Research article Special Issues

Mammalian cell adhesion on different 3D printed polymers with varying sterilization methods and acidic treatment

  • Received: 22 September 2020 Accepted: 16 November 2020 Published: 26 November 2020
  • Cell growth on three-dimensional objects is of high interest for bioprocess engineering of adherent cells, tissue engineering and other biomedical applications. 3D printing by fusion deposition modeling (FDM) is a cheap possibility to generate tailor-made substrates for cell growth. Nevertheless, not all materials are chemically attractive for cells. Polylactic acid (PLA) and polyethylene terephthalate glycol (PETG) have been reported to be suitable polymers for tissue engineering. Thus, they might also be applicable for cost-effective bioprocessing of adherent cell lines. Here we report on the influence of printing material, surface structure, and sterilization method on Chinese hamster ovary (CHO) cell adhesion on a modified, high temperature resistant PLA, a PETG blend, and unmodified PETG, respectively. Our study revealed that CHO cells grew on all polymers tested without further surface modification. Samples could be efficiently chemically sterilized. Additional acid treatment had no significant effect on cell adhesion.

    Citation: Sven Sölmann, Anke Rattenholl, Hannah Blattner, Guido Ehrmann, Frank Gudermann, Dirk Lütkemeyer, Andrea Ehrmann. Mammalian cell adhesion on different 3D printed polymers with varying sterilization methods and acidic treatment[J]. AIMS Bioengineering, 2021, 8(1): 25-35. doi: 10.3934/bioeng.2021004

    Related Papers:

  • Cell growth on three-dimensional objects is of high interest for bioprocess engineering of adherent cells, tissue engineering and other biomedical applications. 3D printing by fusion deposition modeling (FDM) is a cheap possibility to generate tailor-made substrates for cell growth. Nevertheless, not all materials are chemically attractive for cells. Polylactic acid (PLA) and polyethylene terephthalate glycol (PETG) have been reported to be suitable polymers for tissue engineering. Thus, they might also be applicable for cost-effective bioprocessing of adherent cell lines. Here we report on the influence of printing material, surface structure, and sterilization method on Chinese hamster ovary (CHO) cell adhesion on a modified, high temperature resistant PLA, a PETG blend, and unmodified PETG, respectively. Our study revealed that CHO cells grew on all polymers tested without further surface modification. Samples could be efficiently chemically sterilized. Additional acid treatment had no significant effect on cell adhesion.


    加载中


    Conflict of interest



    All authors declare no conflicts of interest in this paper.

    [1] Tegel H, Dannemeyer M, Kanje S, et al. (2020) High throughput generation of a resource of the human secretome in mammalian cells. New Biotechnol 58: 45-54. doi: 10.1016/j.nbt.2020.05.002
    [2] Wells E, Song LQ, Greer M, et al. (2020)  Media supplementation for targeted manipulation of monoclonal antibody galactosylation and fucosylation. doi: 10.1002/bit.27496
    [3] Sun T, Kwo WC, Chua KJ, et al. (2020) Development of a proline-based selection system for reliable genetic engineering in Chinese hamster ovary cells. ACS Synth Biol 9: 1864-1872. doi: 10.1021/acssynbio.0c00221
    [4] Wang YX, Puthussery JV, Yu HR, et al. (2020) Synergistic and antagonistic interactions among organic and metallic components of the ambient particulate matter (PM) for the cytotoxicity measured by Chinese hamster ovary cells. Sci Total Environ 736: 139511. doi: 10.1016/j.scitotenv.2020.139511
    [5] Musini A, Pokala B, Zahoorulah SMD, et al. (2020) Cytotoxicity of Salacia oblonga extracts against cancer and normal cells and isolation of bioactive compounds. Res J Biotechnol 15: 105-109.
    [6] Louie S, Lakkyreddy J, Castellano BM, et al. (2020) Insulin degrading enzyme (IDE) expressed by Chinese hamster ovary (CHO) cells is responsible for degradation of insulin in culture media. J Biotechnol 320: 44-49. doi: 10.1016/j.jbiotec.2020.04.016
    [7] YekrangSafakar A, Hamel KM, Mehrnezhad A, et al. (2020) Development of rolled scaffold for high-density adherent cell culture. Biomed Microdevices 22: 4. doi: 10.1007/s10544-019-0459-9
    [8] Chen A, Ting S, Seow J, et al. (2014) Considerations in designing systems for large scale production of human cardiomyocytes from pluripotent stem cells. Stem Cell Res Ther 5: 12. doi: 10.1186/scrt401
    [9] Jenkins MJ, Farid SS (2015) Human pluripotent stem cell-derived products: Advances towards robust, scalable and cost-effective manufacturing strategies. Biotechnol J 10: 83-95. doi: 10.1002/biot.201400348
    [10] YekrangSafakar A, Acun A, Choi J-W, et al. (2018) Hollow microcarriers for large-scale expansion of anchorage-dependent cells in a stirred bioreactor. Biotechnol Bioeng 115: 1717-1728. doi: 10.1002/bit.26601
    [11] Sousa MFQ, Silva MM, Roldao A, et al. (2015) Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes. Biotechnol Prog 31: 1600-1612. doi: 10.1002/btpr.2158
    [12] Tharmalingam T, Sunley K, Spearman M, et al. (2011) Enhanced production of human recombinant proteins from CHO cells grown to high densities in macroporous microcarriers. Mol Biotechnol 49: 263-276. doi: 10.1007/s12033-011-9401-y
    [13] Hilal-Alnaqbi A, Hu AYC, Zhang ZB, et al. (2013) Growth, metabolic activity, and productivity of immobilized and freely suspended CHO cells in perfusion culture. Biotechnol Appl Biochem 60: 436-445. doi: 10.1002/bab.1103
    [14] Meuwly F, Papp F, Ruffieux PA, et al. (2006) Use of glucose consumption rate (GCR) as a tool to monitor and control animal cell production processes in packed-bed bioreactors. J Biotechnol 122: 122-129. doi: 10.1016/j.jbiotec.2005.08.005
    [15] Meuwly F, Loviat F, Ruffieux PA, et al. (2006) Oxygen supply for CHO cells immobilized on a packed-bed of Fibra-Cel(R) disks. Biotechnol Bioeng 93: 791-800. doi: 10.1002/bit.20766
    [16] Nikolay A, de Grooth J, Genzel Y, et al. (2020)  Virus harvesting in perfusion culture: Choosing the right type of hollow fiber membrane. doi: 10.1002/bit.27470
    [17] Menshutina NV, Guseva EV, Safarov RR, et al. (2019) Modelling of hollow fiber membrane bioreactor for mammalian cell cultivation using computational hydrodynamics. Bioprocess Biosyst Eng 43: 549-567. doi: 10.1007/s00449-019-02249-9
    [18] Rosenzweig DH, Carelli E, Steffen T, et al. (2015) 3D-printed ABS and PLA scaffolds for cartilage and nucleus pulposus tissue regeneration. Int J Mol Sci 16: 15118-15135. doi: 10.3390/ijms160715118
    [19] Zhang P, Han F, Li Y, et al. (2016) Local delivery of controlled-release simvastatin to improve the biocompatibility of polyethylene terephthalate artificial ligaments for reconstruction of the anterior cruciate ligament. Int J Nanomed 11: 465-478. doi: 10.2147/IJN.S95032
    [20] Pérez P, Serrano JA, Olmo A (2020) 3D-printed sensors and actuators in cell culture and tissue engineering: framework and research challenges. Sensors 20: 5617. doi: 10.3390/s20195617
    [21] Rimington RP, Capel AJ, Christie SDR, et al. (2017) Biocompatible 3D printed polymers via fused deposition modelling direct C2C12 cellular phenotype in vitro. Lab Chip 17: 2982-2993. doi: 10.1039/C7LC00577F
    [22]  Proto-Pasta – HT-PLA – PLA Filament – Translucent. Available from: https://www.filamentworld.de/shop/special-filament/hochtemperatur-filament/iridescent-ice-filament-1-75mm-hochtemperatur-pla/.
    [23] Lennaertz A, Knowles S, Drugmand J-C, et al. (2013) Viral vector production in the integrity® iCELLis® single-use fixed-bed bioreactor, from bench-scale to industrial scale. BMC Proc 7: P59. doi: 10.1186/1753-6561-7-S6-P59
    [24] Dohogne Y, Collignon F, Drugmand J-C, et al. (2019)  scale-X™ bioreactor for viral vector production: Proof of concept for scalable HEK293 cell growth and adenovirus production. Univercell Application note. Available from: https://www.univercells.com/wp-content/uploads/2019/03/1118-Univercells-Note-4pages-WEB-vF.pdf.
    [25] Drugmand J-C, Michiels J-F, Aghatos SN, et al. (2007) Growth of mammalian and lepidopteram cells on BioNOC® II disks, a novel macroporous microcarrier. Cell Technology for Cell Products Heidelberg: Springer, 781-784. doi: 10.1007/978-1-4020-5476-1_143
    [26] Chen J, Dai S, Liu LY, et al. (2021) Photo-functionalized TiO2 nanotubes decorated with multifunctional Ag nanoparticles for enhanced vascular biocompatibility. Bioact Mater 6: 45-54. doi: 10.1016/j.bioactmat.2020.07.009
    [27] Narayanasamy S, Jayaprakash J (2020) Application of carbon-polymer based composite electrodes for microbial fuel cells. Rev Environ Sci Bio-Technol 19: 595-620. doi: 10.1007/s11157-020-09545-x
    [28] Wehlage D, Blattner H, Mamun A, et al. (2020) Cell growth on electrospun nanofiber mats from polyacrylonitrile (PAN) blends. AIMS Bioengineering 7: 43-54. doi: 10.3934/bioeng.2020004
    [29] Wehlage D, Blatter H, Sabantina L, et al. (2019) Sterilization of PAN/gelatin nanofibrous mats for cell growth. Tekstilec 62: 78-88. doi: 10.14502/Tekstilec2019.62.78-88
    [30] Jiang PL, Liang JH, Lin CJ (2013) Construction of micro-nano network structure on titanium surface for improving bioactivity. Appl Surf Sci 280: 373-380. doi: 10.1016/j.apsusc.2013.04.164
    [31] Wortmann M, Layland AS, Frese N, et al. (2020) On the reliability of highly magnified micrographs for structural analysis in materials science. Sci Rep 10: 14708. doi: 10.1038/s41598-020-71682-8
    [32] Chen XY, Cai KY, Lai M, et al. (2011) Mesenchymal stem cells differentiation on hierarchically micro/nano-structured titanium substrates. Adv Eng Mater 14: B216-B223. doi: 10.1002/adem.201180073
    [33] Kozior T, Mamun A, Trabelsi M, et al. (2020) Quality of the surface texture and mechanical properties of FDM printed samples after thermal and chemical treatment. Strojniški vestnik J Mech Eng 66: 105-113.
    [34] Richter KN, Revelo NH, Seitz KJ, et al. (2018) Glyoxal as an alternative fixative to formaldehyde in immunostaining and super-resolution microscopy. EMBO J 37: 139-159. doi: 10.15252/embj.201695709
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(429) PDF downloads(39) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog