the ideal treatment for a multitude of diseases as embryonic stem cells are not limited in their ability to differentiate like their counterpart adult stem cells. Although there has been controversy around the usage of embryonic stem cells, there has been found a great deal of potential within the usage of these cells to treat a multitude of life-threatening diseases. In this article, we will break down the categories of diseases in which embryonic stem cell therapy can be applied into: autoimmune, neurological, and cardiovascular with three diseases relating to each category. Our aim is to provide a comprehensive review on the advantages of embryonic stem cells (ESCs) that can solve current obstacles and push advances towards stem cell therapies in the field for the most common diseases.


    The wighted version of Hadamard inequality known as Fejér-Hadamard inequality was established by Fejér in 1906. It is stated as follows:

    Theorem 1. [1] Let ψ:[a,b]R be a convex function. Further, let η:[a,b]R be integrable non-negative function which is symmetric about a+b2. Then we have

    ψ(a+b2)baη(x)dxbaψ(x)η(x)dxψ(a)+ψ(b)2baη(x)dx. (1.1)

    The Hadamard inequality is obtained if we consider η(x)=1 in the inequality (1.1). The following definition of "convex function with respect to a strictly monotone function" is the key factor of this paper.

    Definition 1. [2] If φ is strictly monotone function, then ψ is called convex with respect to φ if ψoφ1 is a convex function.

    Alternatively the Definition 1 can be taken as follows:

    Let I,J be intervals in R and ψ:IR be the convex function, also let φ:JIR be strictly monotone function. Then ψ is called convex with respect to φ if

    ψ(φ1(tx+(1t)y))tψ(φ1(x))+(1t)ψ(φ1(y)), (1.2)

    for t[0,1],x,yRange(φ), provided Range(φ) is convex set. Therefore Definition 1 is equivalently defined by inequality (1.2).

    Examples: [3] 1. Let φ(x)=x. Then φ1(x)=x, the inequality (1.2) takes the form

    ψ(tx+(1t)y)tψ(x)+(1t)ψ(y). (1.3)

    2. Let φ(x)=lnx. Then φ1(x)=expx, the inequality (1.2) takes the form

    ψ(exp(tx+(1t)y))tψ(exp(x))+(1t)ψ(exp(y)). (1.4)

    By replacing x with lnx and y with lny in (1.4), we get

    ψ(xty1t)tψ(x)+(1t)ψ(y). (1.5)

    3. Let φ(x)=1x. Then φ1(x)=1x, the inequality (1.2) takes the form

    ψ((tx+(1t)y)1)tψ(1x)+(1t)ψ(1y). (1.6)

    By replacing x with 1x and y with 1y in (1.6), we get

    ψ(xyty+(1t)x)tψ(x)+(1t)ψ(y). (1.7)

    4. Let φ(x)=xp,p>0. Then φ1(x)=x1p, the inequality (1.2) takes the form

    ψ((tx+(1t)y)1p)tψ(x1p)+(1t)ψ(y1p). (1.8)

    By replacing x with xp and y with yp in (1.8), we get

    ψ((txp+(1t)yp)1p)tψ(x)+(1t)ψ(y). (1.9)

    5. By replacing x with φ(x), y with φ(y), the inequality (1.2) takes the form

    ψ(φ1(tφ(x)+(1t)g(y)))tψ(x)+(1t)ψ(y). (1.10)

    Inequalities (1.3), (1.5), (1.7) and (1.9) give convexity, GA-convexity, harmonic convexity and p-convexity given in [4,5,6]. Hence these independently defined notions are actually examples of a convex function with respect to a strictly monotone function.

    Definition 2. [7] A function ψ will be called symmetric with respect to a strictly monotone function h about h(a)+h(b)2,a,bDomain(h), if

    ψ(h1(h(a)+h(b)x)=ψ(h1(x)) (1.11)

    holds for all xRang(h).

    The notions of symmetric, harmonically symmetric, p-symmetric, geometrically symmetric are examples of Definition 2. These are defined explicitly in [8,9,10].

    We have obtained the following versions of the Fejér-Hadamard inequality for convex function with respect to a strictly monotone function.

    Theorem 2. [7] Let I,J be intervals in R and ψ:[a,b]IR be a convex function, also let φ:J[a,b]R be a strictly monotone function. Further, let ψ be convex with respect to φ, and η:[a,b]R be non-negative integrable and symmetric with respect to φ about φ(a)+φ(b)2. Then the following inequality holds:

    ψ(φ1(φ(a)+φ(b)2))φ(b)φ(a)η(φ1(t))dξφ(b)φ(a)ψ(φ1(t))η(φ1(t))dξψ(a)+ψ(b)2φ(b)φ(a)η(φ1(t))dξ. (1.12)

    The aim of this paper is to give two Riemann-Liouville fractional versions of the Fejér-Hadamard inequality for convex function with respect to a strictly monotone function by using symmetricity with respect to strictly monotone function. These Fejér-Hadamard inequalities for specific strictly monotone functions will give results for convex, geometric convex, harmonically convex and p-convex functions published by different authors in [5,7,8,9,10,11,12,13,14,15,16]. The following definition gives the left as well as right Riemann-Liouville fractional integral operators:

    Definition 3. [17] Let μ>0 and ψL1[a,b]. Then Riemann-Liouville fractional integral operators of order μ are defined by:

    Iμa+ψ(x):=1Γ(μ)xaψ(t)(xt)1μdt,x>a (1.13)
    Iμbψ(x):=1Γ(μ)bxψ(t)(tx)1μdt,x<b, (1.14)

    where Γ(.) is notation for the gamma function.

    The following theorem gives first fractional version of the Hadamard inequality for Riemann-Liouville fractional integrals.

    Theorem 3. [15] Let ψ:[a,b]R be a positive function with 0a<b and ψL[a,b]. If ψ is a convex function on [a,b], then the following fractional integral inequality holds:

    ψ(a+b2)Γ(μ+1)2(ba)μ[Iμa+ψ(b)+Iμbψ(a)]ψ(a)+ψ(b)2, (1.15)

    with μ>0.

    Another version of the Hadamard inequality for Riemann-Liouville fractional integrals is given in the following theorem.

    Theorem 4. [16] Under the assumptions of Theorem 3, the following fractional integral inequality holds:

    ψ(a+b2)2μ1Γ(μ+1)(ba)μ[Iμ(a+b2)+ψ(b)+Iμ(a+b2)ψ(a)]ψ(a)+ψ(b)2, (1.16)

    with μ>0.

    We have obtained the following fractional versions of the Hadamard inequality for Riemann-Liouville fractional integrals of convex function with respect to a strictly monotone function.

    Theorem 5. [7] Let I,J be intervals in R and ψ:[a,b]IR be a convex function, also let φ:J[a,b]R be a strictly monotone function. Further, let ψ be convex with respect to φ. Then for μ>0 the following inequality holds for Riemann-Liouville fractional integrals:

    ψ(φ1(φ(a)+φ(b)2))Γ(μ+1)2(φ(b)φ(a))μ(Jμφ(a)+ψ(b)+Jμφ(b)ψ(a))ψ(a)+ψ(b)2. (1.17)

    Theorem 6. [7] Under the assumptions of Theorem 5, the following inequality holds for Riemann-Liouville fractional integrals:

    ψ(φ1(φ(a)+φ(b)2))2μ1Γ(μ+1)(φ(b)φ(a))μ(Jμφ(a)+φ(b)2+ψ(b)+Jμφ(a)+φ(b)2ψ(a))ψ(a)+ψ(b)2. (1.18)

    In the upcoming section we establish two versions of the Fejér-Hadamard inequality for convex function with respect to a strictly monotone function by using Riemann-Liouville fractional integrals. These inequalities generate new inequalities by selecting different strictly increasing and decreasing functions of our choice. Several results published in [5,7,8,9,10,11,12,13,14,15,16,18,19] are deducible from the results presented in this paper.

    First we prove the following lemma:

    Lemma 1. Let ψ be symmetric with respect to strictly monotone function φ about φ(a)+φ(b)2, and φL[a,b]. Then the following identity holds for Riemann-Liouville fractional integrals:

    Iμφ(a)+ψ(b)=Iμφ(b)ψ(a)=Iμφ(a)+ψ(b)+Iμφ(b)ψ(a)2. (2.1)

    Proof. From definition of Riemann-Liouville fractional integrals we have

    Iμφ(a)+ψ(b)=Iμφ(a)+ψ(φ1(φ(b)))=1Γ(μ)φ(b)φ(a)ψ(φ1(u))du(φ(b)u)1μ. (2.2)

    By setting φ(a)+φ(b)u=z in (1.13) we get

    Iμφ(a)+ψ(b)=1Γ(μ)φ(b)φ(a)ψ(φ1(φ(a)+φ(b)z))dz(zφ(a))1μ. (2.3)

    By using symmetricity of ψ with respect to strictly monotone function φ about φ(a)+φ(b)2, we get Iμφ(a)+ψ(b)=Iμφ(b)ψ(φ1(φ(a))) and hence (2.1) is obtained.

    Remark 1. (i) By setting φ(x)=1x in (2.1), we get [20,Lemma 2].

    (ii) By setting φ(x)=xp,p0 in (2.1), we get [21,Lemma 1].

    By using Lemma 1 we prove the following Riemann-Liouville fractional Fejér-Hadamard inequality for convex function ψ with respect to a strictly monotone function φ.

    Theorem 7. Let I,J be intervals in R and ψ,η:[a,b]IR be real valued functions. Let ψ be convex and w be the positive and symmetric about φ(a)+φ(b)2. Let φ:J[a,b]R be a strictly monotone function. If ψ is convex with respect to φ, then the following inequality holds for Riemann-Liouville fractional integrals:

    ψ(φ1(φ(a)+φ(b)2))(Iμφ(a)+η(b)+Iμφ(b)η(a))Iμφ(a)+(ψ.η)(b)+Iμφ(b)(ψ.η)(a)ψ(a)+ψ(b)2(Iμφ(a)+η(b)+Iμφ(b)η(a)). (2.4)

    Proof. Let K be the interval with end points φ(a) and φ(b). Since ψ is convex with respect to φ, for all x,yK, the inequality

    ψ(φ1(x+y2))ψ(φ1(x))+ψ(φ1(y))2 (2.5)

    holds. By setting x=ξφ(a)+(1ξ)φ(b),y=(1ξ)φ(a)+ξφ(b), ξ[0,1], we find the following inequality:

    2ψ(φ1(φ(a)+φ(b)2))ψ(φ1(ξφ(a)+(1ξ)φ(b)))+ψ(φ1((1ξ)φ(a)+ξφ(b))). (2.6)

    By multiplying with ξμ1η(φ1(ξφ(a)+(1ξ)φ(b))) on both sides of (2.6) and then integrating over [0,1], the following inequality is obtained:

    2ψ(φ1(φ(a)+φ(b)2))10ξμ1η(φ1(ξφ(a)+(1ξ)φ(b))dξ10ξμ1(ψ.η)(φ1(ξφ(a)+(1ξ)φ(b)))dξ+10ξμ1ψ(φ1((1ξ)φ(a)+ξφ(b)))η(φ1(ξφ(a)+(1ξ)φ(b)))dξ. (2.7)

    Now setting again u=ξφ(a)+(1ξ)φ(b) that is ξ=φ(b)uφ(b)φ(a) and v=(1ξ)φ(a)+ξφ(b) that is ξ=vφ(a)φ(b)φ(a) in (2.7), we find the following inequality:

    2ψ(φ1(φ(a)+φ(b)2))φ(b)φ(a)η(φ1(u))du(φ(b)u)1μφ(b)φ(a)(ψ.η)(φ1(u))du(φ(b)u)1μ+φ(b)φ(a)ψ(φ1(v))η(φ1(φ(a)+φ(b)v))dv(vφ(a))1μ.

    From which by using symmericity of w with respect to φ, one can get the first inequality of (2.4). On the other hand by using convexity of ψ with respect to φ, the following inequality can be derived:

    ψ(φ1(ξφ(a)+(1ξ)φ(b)))+ψ(φ1((1ξ)φ(a)+ξφ(b)))ψ(a)+ψ(b),ξ[0,1]. (2.8)

    By multiplying with ξμ1η(φ1(ξφ(a)+(1ξ)φ(b))) on both sides of (2.8) and then integrating over [0,1], the following inequality is obtained:

    10ξμ1(ψ.η)(φ1(ξφ(a)+(1ξ)φ(b)))dξ+10ξμ1ψ(φ1((1ξ)φ(a)+ξφ(b)))η(φ1(ξφ(a)+(1ξ)φ(b)))dξ[ψ(a)+ψ(b)]10ξμ1η(φ1(ξφ(a)+(1ξ)φ(b)))dξ. (2.9)

    By making substitution u=ξφ(a)+(1ξ)φ(b) and v=(1ξ)φ(a)+ξφ(b) in first and second integrals respectively of the left hand side of the inequality (2.9), and making substitution of u=ξφ(a)+(1ξ)φ(b) for integral appearing on right side of this inequality we obtain

    φ(b)φ(a)ψ(φ1(u))du(φ(b)u)1μ+φ(b)φ(a)ψ(φ1(v))η(φ1(φ(a)+φ(b)v))dv(vφ(a))1μψ(a)+ψ(b)2φ(b)φ(a)η(φ1(u))du(φ(b)u)1μ. (2.10)

    From which by using symmericity of w with respect to φ, one can get the second inequality of (2.4).

    In the following we give consequences the above theorem.

    Corollary 1. The following Fejér-Hadamard inequality holds for GA-convex function:

    ψ(ab)(Iμlna+η(b)+Iμlnbη(a))Iμlna+(ψ.η)(b)+Iμlnb(ψ.η)(a)ψ(a)+ψ(b)2(Iμlna+η(b)+Iμlnbη(a)). (2.11)

    Proof. Let φ(x)=expx. Then φ1(x)=lnx, the inequality (2.4) reduces to (2.11) for GA-convex functions.

    Corollary 2. The following Fejér-Hadamard inequality holds for ψln-convex function:

    ψ(ln(exp(a)+exp(b)2))(Iμexp(a)+η(b)+Iμexp(b)η(a))Iμexp(a)+(ψ.η)(b)+Iμexp(b)(ψ.η)(a)ψ(a)+ψ(b)2(Iμexp(a)+η(b)+Iμexp(b)η(a)). (2.12)

    Proof. Let φ(x)=lnx. Then φ1(x)=expx, the inequality (2.4) reduces to (2.12) for GA-convex functions.

    Remark 2. (i) By choosing η(x)=1, Theorem 5 is obtained.

    (ii) By choosing φ(x)=1x, [20,Theorem 5] is obtained.

    (iii) By choosing η(x)=1 and φ(x)=x, Theorem 3 is obtained.

    (iv) By choosing η(x)=1 and φ(x)=1x, [12,Theorem 4] is obtained.

    (v) By choosing η(x)=1 and φ(x)=xp,μ=1, [11,Theorem 6] is obtained.

    (vi) By choosing η(x)=1 and φ(x)=1x,μ=1, [5,Theorem 2.4] is obtained.

    (vii) By choosing φ(x)=xp,μ=1, [9,Theorem 5] is obtained.

    (viii) By choosing η(x)=1 and φ(x)=lnx,μ=1, [10,Theorem 2.2] is obtained.

    (ix) By choosing η(x)=1 and φ(x)=x,μ=1, the classical Hadamard inequality is obtained.

    Lemma 2. Let ψ be symmetric with respect to strictly monotone function φ about φ(a)+φ(b)2, and φL[a,b]. Then the following identity holds for Riemann-Liouville fractional integrals:

    Iμφ(a)+φ(b)2+ψ(b)=Iμφ(a)+φ(b)2ψ(a)=Iμφ(a)+φ(b)2+ψ(b)+Iμφ(a)+φ(b)2ψ(a)2. (2.13)

    Proof. From definition of Riemann-Liouville fractional integrals we have

    Iμφ(a)+φ(b)2+ψ(b)=Iμφ(a)+φ(b)2+ψ(φ1(φ(b)))=φ(b)φ(a)+φ(b)2ψ(φ1(u))du(φ(b)u)1μ. (2.14)

    By setting φ(a)+φ(b)u=z in (2.14) we get

    Iμφ(a)+φ(b)2+ψ(b)=φ(a)+φ(b)2φ(a)ψ(φ1(φ(a)+φ(b)z))dz(zφ(a))1μ. (2.15)

    By using symmetricity of ψ with respect to strictly monotone function φ about φ(a)+φ(b)2, we get Iμφ(a)+φ(b)2+ψ(b)=Iμφ(a)+φ(b)2ψ(φ1(φ(a))) and hence (2.13) is obtained.

    Remark 3. (i) By setting φ(x)=1x in (2.13), we get [14,Lemma 2].

    (ii) By setting φ(x)=xp,p0 in (2.13), we get the identity for p-symmetric functions.

    In the next theorem we establish another version of the Fejér-Hadamard inequality for convex function with respect to a strictly monotone function.

    Theorem 8. Under the assumptions of Theorem 7, the following inequality holds for Riemann-Liouville fractional integrals:

    ψ(φ1(φ(a)+φ(b)2))(Iμφ(a)+φ(b)2+η(b)+Iμφ(a)+φ(b)2η(a))Iμφ(a)+φ(b)2+(ψ.η)(b)+Iμφ(a)+φ(b)2(ψ.η)(a)ψ(a)+ψ(b)2(Iμφ(a)+φ(b)2+η(b)+Iμφ(a)+φ(b)2η(a)). (2.16)

    Proof. Let x=ξ2φ(a)+2ξ2φ(b),y=2ξ2φ(a)+ξ2φ(b), ξ[0,1]. Then from (2.5) we get the following inequality:

    2ψ(φ1(φ(a)+φ(b)2))ψ(φ1(ξ2φ(a)+2ξ2φ(b)))+ψ(φ1(2ξ2φ(a)+ξ2φ(b))). (2.17)

    By multiplying with ξμ1η(φ1(ξ2φ(a)+2ξ2φ(b))) on both sides of (2.17) and then integrating over [0,1], the following inequality is obtained:

    2ψ(φ1(φ(a)+φ(b)2))10ξμ1η(φ1(ξ2φ(a)+2ξ2φ(b)))dξ10ξμ1ψ(φ1(ξ2φ(a)+2ξ2φ(b)))η(φ1(ξ2φ(a)+2ξ2φ(b)))dξ+10ξμ1ψ(φ1(2ξ2φ(a)+ξ2φ(b)))η(φ1(ξ2φ(a)+2ξ2φ(b)))dξ. (2.18)

    Taking u=ξ2φ(a)+2ξ2φ(b) that is ξ=2(φ(b)u)φ(b)φ(a) and v=2ξ2φ(a)+ξ2φ(b) that is ξ=2(vφ(a))φ(b)φ(a) in (2.18), we find the following inequality:

    2ψ(φ1(φ(a)+φ(b)2))φ(a)+φ(b)2φ(a)η(φ1(u))du(φ(b)u)1μφ(a)+φ(b)2φ(a)(ψ.η)(φ1(u))du(φ(b)u)1μ+φ(a)+φ(b)2φ(a)ψ(φ1(v))η(φ1(φ(a)+φ(b)v))dv(vφ(a))1μ.

    From which by using symmericity of w with respect to φ, one can get the first inequality of (2.16). Again by using convexity of ψ with respect to φ, the following inequality is derived for ξ[0,1]:

    ψ(φ1(ξ2φ(a)+2ξ2φ(b)))+ψ(φ1(2ξ2φ(a)+ξ2φ(b)))ψ(a)+ψ(b). (2.19)

    By multiplying with ξμ1η(φ1(ξ2φ(a)+2ξ2φ(b))) on both sides of (2.8) and then integrating over [0,1], the following inequality is obtained:

    10ξμ1ψ(φ1(ξ2φ(a)+2ξ2φ(b)))η(φ1(ξ2φ(a)+2ξ2φ(b)))dξ+10ξμ1ψ(φ1(2ξ2φ(a)+ξ2φ(b)))η(φ1(ξ2φ(a)+2ξ2φ(b)))dξ.[ψ(a)+ψ(b)]10ξμ1(φ1(ξ2φ(a)+2ξ2φ(b)))dξ. (2.20)

    By making substitution u=ξ2φ(a)+2ξ2φ(b) and v=2ξ2φ(a)+ξ2φ(b) in first and second integrals respectively of the left hand side of the inequality (2.20), and making substitution of u=ξ2φ(a)+2ξ2φ(b) in the integral appearing in the right hand side of this inequality we will get

    φ(a)+φ(b)2φ(a)(ψ.η)(φ1(u))du(φ(b)u)1μ+φ(a)+φ(b)2φ(a)ψ(φ1(v))η(φ1(φ(a)+φ(b)v))dv(vφ(a))1μψ(a)+ψ(b)2φ(a)+φ(b)2φ(a)η(φ1(u))du(φ(b)u)1μ. (2.21)

    From which by using symmericity of w with respect to φ, one can get the second inequality of (2.16).

    The consequences of above theorem are given in the following corollaries and remark.

    Corollary 3. The following Fejér-Hadamard inequality holds for GA-convex function:

    ψ(ab)(Iμlnab+η(b)+Iμlnabη(a))Iμlnab+(ψ.η)(b)+Iμlnab(ψ.η)(a)ψ(a)+ψ(b)2(Iμlnab+η(b)+Iμlnabη(a)). (2.22)

    Proof. Let φ(x)=expx. Then φ1(x)=lnx, the inequality (2.16) reduces to (2.22) for GA-convex functions.

    Corollary 4. The following Fejér-Hadamard inequality holds for ψln-convex function:

    ψ(ln(exp(a)+exp(b)2))(Iμexp(a)+exp(b)2+η(b)+Iμexp(a)+exp(b)2η(a))Iμexp(a)+exp(b)2+(ψ.η)(b)+Iμexp(a)+exp(b)2(ψ.η)(a)ψ(a)+ψ(b)2(Iμexp(a)+exp(b)2+η(b)+Iμexp(a)+exp(b)2η(a)). (2.23)

    Proof. Let φ(x)=lnx. Then φ1(x)=expx, the inequality (2.16) reduces to (2.23) for GA-convex functions.

    Remark 4. (i) By choosing η(x)=1, Theorem 6 is obtained.

    (i) By choosing η(x)=1 and φ(x)=x, Theorem 4 is obtained.

    (ii) By choosing η(x)=1 and φ(x)=1x, [14,Theorem 4] is obtained.

    (iii) By choosing η(x)=1 and φ(x)=xp,p0, [13,Theorem 7] is obtained.

    (iv) By choosing η(x)=1 and φ(x)=1x,μ=1, [5,Theorem 2.4] is obtained.

    (v) By choosing η(x)=1 and φ(x)=xp,p≠=1, [11,Theorem 6] is obtained.

    We have studied the Riemann-Liouville fractional integral versions of Fejér-Hadamard inequalities for convex function with respect to strictly monotone function. The established inequalities provide the Hadamard and Fejér-Hadamard inequalities for Riemann-Liouville fractional integrals of convex, harmonically convex, p-convex and GA-convex functions. For specific increasing/decreasing functions the reader can produce corresponding Fejér-Hadamard inequalities from results of this paper. Further, we are investigating such results for other kinds of fractional integrals for future work.

    This work was supported by the Key Laboratory of Key Technologies of Digital Urban-Rural Spatial Planning of Hunan Province.

    It is declared that the author have no competing interests.

    [1] Guan K, Chang H, Rolletschek A, et al. (2001) Embryonic stem cell-derived neurogenesis. Cell Tissue Res 305: 171–176. doi: 10.1007/s004410100416
    [2] Buehr M, Smith A (2003) Genesis of embryonic stem cells. Philos Trans R Soc Lond B Biol Sci 358: 1397–1402. doi: 10.1098/rstb.2003.1327
    [3] Jones JM, Thomson JA (2000) Human embryonic stem cell technology. Semin Reprod Med 18: 219–223. doi: 10.1055/s-2000-12560
    [4] Martin GR, Evans MJ (1975) Differentiation of clonal lines of teratocarcinoma cells: Formation of embryoid bodies in vitro. Proc Natl Acad Sci 72: 1441–1445. doi: 10.1073/pnas.72.4.1441
    [5] Coghlan A (2015) Stem cell timeline. Heart Views 16: 72–73. doi: 10.4103/1995-705X.159230
    [6] Tanyeli A, Aykut G, Ahmet OD, et al. (2014) Hematopoietic stem cell transplantation and history. Arsiv Kaynak Tarama Dergisi 23: 1–7.
    [7] Thomson JA, Kalishman J, Golos TG, et al. (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci 92: 7844–7848. doi: 10.1073/pnas.92.17.7844
    [8] Thomson JA (1998) Primate embryonic stem cells. Curr Top Dev Biol 38: 133.
    [9] Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147.
    [10] Friel R, Sar SvD, Mee PJ (2005) Embryonic stem cells: Understanding their history, cell biology and signalling. Adv Drug Deliv Rev 57: 1894–1903. doi: 10.1016/j.addr.2005.08.002
    [11] Aird WC (2011) Discovery of the cardiovascular system: from Galen to William Harvey. J Thromb Haemost 9: 118–129. doi: 10.1111/j.1538-7836.2011.04312.x
    [12] Garrison FH (1931) An outline of the history of the circulatory system. Bull N Y Acad Med 7: 781.
    [13] Cardiac Procedures and Surgeries. Retrieved August 25, 2017. Available from: http://www.heart.org/HEARTORG/Conditions/HeartAttack/TreatmentofaHeartAttack/Cardiac-Procedures-and-Surgeries_UCM_303939_Article.jsp#.WZ-jFcaZPBI.
    [14] Side Effects of Heart Transplant. Retrieved August 25, 2017. Available from: https://www.floridahospital.com/heart-transplant/side-effects-heart-transplant.
    [15] Heart Disease. Retrieved August 25, 2017. Available from: https://www.cdc.gov/heartdisease/facts.htm.
    [16] Frangogiannis NG (2015) Pathophysiology of myocardial infarction. Compr Physiol 5: 1841–1875.
    [17] Nam YJ, Song K, Olson EN (2013) Heart repair by cardiac reprogramming. Nat Med 19: 413–415. doi: 10.1038/nm.3147
    [18] Kim JH, Hong SJ, Park CY, et al. (2016) Intramyocardial adipose-derived stem cell transplantation increases pericardial fat with recovery of myocardial function after acute myocardial infarction. PloS One 11: e0158067. doi: 10.1371/journal.pone.0158067
    [19] Li Z, Wilson KD, Smith B, et al. (2009) Functional and transcriptional characterization of human embryonic stem cell-derived endothelial cells for treatment of myocardial infarction. PloS One 4: e8443. doi: 10.1371/journal.pone.0008443
    [20] Christoforou N, Oskouei BN, Esteso P, et al. (2010) Implantation of mouse embryonic stem cell-derived cardiac progenitor cells preserves function of infarcted murine hearts. PloS One 5: e11536. doi: 10.1371/journal.pone.0011536
    [21] Caspi O, Huber I, Kehat I, et al. (2007) Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 50: 1884–1893. doi: 10.1016/j.jacc.2007.07.054
    [22] Torpy JM, Burke AE, Glass RM (2009) Coronary Heart Disease Risk Factors. JAMA 302: 2388. doi: 10.1001/jama.302.21.2388
    [23] Strauer BE, Brehm M, Zeus T, et al. (2005) Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J Am Coll Cardiol 46: 1651–1658. doi: 10.1016/j.jacc.2005.01.069
    [24] Serruys PW, Morice MC, Kappetein AP, et al. (2009) Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med 360: 961–972. doi: 10.1056/NEJMoa0804626
    [25] Serruys PW, De Jaegere P, Kiemeneij F, et al. (1994) A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med 331: 489–495. doi: 10.1056/NEJM199408253310801
    [26] Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352: 1685–1695. doi: 10.1056/NEJMra043430
    [27] Schwartz R, Borissoff J, Spronk H, et al. (2011) The Hemostatic System as a Modulator of Atherosclerosis. N Engl J Med 364: 1746–1760. doi: 10.1056/NEJMra1011670
    [28] Chang TY, Huang TS, Wang HW, et al. (2014) miRNome traits analysis on endothelial lineage cells discloses biomarker potential circulating microRNAs which affect progenitor activities. BMC Genomics 15: 802. doi: 10.1186/1471-2164-15-802
    [29] Reed DM, Foldes G, Gatheral T, et al. (2014) Pathogen sensing pathways in human embryonic stem cell derived-endothelial cells: role of NOD1 receptors. PloS One 9: e91119. doi: 10.1371/journal.pone.0091119
    [30] El-Mounayri O, Mihic A, Shikatani EA, et al. (2012) Serum-free differentiation of functional human coronary-like vascular smooth muscle cells from embryonic stem cells. Cardiovasc Res 98: 125–135.
    [31] The Internet Stroke Center. The Internet Stroke Center. An independent web resource for information about stroke care and research. Accessed January 17, 2018. Available from: http://www.strokecenter.org/patients/about-stroke/ischemic-stroke/.
    [32] Leggett H (2009) Time window for stroke treatment should be extended. Retrieved August 26, 2017.
    [33] Thom T, Haase N, Rosamond W, et al. (2006) Heart disease and stroke statistics--2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 113: e85–151. doi: 10.1161/CIRCULATIONAHA.105.171600
    [34] Banerjee S, Williamson D, Habib N, et al. (2011) Human stem cell therapy in ischaemic stroke: A review. Age Ageing 40: 7–13. doi: 10.1093/ageing/afq133
    [35] Chen J, Li Y, Zhang R, et al. (2004) Combination therapy of stroke in rats with a nitric oxide donor and human bone marrow stromal cells enhances angiogenesis and neurogenesis. Brain Res 1005: 21–28. doi: 10.1016/j.brainres.2003.11.080
    [36] Daadi M, Maag A, Steinberg G, et al. (2008) Adherent Self-Renewable Human Embryonic Stem Cell-Derived Neural Stem Cell Line: Functional Engraftment in Experimental Stroke Model (Stem Cell Therapy for Stroke). PLoS O ne 3: e1644. doi: 10.1371/journal.pone.0001644
    [37] Drury-Stewart D, Song M, Mohamad O, et al. (2013) Highly efficient differentiation of neural precursors from human embryonic stem cells and benefits of transplantation after ischemic stroke in mice. Stem Cell Res Ther 4: 93. doi: 10.1186/scrt292
    [38] Östensson M, Montén C, Bacelis J, et al. (2013) A Possible Mechanism behind Autoimmune Disorders Discovered By Genome-Wide Linkage and Association Analysis in Celiac Disease. PLoS O ne 8: e70174. doi: 10.1371/journal.pone.0070174
    [39] Münz C, Lünemann JD, Getts MT, et al. (2009) Antiviral immune responses: triggers of or triggered by autoimmunity? Nat Rev Immunol 9: 246–258. doi: 10.1038/nri2527
    [40] Vojdani A (2014) A Potential Link between Environmental Triggers and Autoimmunity. Autoimmune Dis 2014: 437231.
    [41] Selmi C, Lu Q, Humble MC (2012) Heritability versus the role of environment in autoimmunity. J Autoimmun 39: 249–252. doi: 10.1016/j.jaut.2012.07.011
    [42] Miller FW, Pollard KM, Parks CG, et al. (2012) Criteria for environmentally associated autoimmune disease. J Autoimmun 39: 253–258. doi: 10.1016/j.jaut.2012.05.001
    [43] Lerner A, Jeremias P, Matthias T (2015) The World Incidence and Prevalence of Autoimmune Diseases is Increasing. Int J Celiac Dis 3: 151–155.
    [44] Wiseman A (2016) Immunosuppressive medications. Clin J Am Soc Nephrol 11: 332–343. doi: 10.2215/CJN.08570814
    [45] Holroyd CR, Edwards CJ (2009) The effects of hormone replacement therapy on autoimmune disease: Rheumatoid arthritis and systemic lupus erythematosus. Climacteric 12. 378–386.
    [46] Berentsen S, Sundic T (2015) Red Blood Cell Destruction in Autoimmune Hemolytic Anemia: Role of Complement and Potential New Targets for Therapy. Bio med Res Int 2015: 363278.
    [47] Li P, Zheng Y, Chen X (2017) Drugs for Autoimmune Inflammatory Diseases: From Small Molecule Compounds to Anti-TNF Biologics. Front Pharmacol 8: 460. doi: 10.3389/fphar.2017.00460
    [48] Kidd BL, Langford RM, Wodehouse T (2007) Arthritis and pain. Current approaches in the treatment of arthritic pain. Arthritis Res Ther 9: 214.
    [49] Cooney JK, Law RJ, Matschke V, et al. (2011) Benefits of Exercise in Rheumatoid Arthritis. J Aging Res 2011: 681640.
    [50] Rosenblum MD, Gratz IK, Paw JS, et al. (2012) Treating Human Autoimmunity: Current Practice and Future Prospects. Sci Transl Med 4: 125sr1.
    [51] Maahs DM, West NA, Lawrence JM, et al. (2010) Chapter 1: Epidemiology of Type 1 Diabetes. Endocrinol Metab Clin North Am 39: 481–497. doi: 10.1016/j.ecl.2010.05.011
    [52] Naftanel MA, Harlan DM (2004) Pancreatic Islet Transplantation. PL oS Med 1: e58. doi: 10.1371/journal.pmed.0010058
    [53] Keller GM (1995) In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 7: 862–869. doi: 10.1016/0955-0674(95)80071-9
    [54] Dani C, Smith AG, Dessolin S, et al. (1997) Differentiation of embryonic stem cells into adipocytes in vitro. J Cell Sci 110: 1279–1285.
    [55] Wobus AM, Wallukat G, Hescheler J (1991) Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48: 173–182. doi: 10.1111/j.1432-0436.1991.tb00255.x
    [56] Naujok O, Francini F, Picton S, et al. (2008) A new experimental protocol for preferential differentiation of mouse embryonic stem cells into insulin-producing cells. Cell Transplant 17: 1231–1242. doi: 10.3727/096368908787236549
    [57] Kroon E, Martinson LA, Kadoya K, et al. (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26: 443–452. doi: 10.1038/nbt1393
    [58] Hua X, Wang Y, Tang Y, et al. (2014) Pancreatic insulin-producing cells differentiated from human embryonic stem cells correct hyperglycemia in SCID/NOD mice, an animal model of diabetes. PLoS One 9: e102198. doi: 10.1371/journal.pone.0102198
    [59] D'Amour KA, Bang AG, Eliazer S, et al. (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24: 1392–1401. doi: 10.1038/nbt1259
    [60] D'Amour KA, Agulnick AD, Eliazer S, et al. (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23: 1534–1541. doi: 10.1038/nbt1163
    [61] Szot GL, Yadav M, Lang J, et al. (2015) Tolerance induction and reversal of diabetes in mice transplanted with human embryonic stem cell-derived pancreatic endoderm. Cell Stem Cell 16: 148–157. doi: 10.1016/j.stem.2014.12.001
    [62] Assady S, Maor G, Amit M, et al. (2001) Insulin production by human embryonic stem cells. Diabetes 50: 1691–1697. doi: 10.2337/diabetes.50.8.1691
    [63] Blyszczuk P, Czyz J, Kania G, et al. (2003) Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci U S A 100: 998–1003. doi: 10.1073/pnas.0237371100
    [64] Kahan BW (2003) Pancreatic precursors and differentiated islet cell types from murine embryonic stem cells: an in vitro model to study islet differentiation. Diabetes 52: 2016–2024. doi: 10.2337/diabetes.52.8.2016
    [65] Lester LB, Kuo HC, Andrews L, et al. (2004) Directed differentiation of rhesus monkey ES cells into pancreatic cell phenotypes. Reprod Biol Endocrinol 2: 42. doi: 10.1186/1477-7827-2-42
    [66] Segev H, Fishman B, Ziskind A, et al. (2004) Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells 22: 265–274. doi: 10.1634/stemcells.22-3-265
    [67] Rejdak K, Jackson S, Giovannoni G (2010) Multiple sclerosis: a practical overview for clinicians. Br Med Bull 95: 79–104. doi: 10.1093/bmb/ldq017
    [68] Goldenberg MM (2012) Multiple Sclerosis Review. Pharm Ther 37: 175–184.
    [69] Minagar A (2013) Current and Future Therapies for Multiple Sclerosis. Scientifica 2013: 249101.
    [70] Nistor GI, Totoiu MO, Haque N, et al. (2005) Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49: 385–396. doi: 10.1002/glia.20127
    [71] Brustle O (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285: 754–756. doi: 10.1126/science.285.5428.754
    [72] Kang SM, Cho MS, Seo H, et al. (2007) Efficient induction of oligodendrocytes from human embryonic stem cells. Stem Cells 25: 419–424. doi: 10.1634/stemcells.2005-0482
    [73] Rodrigues GMC, Gaj T, Adil MM, et al. (2017) Defined and Scalable Differentiation of Human Oligodendrocyte Precursors from Pluripotent Stem Cells in a 3D Culture System. Stem Cell Reports 8: 1770–1783. doi: 10.1016/j.stemcr.2017.04.027
    [74] Aharonowiz M, Einstein O, Fainstein N, et al. (2008) Neuroprotective Effect of Transplanted Human Embryonic Stem Cell-Derived Neural Precursors in an Animal Model of Multiple Sclerosis. PL oS One 3: e3145. doi: 10.1371/journal.pone.0003145
    [75] Payne NL, Sun G, Herszfeld D, et al. (2012) Comparative Study on the Therapeutic Potential of Neurally Differentiated Stem Cells in a Mouse Model of Multiple Sclerosis. PLoS One 7: e35093. doi: 10.1371/journal.pone.0035093
    [76] McDonald JW, Liu XZ, Qu Y, et al. (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5: 1410–1412. doi: 10.1038/70986
    [77] Shroff G (2016) Transplantation of Human Embryonic Stem Cells in Patients with Multiple Sclerosis and Lyme Disease. Am J Case Rep 17: 944–949. doi: 10.12659/AJCR.899745
    [78] Yanai J, Doetchman T, Laufer N, et al. (1995) Embryonic cultures but not embryos transplanted to the mouse's brain grow rapidly without immunosuppression. Int J Neurosci 81: 21–26. doi: 10.3109/00207459509015295
    [79] Deacon T, Dinsmore J, Costantini LC, et al. (1998) Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation. Exp Neurol 149: 28–41. doi: 10.1006/exnr.1997.6674
    [80] Inglese M, Mancardi GL, Pagani E, et al. (2004) Brain tissue loss occurs after suppression of enhancement in patients with multiple sclerosis treated with autologous haematopoietic stem cell transplantation. J Neurol Neurosurg Psychiatry 75: 643–644.
    [81] Drukker M, Katchman H, Katz G, et al. (2006) Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 24: 221–229. doi: 10.1634/stemcells.2005-0188
    [82] Lee LA (2004) Neonatal lupus. Pediatric Drugs 6: 71–78. doi: 10.2165/00148581-200406020-00001
    [83] Panjwani S (2009) Early diagnosis and treatment of discoid lupus erythematosus. J Am Board Fam Med 22: 206–213. doi: 10.3122/jabfm.2009.02.080075
    [84] Katz U, Zandman-Goddard G (2010) Drug-induced lupus: an update. Autoimmun Rev 10: 46–50. doi: 10.1016/j.autrev.2010.07.005
    [85] Yu C, Gershwin ME, Chang C (2014) Diagnostic criteria for systemic lupus erythematosus: a critical review. J Autoimmun 48–49: 10–13.
    [86] Rovin BH, Parikh SV (2014)Lupus nephritis: the evolving role of novel therapeutics. Am J Kidney Dis 63: 677–690.
    [87] Xiong W, Lahita RG (2014) Pragmatic approaches to therapy for systemic lupus erythematosus. Nature reviews. Rheumatology 10: 97–107. doi: 10.1038/nrrheum.2013.157
    [88] Kimbrel EA, Kouris NA, Yavanian GJ, et al. (2014) Mesenchymal Stem Cell Population Derived from Human Pluripotent Stem Cells Displays Potent Immunomodulatory and Therapeutic Properties. Stem Cells Dev 23: 1611–1624. doi: 10.1089/scd.2013.0554
    [89] Thiel A, Yavanian G, Nastke MD, et al. (2015) Human embryonic stem cell-derived mesenchymal cells preserve kidney function and extend lifespan in NZB/W F1 mouse model of lupus nephritis. Sci Rep 5: 17685.
    [90] Oakes PC, Fisahn C, Iwanaga J, et al. (2016) A history of the autonomic nervous system: Part I: From galen to bichat. Childs Nerv Syst 32: 2303–2308. doi: 10.1007/s00381-016-3246-4
    [91] Hare E (1991) The history of 'nervous disorders' from 1600 to 1840, and a comparison with modern views. Br J Psychiatry 159: 37–45. doi: 10.1192/bjp.159.1.37
    [92] Oakes PC, Fisahn C, Iwanaga J, et al. (2016) A history of the autonomic nervous system: Part II: From reil to the modern era. Childs Nerv Syst 32: 2309–2315. doi: 10.1007/s00381-016-3247-3
    [93] Lee B, Kim S, Park H, et al. (2014) Research advances in treatment of neurological and psychological diseases by acupuncture at the acupuncture meridian science research center. Integr Med Res 3: 41–48. doi: 10.1016/j.imr.2014.03.003
    [94] Berger JR, Choi D, Kaminski HJ, et al. (2013) Importance and hurdles to drug discovery for neurological disease. Ann Neurol 74: 441–446. doi: 10.1002/ana.23997
    [95] Dauer W, Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39: 889–909. doi: 10.1016/S0896-6273(03)00568-3
    [96] What is parkinson's disease. The Times of India. 2011.
    [97] Deweerdt S (2016) Parkinson's disease: 4 big questions. Nature 538: S17. doi: 10.1038/538S17a
    [98] CNN. What is parkinson's disease? CNN Wire. 2016.
    [99] Eisenstein M (2016) Electrotherapy: Shock value. Nature 538: S12.
    [100] Ambasudhan R, Dolatabadi N, Nutter A, et al. (2014) Potential for cell therapy in parkinson's disease using genetically programmed human embryonic stem cellderived neural progenitor cells. J Comp Neurol 522: 2845–2856. doi: 10.1002/cne.23617
    [101] Vogel G (2002) Rat brains respond to embryonic stem cells. Science 295: 254–255.
    [102] Julius AS, Se JC, Mrejeru A, et al. (2015) Optogenetics enables functional analysis of human embryonic stem cellderived grafts in a parkinson's disease model. Nat Biotechnol 33: 204. doi: 10.1038/nbt.3124
    [103] Hsieh W, Chiang B (2014) A well-refined in vitro model derived from human embryonic stem cell for screening phytochemicals with midbrain dopaminergic differentiation-boosting potential for improving parkinson's disease. J Agric Food Chem 62: 6326. doi: 10.1021/jf501640a
    [104] Daadi MM, Grueter BA, Malenka RC, et al. (2012) Dopaminergic neurons from midbrain-specified human embryonic stem cell-derived neural stem cells engrafted in a monkey model of parkinsons disease (dopaminergic neural stem cell in MPTP monkey model). PLoS O ne 7: e41120. doi: 10.1371/journal.pone.0041120
    [105] Park S, Kim EY, Ghil GS, et al. (2003) Genetically modified human embryonic stem cells relieve symptomatic motor behavior in a rat model of parkinson's disease. Neurosci Lett 353: 91–94. doi: 10.1016/j.neulet.2003.08.082
    [106] Tabar SV (2016) 133 the development of human embryonic stem cell-derived dopamine neurons for clinical use in parkinson disease. Neurosurgery 63: 154–155.
    [107] Yamashita H, Nakamura T, Takahashi T, et al. (2006) Embryonic stem cell-derived neuron models of parkinson's disease exhibit delayed neuronal death. J Neurochem 98: 45–56. doi: 10.1111/j.1471-4159.2006.03815.x
    [108] Halliday G, Robinson SR, Shepherd C, et al. (2000) Alzheimer's disease and inflammation: a review of cellular and therapeutic mechanisms. Clin Exp Pharmacol Physiol 27: 1–8. doi: 10.1046/j.1440-1681.2000.03200.x
    [109] McKhann G, Drachman D, Folstein M, et al. (1984) Report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services task force on Alzheimer's disease. Neurology 34: 939–943. doi: 10.1212/WNL.34.7.939
    [110] Perry RJ, Hodges JR (1999) Attention and executive deficits in Alzheimer's disease: A critical review. Brain 122: 383–404. doi: 10.1093/brain/122.3.383
    [111] de la Torre JC (2004) Is Alzheimer's disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol 3: 184–190.
    [112] Selkoe DJ (2002) Alzheimer's disease is a synaptic failure. Science 298: 789–791. doi: 10.1126/science.1074069
    [113] Nordberg A, Svensson AL (1998) Cholinesterase inhibitors in the treatment of Alzheimer's disease. Drug safety 19: 465–480. doi: 10.2165/00002018-199819060-00004
    [114] Winblad B, Jelic V (2004) Long-term treatment of Alzheimer disease: efficacy and safety of acetylcholinesterase inhibitors. Alzheimer Dis Assoc Disord 18: S2–S8. doi: 10.1097/01.wad.0000127495.10774.a4
    [115] Tariot PN, Federoff HJ (2003) Current treatment for Alzheimer disease and future prospects. Alzheimer Dis Assoc Disord 17: S105–S113. doi: 10.1097/00002093-200307004-00005
    [116] Rao MS, Mattson MP (2001) Stem cells and aging: expanding the possibilities. Mech Ageing Dev 122: 713–734. doi: 10.1016/S0047-6374(01)00224-X
    [117] Kim SU, De Vellis J (2009) Stem cell‐based cell therapy in neurological diseases: a review. J Neurosci Res 87: 2183–2200. doi: 10.1002/jnr.22054
    [118] Tuszynski MH, Thal L, Pay M, et al. (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11: 551–555. doi: 10.1038/nm1239
    [119] Lee HJ, Kim KS, Kim EJ,et al. (2007) Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS One 2: e156. doi: 10.1371/journal.pone.0000156
    [120] Mattson MP (2000) Emerging neuroprotective strategies for Alzheimer's disease: dietary restriction, telomerase activation, and stem cell therapy. Exp Gerontol 35: 489–502. doi: 10.1016/S0531-5565(00)00115-7
    [121] Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10: 678–684. doi: 10.1016/j.stem.2012.05.005
    [122] Israel MA, Yuan SH, Bardy C, et al. (2012) Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature 482: 216. doi: 10.1038/nature10821
    [123] Yagi T, Ito D, Okada Y, et al. (2011) Modeling familial Alzheimer's disease with induced pluripotent stem cells. Hum Mol Genet 20: 4530–4539. doi: 10.1093/hmg/ddr394
    [124] Rosenbaum P (2003) Cerebral palsy: what parents and doctors want to know. BMJ 326: 970–974. doi: 10.1136/bmj.326.7396.970
    [125] Palsy, United Cerebral. Cerebral Palsy: facts and figures. Retrieved March 9, no. 2005 (2001), 37.
    [126] MacLennan AH, Thompson SC, Gecz J (2015) Cerebral palsy: causes, pathways, and the role of genetic variants. AmJ Obstet Gynecol 213: 779–788. doi: 10.1016/j.ajog.2015.05.034
    [127] Reddihough DS, Collins KJ (2003) The epidemiology and causes of cerebral palsy. Aust J Physiother 49: 7–12. doi: 10.1016/S0004-9514(14)60183-5
    [128] Krigger KW (2006) Cerebral palsy: an overview. Am Fam Physician 73: 91–100.
    [129] Zhang P, Li J, Liu Y, et al. (2009) Transplanted human embryonic neural stem cells survive, migrate, differentiate and increase endogenous nestin expression in adult rat cortical peri-infarction zone. Neuropathology 29: 410–421. doi: 10.1111/j.1440-1789.2008.00993.x
    [130] Shroff G, Gupta A, Barthakur JK (2014) Therapeutic potential of human embryonic stem cell transplantation in patients with cerebral palsy. J Transl Med 12: 318. doi: 10.1186/s12967-014-0318-7
    [131] Shroff G, Das L (2014) Human embryonic stem cell therapy in cerebral palsy children with cortical visual impairment: a case series of 40 patients. J Cell Sci Ther 5: 1–7.
    [132] Yang D, Zhang ZJ, Oldenburg M, et al. (2008) Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells 26: 55–63. doi: 10.1634/stemcells.2007-0494
    [133] Filipovic R, Kumar SS, Fiondella C, et al. (2012) Increasing doublecortin expression promotes migration of human embryonic stem cell-derived neurons. Stem Cells 30: 1852–1862. doi: 10.1002/stem.1162
    [134] Chandross KJ, Mezey E (2002) Plasticity of adult bone marrow stem cells. Adv Cell Aging Gerontol 9: 73–95. doi: 10.1016/S1566-3124(02)09044-2
    [135] Kolaja K (2014) Stem cells and stem-cell derived tissues and their use in safety assessment. J Biol Chem 289: 4555–4561. doi: 10.1074/jbc.R113.481028
    [136] McLaren A (2001) Ethical and social considerations of stem cell research. Nature 414: 129–131. doi: 10.1038/35102194
    [137] Slack JM (2000) Stem cells in epithelial tissues. Science 287: 1431–1433. doi: 10.1126/science.287.5457.1431
    [138] Visual stem cell glossary. The three germ layers, 2009. Available from: http://www.allthingsstemcell.com/glossary/#endoderm.
    [139] Lanza R, Langer R, Vacanti JP (2013) Stem cells. Principles of tissue engineering. Elsevier Science, 612–704.
    [140] Shiraki N, Higuchi Y, Harada S, et al. (2009) Differentiation and characterization of embryonic stem cells into three germ layers. Biochem Biophys Res Commun 381: 694–699. doi: 10.1016/j.bbrc.2009.02.120
    [141] Rodaway A, Patient R (2001) Mesoderm: An ancient germ layer? Cell 105: 169–172. doi: 10.1016/S0092-8674(01)00307-5
    [142] Lucas D, Frenette P (2014) Reprogramming finds its niche. Nature 511: 301–302.
    [143] De Los Angeles A, Daley G (2013) Reprogramming in situ. Nature 502: 309–310. doi: 10.1038/nature12559
    [144] Kim J, Choi H, Choi S, et al. (2011) Reprogrammed pluripotent stem cells from somatic cells. Int J Stem Cells 4: 1–8. doi: 10.15283/ijsc.2011.4.1.1
    [145] Hutchins A, Yang Z, Li Y, et al. (2017) Models of global gene expression define major domains of cell type and tissue identity. Nucleic Acids Res 45: 2354–2367. doi: 10.1093/nar/gkx054
    [146] Hazeltine LB, Selekman JA, Palecek SP (2013) Engineering the human pluripotent stem cell microenvironment to direct cell fate. Biotechnol Adv 31: 1002–1019. doi: 10.1016/j.biotechadv.2013.03.002
    [147] Rottmar M, Håkanson M, Smith M, et al. (2010) Stem cell plasticity, osteogenic differentiation and the third dimension. J Mater Sci Mater Med 21: 999–1004. doi: 10.1007/s10856-009-3926-7
    [148] Gattazzo F, Urciuolo A, Bonaldo P (2014) Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochim Biophys Acta 1840: 2506–2519. doi: 10.1016/j.bbagen.2014.01.010
    [149] Huang N, Li S (2011) Regulation of the matrix microenvironment for stem cell engineering and regenerative medicine. Ann Biomed Eng 39: 1201–1214. doi: 10.1007/s10439-011-0297-2
    [150] Sorkio A, Vuorimaa-Laukkanen E, Hakola H, et al. (2015) Biomimetic collagen I and IV double layer LangmuireSchaefer films as microenvironment for human pluripotent stem cell derived retinal pigment epithelial cells. Biomaterials 51: 257–269. doi: 10.1016/j.biomaterials.2015.02.005
    [151] Ozbolat IT, Yu Y (2013) Bioprinting toward organ fabrication: Challenges and future trends. I EEE Trans Biomed Eng 60: 691–699.
  • This article has been cited by:

    1. Li Xu, Lu Chen, Ti-Ren Huang, Monotonicity, convexity and inequalities involving zero-balanced Gaussian hypergeometric function, 2022, 7, 2473-6988, 12471, 10.3934/math.2022692
    2. Ghulam Farid, Josip Pec̆arić, Kamsing Nonlaopon, Inequalities for fractional Riemann–Liouville integrals of certain class of convex functions, 2022, 2022, 2731-4235, 10.1186/s13662-022-03682-z
    3. Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, A Comprehensive Review on the Fejér-Type Inequality Pertaining to Fractional Integral Operators, 2023, 12, 2075-1680, 719, 10.3390/axioms12070719
    4. Muhammad Samraiz, Maria Malik, Saima Naheed, Ahmet Ocak Akdemir, Error estimates of Hermite‐Hadamard type inequalities with respect to a monotonically increasing function, 2023, 46, 0170-4214, 14527, 10.1002/mma.9334
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7354) PDF downloads(1288) Cited by(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog