Review

Cannabis in the management of PTSD: a systematic review

  • Received: 17 February 2021 Accepted: 08 May 2021 Published: 13 May 2021
  • Introduction 

    Existing reviews exploring cannabis effectiveness have numerous limitations including narrow search strategies. We systematically explored cannabis effects on PTSD symptoms, quality of life (QOL), and return to work (RTW). We also investigated harm outcomes such as adverse effects and dropouts due to adverse effects, inefficacy, and all-cause dropout rates.

    Methods 

    Our search in MEDLINE, EMBASE, PsycInfo, CINAHL, Web of Science, CENTRAL, and PubMed databases, yielded 1 eligible RCT and 10 observational studies (n = 4672). Risk of bias (RoB) was assessed with the Cochrane risk of bias tool and ROBINS-I.

    Results 

    Evidence from the included studies was mainly based on non-randomized studies with no comparators. Results from unpooled, high RoB studies showed that cannabis was associated with a reduction in overall PTSD symptoms and improved QOL. Dry mouth, headaches, and psychoactive effects such as agitation and euphoria were the commonly reported adverse effects. In most studies, cannabis was well tolerated, but small proportions of patients experienced a worsening of PTSD symptoms.

    Conclusion 

    Evidence in the current study primarily stems from low quality and high RoB observational studies. Further RCTs investigating cannabis effects on PTSD treatment should be conducted with larger sample sizes and explore a broader range of patient-important outcomes.

    Citation: Yasir Rehman, Amreen Saini, Sarina Huang, Emma Sood, Ravneet Gill, Sezgi Yanikomeroglu. Cannabis in the management of PTSD: a systematic review[J]. AIMS Neuroscience, 2021, 8(3): 414-434. doi: 10.3934/Neuroscience.2021022

    Related Papers:

    [1] Xinran Zhou, Long Zhang, Tao Zheng, Hong-li Li, Zhidong Teng . Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay. Mathematical Biosciences and Engineering, 2020, 17(5): 4527-4543. doi: 10.3934/mbe.2020250
    [2] Yan Wang, Minmin Lu, Daqing Jiang . Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays. Mathematical Biosciences and Engineering, 2021, 18(1): 274-299. doi: 10.3934/mbe.2021014
    [3] Lu Gao, Yuanshun Tan, Jin Yang, Changcheng Xiang . Dynamic analysis of an age structure model for oncolytic virus therapy. Mathematical Biosciences and Engineering, 2023, 20(2): 3301-3323. doi: 10.3934/mbe.2023155
    [4] Shaoli Wang, Jianhong Wu, Libin Rong . A note on the global properties of an age-structured viral dynamic model with multiple target cell populations. Mathematical Biosciences and Engineering, 2017, 14(3): 805-820. doi: 10.3934/mbe.2017044
    [5] Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409
    [6] Jinliang Wang, Xiu Dong . Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences and Engineering, 2018, 15(3): 569-594. doi: 10.3934/mbe.2018026
    [7] Suxia Zhang, Hongbin Guo, Robert Smith? . Dynamical analysis for a hepatitis B transmission model with immigration and infection age. Mathematical Biosciences and Engineering, 2018, 15(6): 1291-1313. doi: 10.3934/mbe.2018060
    [8] Jinliang Wang, Ran Zhang, Toshikazu Kuniya . A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2016, 13(1): 227-247. doi: 10.3934/mbe.2016.13.227
    [9] Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341
    [10] Bao-Zhu Guo, Li-Ming Cai . A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences and Engineering, 2011, 8(3): 689-694. doi: 10.3934/mbe.2011.8.689
  • Introduction 

    Existing reviews exploring cannabis effectiveness have numerous limitations including narrow search strategies. We systematically explored cannabis effects on PTSD symptoms, quality of life (QOL), and return to work (RTW). We also investigated harm outcomes such as adverse effects and dropouts due to adverse effects, inefficacy, and all-cause dropout rates.

    Methods 

    Our search in MEDLINE, EMBASE, PsycInfo, CINAHL, Web of Science, CENTRAL, and PubMed databases, yielded 1 eligible RCT and 10 observational studies (n = 4672). Risk of bias (RoB) was assessed with the Cochrane risk of bias tool and ROBINS-I.

    Results 

    Evidence from the included studies was mainly based on non-randomized studies with no comparators. Results from unpooled, high RoB studies showed that cannabis was associated with a reduction in overall PTSD symptoms and improved QOL. Dry mouth, headaches, and psychoactive effects such as agitation and euphoria were the commonly reported adverse effects. In most studies, cannabis was well tolerated, but small proportions of patients experienced a worsening of PTSD symptoms.

    Conclusion 

    Evidence in the current study primarily stems from low quality and high RoB observational studies. Further RCTs investigating cannabis effects on PTSD treatment should be conducted with larger sample sizes and explore a broader range of patient-important outcomes.





    Conflict of interest



    The authors declare no conflict of interest.

    [1] Stein DJ, McLaughlin KA, Koenen KC, et al. (2014) DSM-5 and ICD-11 definitions of posttraumatic stress disorder: investigating “narrow” and “broad” approaches. Depress Anxiety 31: 494-505. doi: 10.1002/da.22279
    [2] Pai A, Suris AM, North CS (2017) Posttraumatic Stress Disorder in the DSM-5: Controversy, Change, and Conceptual Considerations. Behav Sci (Basel) 7: 7. doi: 10.3390/bs7010007
    [3] Richardson LK, Frueh BC, Acierno R (2010) Prevalence estimates of combat-related post-traumatic stress disorder: critical review. Aust N Z J Psychiatry 44: 4-19. doi: 10.3109/00048670903393597
    [4] Rehman Y, Sadeghirad B, Guyatt GH, et al. (2019) Management of post-traumatic stress disorder: A protocol for a multiple treatment comparison meta-analysis of randomized controlled trials. Medicine 98: e17064. doi: 10.1097/MD.0000000000017064
    [5] Acheson DT, Gresack JE, Risbrough VB (2012) Hippocampal dysfunction effects on context memory: possible etiology for posttraumatic stress disorder. Neuropharmacology 62: 674-685. doi: 10.1016/j.neuropharm.2011.04.029
    [6] Kar N (2011) Cognitive behavioral therapy for the treatment of post-traumatic stress disorder: a review. Neuropsychiatr Dis Treat 7: 167-181. doi: 10.2147/NDT.S10389
    [7] Zoellner LA, Feeny NC, Bittinger JN, et al. (2011) Teaching Trauma-Focused Exposure Therapy for PTSD: Critical Clinical Lessons for Novice Exposure Therapists. Psychol Trauma 3: 300-308. doi: 10.1037/a0024642
    [8] Rothbaum BO, Schwartz AC (2002) Exposure therapy for posttraumatic stress disorder. Am J Psychother 56: 59-75. doi: 10.1176/appi.psychotherapy.2002.56.1.59
    [9] Chiba T, Kanazawa T, Koizumi A, et al. (2019) Current Status of Neurofeedback for Post-traumatic Stress Disorder: A Systematic Review and the Possibility of Decoded Neurofeedback. Front Hum Neurosci 13: 233. doi: 10.3389/fnhum.2019.00233
    [10] Zepeda Méndez M, Nijdam MJ, Ter Heide FJJ, et al. (2018) A five-day inpatient EMDR treatment programme for PTSD: pilot study. Eur J Psychotraumatol 9: 1425575. doi: 10.1080/20008198.2018.1425575
    [11] Stein DJ, Ipser JC, Seedat S (2006) Pharmacotherapy for post traumatic stress disorder (PTSD). Cochrane Database Syst Rev 2006: CD002795.
    [12] Ravindran LN, Stein MB (2009) Pharmacotherapy of PTSD: premises, principles, and priorities. Brain Res 1293: 24-39. doi: 10.1016/j.brainres.2009.03.037
    [13] Ipser JC, Stein DJ (2012) Evidence-based pharmacotherapy of post-traumatic stress disorder (PTSD). Int J Neuropsychopharmacol 15: 825-840. doi: 10.1017/S1461145711001209
    [14] Krumm BA (2016) Cannabis for posttraumatic stress disorder: A neurobiological approach to treatment. Nurse Pract 41: 50-54. doi: 10.1097/01.NPR.0000434091.34348.3c
    [15] Téllez-Zenteno JF, Hernández-Ronquillo L (2020) Medical Cannabis as a Treatment for Patients With Epilepsy, Sleep Disorders, and Posttraumatic Stress Disorder. J Clin Neurophysiol 37: 1. doi: 10.1097/WNP.0000000000000650
    [16] Passie T, Emrich HM, Karst M, et al. (2012) Mitigation of post-traumatic stress symptoms by Cannabis resin: A review of the clinical and neurobiological evidence. Drug Test Anal 4: 649-659. doi: 10.1002/dta.1377
    [17] Bremner JD (2006) Traumatic stress: effects on the brain. Dialogues Clin Neurosci 8: 445-461. doi: 10.31887/DCNS.2006.8.4/jbremner
    [18] Kinlein SA, Wilson CD, Karatsoreos IN (2015) Dysregulated hypothalamic-pituitary-adrenal axis function contributes to altered endocrine and neurobehavioral responses to acute stress. Front Psychiatry 6: 31. doi: 10.3389/fpsyt.2015.00031
    [19] Sherin JE, Nemeroff CB (2011) Post-traumatic stress disorder: the neurobiological impact of psychological trauma. Dialogues Clin Neurosci 13: 263-278. doi: 10.31887/DCNS.2011.13.2/jsherin
    [20] Zou S, Kumar U (2018) Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int J Mol Sci 19: 833. doi: 10.3390/ijms19030833
    [21] Hindocha C, Cousijn J, Rall M, et al. (2020) The Effectiveness of Cannabinoids in the Treatment of Posttraumatic Stress Disorder (PTSD): A Systematic Review. J Dual Diagn 16: 120-139. doi: 10.1080/15504263.2019.1652380
    [22] O'Neil ME, Nugent SM, Morasco BJ, et al. (2017) Benefits and Harms of Plant-Based Cannabis for Posttraumatic Stress Disorder: A Systematic Review. Ann Intern Med 167: 332-340. doi: 10.7326/M17-0477
    [23] Orsolini L, Chiappini S, Volpe U, et al. (2019) Use of Medicinal Cannabis and Synthetic Cannabinoids in Post-Traumatic Stress Disorder (PTSD): A Systematic Review. Medicina (Kaunas) 55: 525. doi: 10.3390/medicina55090525
    [24] Shishko I, Oliveira R, Moore TA, et al. (2018) A review of medical marijuana for the treatment of posttraumatic stress disorder: Real symptom re-leaf or just high hopes? Ment Health Clin 8: 86-94. doi: 10.9740/mhc.2018.03.086
    [25] Yarnell S (2015) The Use of Medicinal Marijuana for Posttraumatic Stress Disorder: A Review of the Current Literature. Prim Care Companion CNS Disord 17.
    [26] Carnes D, Mullinger B, Underwood M (2010) Defining adverse events in manual therapies: a modified Delphi consensus study. Man Ther 15: 2-6. doi: 10.1016/j.math.2009.02.003
    [27] Carlesso LC, Cairney J, Dolovich L, et al. (2011) Defining adverse events in manual therapy: an exploratory qualitative analysis of the patient perspective. Man Ther 16: 440-446. doi: 10.1016/j.math.2011.02.001
    [28] Liberati A, Altman DG, Tetzlaff J, et al. (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339: b2700. doi: 10.1136/bmj.b2700
    [29] Zorzela L, Loke YK, Ioannidis JP, et al. (2016) PRISMA harms checklist: improving harms reporting in systematic reviews. BMJ 352: i157. doi: 10.1136/bmj.i157
    [30] Zorzela L, Golder S, Liu YL, et al. (2014) Quality of reporting in systematic reviews of adverse events: systematic review. BMJ 348: f7668. doi: 10.1136/bmj.f7668
    [31] Reeves BC, Higgins JPT, Higgins JPT, et al. (2019) Including non-randomized studies on intervention effects. Cochrane Handbook for Systematic Reviews of Interventions version 60 Available from: www.training.cochrane.org/handbook.
    [32] Higgins JPT, Altman DG, JAC S (2011) Assessing risk of bias in included studies. Cochrane Handbook for Systematic Reviews of Interventions The Cochrane Collaboration.
    [33] Sterne JA, Hernan MA, Reeves BC, et al. (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 355: i4919. doi: 10.1136/bmj.i4919
    [34] Jetly R, Heber A, Fraser G, et al. (2015) The efficacy of nabilone, a synthetic cannabinoid, in the treatment of PTSD-associated nightmares: A preliminary randomized, double-blind, placebo-controlled cross-over design study. Psychoneuroendocrinology 51: 585-588. doi: 10.1016/j.psyneuen.2014.11.002
    [35] Chan S, Wolt A, Zhang L, et al. (2017) Medical cannabis use for patients with post-traumatic stress disorder (PTSD). J Pain Manage 10.
    [36] Drost L, Wan B, Chan S, et al. (2017) Efficacy of different varieties of medical cannabis in relieving symptoms in post-traumatic stress disorder (PTSD) patients. J Pain Manage 10.
    [37] Smith P, Chan S, Blake A, et al. (2017) Medical cannabis use in military and police veterans diagnosed with post-traumatic stress disorder (PTSD). J Pain Manage 10: 397-405.
    [38] Elms L, Shannon S, Hughes S, et al. (2019) Cannabidiol in the Treatment of Post-Traumatic Stress Disorder: A Case Series. J Altern Complement Med 25: 392-397. doi: 10.1089/acm.2018.0437
    [39] Cameron C, Watson D, Robinson J (2014) Use of a synthetic cannabinoid in a correctional population for posttraumatic stress disorder-related insomnia and nightmares, chronic pain, harm reduction, and other indications: a retrospective evaluation. J Clin Psychopharmacol 34: 559-564. doi: 10.1097/JCP.0000000000000180
    [40] Greer GR, Grob CS, Halberstadt AL (2014) PTSD symptom reports of patients evaluated for the New Mexico Medical Cannabis Program. J Psychoactive Drugs 46: 73-77. doi: 10.1080/02791072.2013.873843
    [41] Johnson MJ, Pierce JD, Mavandadi S, et al. (2016) Mental health symptom severity in cannabis using and non-using Veterans with probable PTSD. J Affect Disord 190: 439-442. doi: 10.1016/j.jad.2015.10.048
    [42] Roitman P, Mechoulam R, Cooper-Kazaz R, et al. (2014) Preliminary, open-label, pilot study of add-on oral Delta9-tetrahydrocannabinol in chronic post-traumatic stress disorder. Clin Drug Investig 34: 587-591. doi: 10.1007/s40261-014-0212-3
    [43] Wilkinson ST, Stefanovics E, Rosenheck RA (2015) Marijuana use is associated with worse outcomes in symptom severity and violent behavior in patients with posttraumatic stress disorder. J Clin Psychiatry 76: 1174-1180. doi: 10.4088/JCP.14m09475
    [44] Ruglass LM, Shevorykin A, Radoncic V, et al. (2017) Impact of Cannabis Use on Treatment Outcomes among Adults Receiving Cognitive-Behavioral Treatment for PTSD and Substance Use Disorders. J Clin Med 6: 14. doi: 10.3390/jcm6020014
    [45] Dagan Y, Yager J (2020) Cannabis and Complex Posttraumatic Stress Disorder: A Narrative Review With Considerations of Benefits and Harms. J Nerv Ment Dis 208: 619-627. doi: 10.1097/NMD.0000000000001172
    [46] McIntosh HM, Woolacott NF, Bagnall AM (2004) Assessing harmful effects in systematic reviews. BMC Med Res Methodol 4: 19. doi: 10.1186/1471-2288-4-19
    [47] Ernst E, Pittler MH (2001) Assessment of therapeutic safety in systematic reviews: literature review. BMJ 323: 546. doi: 10.1136/bmj.323.7312.546
    [48] LaFrance EM, Glodosky NC, Bonn-Miller M, et al. (2020) Short and Long-Term Effects of Cannabis on Symptoms of Post-Traumatic Stress Disorder. J Affec Disord 274: 298-304. doi: 10.1016/j.jad.2020.05.132
    [49] Khan R, Naveed S, Mian N, et al. (2020) The therapeutic role of Cannabidiol in mental health: a systematic review. J Cannabis Res 2: 2. doi: 10.1186/s42238-019-0012-y
    [50] Shalev A, Liberzon I, Marmar C (2017) Post-Traumatic Stress Disorder. N Engl J Med 376: 2459-2469. doi: 10.1056/NEJMra1612499
    [51] Hill MN, Campolongo P, et al. (2018) Integrating Endocannabinoid Signaling and Cannabinoids into the Biology and Treatment of Posttraumatic Stress Disorder. Neuropsychopharmacology 43: 80-102. doi: 10.1038/npp.2017.162
    [52] Kimerling R, Allen MC, Duncan LE (2018) Chromosomes to Social Contexts: Sex and Gender Differences in PTSD. Curr Psychiatry Rep 20: 114. doi: 10.1007/s11920-018-0981-0
    [53] Abizaid A, Merali Z, Anisman H (2019) Cannabis: A potential efficacious intervention for PTSD or simply snake oil? J Psychiatry Neurosci 44: 75-78. doi: 10.1503/jpn.190021
    [54] Campbell RL, Germain A (2016) Nightmares and Posttraumatic Stress Disorder (PTSD). Curr Sleep Med Rep 2: 74-80. doi: 10.1007/s40675-016-0037-0
    [55] Schnurr PP, Lunney CA (2012) Work-related outcomes among female veterans and service members after treatment of posttraumatic stress disorder. Psychiatr Serv 63: 1072-1079. doi: 10.1176/appi.ps.201100415
    [56] Schnurr PP, Lunney CA (2016) SYMPTOM BENCHMARKS OF IMPROVED QUALITY OF LIFE IN PTSD. Depress Anxiety 33: 247-255. doi: 10.1002/da.22477
    [57] Madden SP, Einhorn PM (2018) Cannabis-Induced Depersonalization-Derealization Disorder. AJ P-RJ 13: 3-6.
    [58] Tull MT, McDermott MJ, Gratz KL (2016) Marijuana dependence moderates the effect of posttraumatic stress disorder on trauma cue reactivity in substance dependent patients. Drug Alcohol Depend 159: 219-226. doi: 10.1016/j.drugalcdep.2015.12.014
    [59] Boden MT, Babson KA, Vujanovic AA, et al. (2013) Posttraumatic stress disorder and cannabis use characteristics among military veterans with cannabis dependence. Am J Addict 22: 277-284. doi: 10.1111/j.1521-0391.2012.12018.x
    [60] Kansagara D, O'Neil M, Nugent S, et al. (2017) Benefits and Harms of Cannabis in Chronic Pain or Post-traumatic Stress Disorder: A Systematic Review. Dep Veterans Aff .
    [61] Bonnet U, Preuss UW (2017) The cannabis withdrawal syndrome: current insights. Subst Abuse Rehabil 8: 9-37. doi: 10.2147/SAR.S109576
    [62] Black N, Stockings E, Campbell G, et al. (2019) Cannabinoids for the treatment of mental disorders and symptoms of mental disorders: a systematic review and meta-analysis. Lancet Psychiatry 6: 995-1010. doi: 10.1016/S2215-0366(19)30401-8
    [63] Foa EB, Meadows EA (1997) Psychosocial treatments for posttraumatic stress disorder: A critical review. Annu Rev Psychol 48: 449-480. doi: 10.1146/annurev.psych.48.1.449
  • This article has been cited by:

    1. Xia Wang, Yijun Lou, Xinyu Song, Age-Structured Within-Host HIV Dynamics with Multiple Target Cells, 2017, 138, 00222526, 43, 10.1111/sapm.12135
    2. Honglan Zhu, Xuebing Zhang, Dynamics and Patterns of a Diffusive Prey-Predator System with a Group Defense for Prey, 2018, 2018, 1026-0226, 1, 10.1155/2018/6519696
    3. Shaoli Wang, Jiafang Zhang, Fei Xu, Xinyu Song, Dynamics of virus infection models with density-dependent diffusion and Beddington-DeAngelis functional response, 2017, 40, 01704214, 5593, 10.1002/mma.4411
    4. Yuting Cai, Chuncheng Wang, Dejun Fan, Bifurcation Analysis of a Predator–Prey Model with Age Structure, 2020, 30, 0218-1274, 2050114, 10.1142/S021812742050114X
    5. Shanjing Ren, Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse, 2017, 14, 1551-0018, 1337, 10.3934/mbe.2017069
    6. SHAOLI WANG, FEI XU, LIBIN RONG, BISTABILITY ANALYSIS OF AN HIV MODEL WITH IMMUNE RESPONSE, 2017, 25, 0218-3390, 677, 10.1142/S021833901740006X
    7. Suxia Zhang, Hongbin Guo, Global analysis of age-structured multi-stage epidemic models for infectious diseases, 2018, 337, 00963003, 214, 10.1016/j.amc.2018.05.020
    8. Chang-Yuan Cheng, Yueping Dong, Yasuhiro Takeuchi, An age-structured virus model with two routes of infection in heterogeneous environments, 2018, 39, 14681218, 464, 10.1016/j.nonrwa.2017.07.013
    9. Shaoli Wang, Jianhong Wu, Libin Rong, A note on the global properties of an age-structured viral dynamic model with multiple target cell populations, 2017, 14, 1551-0018, 805, 10.3934/mbe.2017044
    10. Xiangming Zhang, Zhihua Liu, Periodic oscillations in age-structured ratio-dependent predator–prey model with Michaelis–Menten type functional response, 2019, 389, 01672789, 51, 10.1016/j.physd.2018.10.002
    11. Khalid Hattaf, Yu Yang, Global dynamics of an age-structured viral infection model with general incidence function and absorption, 2018, 11, 1793-5245, 1850065, 10.1142/S1793524518500651
    12. Sanhong Liu, Ran Zhang, On an Age-Structured Hepatitis B Virus Infection Model with HBV DNA-Containing Capsids, 2020, 0126-6705, 10.1007/s40840-020-01014-6
    13. Xiangming Zhang, Zhihua Liu, Hopf Bifurcation for a Susceptible-Infective Model with Infection-Age Structure, 2020, 30, 0938-8974, 317, 10.1007/s00332-019-09575-y
    14. Eric Avila-Vales, Ángel G. C. Pérez, Global properties of an age-structured virus model with saturated antibody-immune response, multi-target cells, and general incidence rate, 2021, 27, 1405-213X, 10.1007/s40590-021-00315-5
    15. STABILITY OF A STOCHASTIC SEIS MODEL WITH SATURATION INCIDENCE AND LATENT PERIOD, 2017, 7, 2156-907X, 1652, 10.11948/2017101
    16. Eric Ávila-Vales, Erika Rivero-Esquivel, Gerardo Emilio García-Almeida, Global Dynamics of a Periodic SEIRS Model with General Incidence Rate, 2017, 2017, 1687-9643, 1, 10.1155/2017/5796958
    17. Zijian Liu, Chunfang Guo, Jin Yang, Hong Li, Steady States Analysis of a Nonlinear Age-Structured Tumor Cell Population Model with Quiescence and Bidirectional Transition, 2020, 169, 0167-8019, 455, 10.1007/s10440-019-00306-9
    18. Jianhua Pang, Jing Chen, Zijian Liu, Ping Bi, Shigui Ruan, Local and Global Stabilities of a Viral Dynamics Model with Infection-Age and Immune Response, 2019, 31, 1040-7294, 793, 10.1007/s10884-018-9663-1
    19. Liming Cai, Zhaoqing Li, Chayu Yang, Jin Wang, Global analysis of an environmental disease transmission model linking within-host and between-host dynamics, 2020, 86, 0307904X, 404, 10.1016/j.apm.2020.05.022
    20. Bin Cao, Hai-Feng Huo, Hong Xiang, Global stability of an age-structure epidemic model with imperfect vaccination and relapse, 2017, 486, 03784371, 638, 10.1016/j.physa.2017.05.056
    21. Wei Chen, Nafeisha Tuerxun, Zhidong Teng, The global dynamics in a wild-type and drug-resistant HIV infection model with saturated incidence, 2020, 2020, 1687-1847, 10.1186/s13662-020-2497-2
    22. Yu Yang, Lan Zou, Yasuhiro Takeuchi, Global analysis of a multi-group viral infection model with age structure, 2020, 0003-6811, 1, 10.1080/00036811.2020.1721471
    23. Yu Yang, Yancong Xu, Global stability of a diffusive and delayed virus dynamics model with Beddington–DeAngelis incidence function and CTL immune response, 2016, 71, 08981221, 922, 10.1016/j.camwa.2016.01.009
    24. Shaoli Wang, Xinyu Song, Global properties for an age-structured within-host model with Crowley–Martin functional response, 2017, 10, 1793-5245, 1750030, 10.1142/S1793524517500309
    25. Mohamed Nor Frioui, Sofiane El-hadi Miri, Tarik Mohamed Touaoula, Unified Lyapunov functional for an age-structured virus model with very general nonlinear infection response, 2018, 58, 1598-5865, 47, 10.1007/s12190-017-1133-0
    26. Necibe Tuncer, Sunil Giri, Jacek Banasiak, Dynamics of a Vector-Borne model with direct transmission and age of infection, 2021, 16, 0973-5348, 28, 10.1051/mmnp/2021019
    27. Wei Chen, Zhidong Teng, Long Zhang, Global dynamics for a drug-sensitive and drug-resistant mixed strains of HIV infection model with saturated incidence and distributed delays, 2021, 406, 00963003, 126284, 10.1016/j.amc.2021.126284
    28. Zhongzhong Xie, Xiuxiang Liu, Global dynamics in an age-structured HIV model with humoral immunity, 2021, 14, 1793-5245, 2150047, 10.1142/S1793524521500479
    29. Zakya Sari, Tarik Mohammed Touaoula, Bedreddine Ainseba, Mathematical analysis of an age structured epidemic model with a quarantine class, 2021, 16, 0973-5348, 57, 10.1051/mmnp/2021049
    30. Lei Shi, Liping Wang, Linhe Zhu, Anwarud Din, Xiaoyan Qi, Peng Wu, Dynamics of an infection-age HIV diffusive model with latent infected cell and Beddington–DeAngelis infection incidence, 2022, 137, 2190-5444, 10.1140/epjp/s13360-022-02428-w
    31. Xiao-mei Feng, Li-li Liu, Feng-qin Zhang, Dynamical Behavior of SEIR-SVS Epidemic Models with Nonlinear Incidence and Vaccination, 2022, 38, 0168-9673, 282, 10.1007/s10255-022-1075-7
    32. Iqra Batool, Naim Bajcinca, Barbara Szomolay, Stability analysis of a multiscale model of cell cycle dynamics coupled with quiescent and proliferating cell populations, 2023, 18, 1932-6203, e0280621, 10.1371/journal.pone.0280621
    33. Jinhu Xu, Dynamic analysis of a cytokine-enhanced viral infection model with infection age, 2023, 20, 1551-0018, 8666, 10.3934/mbe.2023380
    34. Zhonghu Luo, Zijian Liu, Yuanshun Tan, Jin Yang, Huanhuan Qiu, Threshold behavior of an age-structured tumor immune model, 2023, 18, 0973-5348, 6, 10.1051/mmnp/2023001
    35. Iqra Batool, Naim Bajcinca, Stability analysis of a multiscale model including cell-cycle dynamics and populations of quiescent and proliferating cells, 2023, 8, 2473-6988, 12342, 10.3934/math.2023621
    36. Yuan Yuan, Xianlong Fu, Dynamics of an age-structured HIV model with general nonlinear infection rate, 2023, 0272-4960, 10.1093/imamat/hxad010
    37. Fatima Mahroug, Soufiane Bentout, Dynamics of a diffusion dispersal viral epidemic model with age infection in a spatially heterogeneous environment with general nonlinear function, 2023, 0170-4214, 10.1002/mma.9357
    38. Nicolò Cangiotti, Marco Capolli, Mattia Sensi, Sara Sottile, A survey on Lyapunov functions for epidemic compartmental models, 2023, 1972-6724, 10.1007/s40574-023-00368-6
    39. Yuncong Liu, Yan Wang, Daqing Jiang, Dynamic behaviors of a stochastic virus infection model with Beddington–DeAngelis incidence function, eclipse-stage and Ornstein–Uhlenbeck process, 2024, 369, 00255564, 109154, 10.1016/j.mbs.2024.109154
    40. Mengna Li, Zhanwen Yang, Numerical analysis of an age-structured model for HIV viral dynamics with latently infected T cells based on collocation methods, 2024, 03784754, 10.1016/j.matcom.2024.09.028
    41. Xiangkui Zhao, Ting Li, Extinction and persistence of a stochastic HBV model, 2025, 196, 09600779, 116339, 10.1016/j.chaos.2025.116339
    42. Nurbek Azimaqin, Xianning Liu, Yangjiang Wei, Yingke Li, Explicit Formula of the Basic Reproduction Number for Heterogeneous Age‐Structured SIR Epidemic Model, 2025, 0170-4214, 10.1002/mma.10994
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(9164) PDF downloads(499) Cited by(30)

Article outline

Figures and Tables

Figures(1)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog