Citation: Ting Guo, Zhipeng Qiu. The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341
[1] | A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059 |
[2] | Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022 |
[3] | A. M. Elaiw, A. S. Shflot, A. D. Hobiny . Stability analysis of general delayed HTLV-I dynamics model with mitosis and CTL immunity. Mathematical Biosciences and Engineering, 2022, 19(12): 12693-12729. doi: 10.3934/mbe.2022593 |
[4] | Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa . A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences and Engineering, 2005, 2(4): 811-832. doi: 10.3934/mbe.2005.2.811 |
[5] | Jiawei Deng, Ping Jiang, Hongying Shu . Viral infection dynamics with mitosis, intracellular delays and immune response. Mathematical Biosciences and Engineering, 2023, 20(2): 2937-2963. doi: 10.3934/mbe.2023139 |
[6] | Sophia Y. Rong, Ting Guo, J. Tyler Smith, Xia Wang . The role of cell-to-cell transmission in HIV infection: insights from a mathematical modeling approach. Mathematical Biosciences and Engineering, 2023, 20(7): 12093-12117. doi: 10.3934/mbe.2023538 |
[7] | Yan Wang, Tingting Zhao, Jun Liu . Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7126-7154. doi: 10.3934/mbe.2019358 |
[8] | Shingo Iwami, Shinji Nakaoka, Yasuhiro Takeuchi . Mathematical analysis of a HIV model with frequency dependence and viral diversity. Mathematical Biosciences and Engineering, 2008, 5(3): 457-476. doi: 10.3934/mbe.2008.5.457 |
[9] | Gesham Magombedze, Winston Garira, Eddie Mwenje . Modelling the immunopathogenesis of HIV-1 infection and the effect of multidrug therapy: The role of fusion inhibitors in HAART. Mathematical Biosciences and Engineering, 2008, 5(3): 485-504. doi: 10.3934/mbe.2008.5.485 |
[10] | Yan Wang, Minmin Lu, Daqing Jiang . Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays. Mathematical Biosciences and Engineering, 2021, 18(1): 274-299. doi: 10.3934/mbe.2021014 |
[1] | A. S. Perelson, D. E. Kirschner and R. D. Boer, Dynamics of HIV infection of CD4+ T cells, Math. Biosci., 114 (1993), 81–125. |
[2] | Y. Wang, J. Liu and L. Liu, Viral dynamics of an HIV model with latent infection incorporating antiretroviral therapy, Adv. Differ. Equations, 225 (2016). |
[3] | WHO, 10 facts on HIV/AIDS, 2017. Available from: http://www.who.int/features/factfiles/hiv/zh/. |
[4] | WHO, HIV/AIDS: Fact sheet, 2017. Available from: http://www.who.int/mediacentre/factsheets/fs360/en/. |
[5] | A. Mojaver and H. Kheiri, Mathematical analysis of a class of HIV infection models of CD4+ T-cells with combined antiretroviral therapy, Appl. Math. Comput., 259 (2015), 258–270. |
[6] | X. Wang, X. Song, S. Tang, et al., Dynamics of an HIV Model with Multiple Infection Stages and Treatment with Different Drug Classes, Bull. Math. Biol., 78 (2016), 322–349. |
[7] | L. Rong and A. S. Perelson, Modeling HIV persistence, the latent reservoir, and viral blips, J. Theor. Biol., 260 (2009), 308–331. |
[8] | J. M. Kitayimbwa, J. T. Mugisha and R. A. Saenz, The role of backward mutations on the within-host dynamics of HIV-1, J. Math. Biol., 67 (2013), 1111–1139. |
[9] | S. Palmer, L. Josefsson and J. M. Coffin, HIV reservoirs and the possibility of a cure for HIV infection, J. Intern. Med., 270 (2011), 550–560. |
[10] | L. Rong and A. S. Perelson, Modeling Latently Infected Cell Activation: Viral and Latent Reservoir Persistence, and Viral Blips in HIV-infected Patients on Potent Therapy, Plos Comput. Biol., 5 (2009). |
[11] | F. Maldarelli, S. Palmer, M. S. King, et al., ART suppresses plasma HIV-1 RNA to a stable set point predicted by pretherapy viremia, Plos Pathog., 3 (2007). |
[12] | H. S. Ariel, C. L. Lu, K. Florian, et al., Broadly Neutralizing Antibodies and Viral Inducers Decrease Rebound from HIV-1 Latent Reservoirs in Humanized Mice, Cell, 158 (2014), 989–999. |
[13] | X. Wang, G. Mink, D. Lin, et al., Influence of raltegravir intensification on viral load and 2-LTR dynamics in HIV patients on suppressive antiretroviral therapy, J. Theor. Biol., 416 (2017), 16–27. |
[14] | A. Bosque, K. A. Nilson, A. B. Macedo, et al., Benzotriazoles Reactivate Latent HIV-1 through Inactivation of STAT5 SUMOylation, Cell Rep., 18 (2017), 1324–1334. |
[15] | S. Pankavich, The Effects of Latent Infection on the Dynamics of HIV, Differ. Equ. Dyn. Syst., 24 (2016), 281–303. |
[16] | C. M. Pinto, Persistence of low levels of plasma viremia and of the latent reservoir in patients under ART: A fractional-order approach, Commun. Nonlinear Sci. Numer. Simulat., 43 (2017), 251–260. |
[17] | D. C. Johnson and M. T. Huber, Directed egress of animal viruses promotes cell-to-cell spread, J. Virol., 76 (2002), 1–8. |
[18] | D. Mazurov, A. Ilinskaya, G. Heidecker, et al., Quantitative comparison of HTLV-1 and HIV-1 cell-to-cell infection with new replication dependent vectors, Plos Path., 6 (2010). |
[19] | H. Sato, J. Orenstein, D. Dimitrov, et al., Cell-to-cell spread of HIV-1 occurs within minutes and may not involve the participation of virus particles, Virology, 186 (1992), 712–724. |
[20] | C. J. Duncan, R. A. Russell and Q. J. Sattentau, High multiplicity HIV-1 cell-to-cell transmission from macrophages to CD4+ T cells limits antiretroviral efficacy, AIDS, 27 (2013), 2201–2206. |
[21] | J. Wang, J. Pang, T. Kuniya, et al., Global threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays, Appl. Math. Comput., 241 (2014), 298–316. |
[22] | Y. Nakata, Global dynamics of a cell mediated immunity in viral infection models with distributed delays, J. Math. Anal. Appl., 375 (2010), 14-27. |
[23] | Z. Yuan, Z. Ma and X. Tang, Global stability of a delayed HIV infection model with nonlinear incidence rate, Nonlinear Dynam., 68 (2012), 207–214. |
[24] | Z. Yuan and X. Zou, Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays, Math. Biosci. Eng., 10 (2013), 483–498. |
[25] | R. Arnaout, M. Nowak and D. Wodarz, HIV-1 dynamics revisited: biphasic decay by cytotoxic lymphocyte killing?, Proc. R. Soc. London, 265 (2000), 1347–1354. |
[26] | J. M. Conway and A. S. Perelson, Post-treatment control of HIV infection, Proc. Natl. Acad. Sci. B, 112 (2015), 5467–5472. |
[27] | Y. Wang, Y. Zhou, F.Brauer, et al., Viraldynamics model with CTL immuneresponse incorporating antiretroviral therapy, J. Math. Biol., 67 (2013), 901-934. |
[28] | H. Pourbashash, S. S. Pilyugin, C. McCluskey, et al., Global analysis of within host virus models with cell-to-cell viral transmission, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3341–3357. |
[29] | B. Song, J. Lou and Q. Wen, Modelling two different therapy strategies for drug T-20 on HIV-1 patients, J. Appl. Math. Mech., 32 (2011), 419–436. |
[30] | D. S. Callaway and A. S. Perelson, HIV-1 infection and low steady state viral loads, Bull. Math. Biol., 64 (2002), 29–64. |
[31] | K. Allali, J. Danane and Y. Kuang, Global analysis for an HIV infection model with CTL immune response and infected cells in eclipse phase, Appl. Sci., 7 (2017), 861. |
[32] | L. Rong, Z. Feng and A. S. Perelson, Emergence of HIV-1 Drug Resistance During Antiretroviral Treatment, Bull. Math. Biol., 69 (2007), 2027–2060. |
[33] | H. Zhu, Y. Luo and M. Chen, Stability and Hopf bifurcation of a HIV infection model with CTL- response delay, Comput. Math. Appl., 62 (2011), 3091–3102. |
[34] | X. Wang, A. M. Elaiw and X. Song, Global properties of a delayed HIV infection model with CTL immune response, Appl. Math. Comput., 218 (2012), 9405–9414. |
[35] | B. M. Adams, H. T. Banks, M. Davidian, et al., HIV dynamics: Modeling, data analysis, and optimal treatment protocols, J. Comput. Appl. Math., 184 (2005), 10–49. |
[36] | L. Rong and A. S. Perelson, Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips, Math. Biosci., 217 (2009), 77–87. |
[37] | P. Driessche and P. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. |
[38] | J. P. LaSalle, The stability of dynamical systems, Philadelphia, 1976. |
[39] | X. Tian and R. Xu, Global stability and Hopf bifurcation of an HIV-1 infection model with saturation incidence and delayed CTL immune response, Appl. Math. Comput., 237 (2014), 146–154. |
[40] | M. Louie, C. Hogan, M. D. Mascio, et al., Determining the relative efficacy of highly active antiretroviral therapy, J. Infect. Dis., 187 (2003), 896–900. |
[41] | M. A. Nowak and C. R. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74–79. |
[42] | A. S. Perelson, P. Essunger, Y. Cao, et al., Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, 387 (1997), 188–191. |
[43] | J. Wang, M. Guo, X. Liu, et al., Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay, Appl. Math. Comput., 291 (2016), 149–161. |
1. | N. H. AlShamrani, A. M. Elaiw, H. Dutta, Stability of a delay-distributed HIV infection model with silent infected cell-to-cell spread and CTL-mediated immunity, 2020, 135, 2190-5444, 10.1140/epjp/s13360-020-00594-3 | |
2. | A.M. Elaiw, N.H. AlShamrani, Analysis of a within-host HIV/HTLV-I co-infection model with immunity, 2021, 295, 01681702, 198204, 10.1016/j.virusres.2020.198204 | |
3. | Ting Guo, Zhipeng Qiu, Kosaku Kitagawa, Shingo Iwami, Libin Rong, Modeling HIV multiple infection, 2021, 509, 00225193, 110502, 10.1016/j.jtbi.2020.110502 | |
4. | Kouji Harada, Tomonari Sumi, A mathematical study on the effects of a combination of an immune checkpoint inhibitor and a mutagen for anti-HIV-1 therapy, 2020, 1433-5298, 10.1007/s10015-020-00664-w | |
5. | A. M. Elaiw, N. H. AlShamrani, Stability of a general CTL-mediated immunity HIV infection model with silent infected cell-to-cell spread, 2020, 2020, 1687-1847, 10.1186/s13662-020-02818-3 | |
6. | N.H. AlShamrani, Stability of a general adaptive immunity HIV infection model with silent infected cell-to-cell spread, 2021, 09600779, 110422, 10.1016/j.chaos.2020.110422 | |
7. | A. M. Elaiw, N. H. AlShamrani, Modeling and analysis of a within-host HIV/HTLV-I co-infection, 2021, 27, 1405-213X, 10.1007/s40590-021-00330-6 | |
8. | Qi Deng, Zhipeng Qiu, Ting Guo, Libin Rong, Modeling within-host viral dynamics: The role of CTL immune responses in the evolution of drug resistance, 2021, 26, 1553-524X, 3543, 10.3934/dcdsb.2020245 | |
9. | Noura H. AlShamrani, Matuka A. Alshaikh, Ahmed M. Elaiw, Khalid Hattaf, Dynamics of HIV-1/HTLV-I Co-Infection Model with Humoral Immunity and Cellular Infection, 2022, 14, 1999-4915, 1719, 10.3390/v14081719 | |
10. | A. M. Elaiw, N. H. AlShamrani, Analysis of an HTLV/HIV dual infection model with diffusion, 2021, 18, 1551-0018, 9430, 10.3934/mbe.2021464 | |
11. | A. M. Elaiw, N. H. AlShamrani, Modeling and stability analysis of HIV/HTLV-I co-infection, 2021, 14, 1793-5245, 2150030, 10.1142/S1793524521500303 | |
12. | A. M. Elaiw, N. H. Alshamrani, E. Dahy, A. A. Abdellatif, Stability of within host HTLV-I/HIV-1 co-infection in the presence of macrophages, 2023, 16, 1793-5245, 10.1142/S1793524522500668 | |
13. | A. M. Elaiw, N. H. AlShamrani, Stability of HIV/HTLV‐I co‐infection model with delays, 2022, 45, 0170-4214, 238, 10.1002/mma.7775 | |
14. | Karunia Putra Wijaya, Joseph Páez Chávez, Tianhai Tian, An in-host HIV-1 infection model incorporating quiescent and activated CD4+ T cells as well as CTL response, 2021, 409, 00963003, 126410, 10.1016/j.amc.2021.126410 | |
15. | Qi Deng, Ting Guo, Zhipeng Qiu, Libin Rong, Modeling the Effect of Reactive Oxygen Species and CTL Immune Response on HIV Dynamics, 2021, 31, 0218-1274, 10.1142/S0218127421502035 | |
16. | N. H. AlShamrani, Stability of an HTLV-HIV coinfection model with multiple delays and CTL-mediated immunity, 2021, 2021, 1687-1847, 10.1186/s13662-021-03416-7 | |
17. | Noura H. AlShamrani, Ahmed Elaiw, Aeshah A. Raezah, Khalid Hattaf, Global Dynamics of a Diffusive Within-Host HTLV/HIV Co-Infection Model with Latency, 2023, 11, 2227-7390, 1523, 10.3390/math11061523 | |
18. | Ting Guo, Qi Deng, Zhipeng Qiu, Libin Rong, HIV infection dynamics and viral rebound: Modeling results from humanized mice, 2023, 567, 00225193, 111490, 10.1016/j.jtbi.2023.111490 | |
19. | Noura H. AlShamrani, Reham H. Halawani, Ahmed M. Elaiw, Stability of generalized models for HIV-1 dynamics with impaired CTL immunity and three pathways of infection, 2024, 10, 2297-4687, 10.3389/fams.2024.1412357 | |
20. | Ting Guo, Qi Deng, Shasha Gao, Zhipeng Qiu, Libin Rong, HIV infection dynamics with broadly neutralizing antibodies and CTL immune response, 2024, 0, 1937-1632, 0, 10.3934/dcdss.2024151 | |
21. | Sophia Y. Rong, Ting Guo, J. Tyler Smith, Xia Wang, The role of cell-to-cell transmission in HIV infection: insights from a mathematical modeling approach, 2023, 20, 1551-0018, 12093, 10.3934/mbe.2023538 | |
22. | Zhiqi Zhang, Yuming Chen, Xia Wang, Libin Rong, Dynamic analysis of a latent HIV infection model with CTL immune and antibody responses, 2024, 17, 1793-5245, 10.1142/S1793524523500791 | |
23. | Sourav Chowdhury, Jayanta Kumar Ghosh, Uttam Ghosh, Co-infection dynamics between HIV-HTLV-I disease with the effects of Cytotoxic T-lymphocytes, saturated incidence rate and study of optimal control, 2024, 223, 03784754, 195, 10.1016/j.matcom.2024.04.015 | |
24. | Noura H. AlShamrani, Reham H. Halawani, Wafa Shammakh, Ahmed M. Elaiw, Global Properties of HIV-1 Dynamics Models with CTL Immune Impairment and Latent Cell-to-Cell Spread, 2023, 11, 2227-7390, 3743, 10.3390/math11173743 | |
25. | Noura H. AlShamrani, Reham H. Halawani, Ahmed M. Elaiw, Analysis of general HIV-1 infection models with weakened adaptive immunity and three transmission modalities, 2024, 106, 11100168, 101, 10.1016/j.aej.2024.06.033 | |
26. | A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Analysis of HHV-8/HIV-1 co-dynamics model with latency, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05202-2 | |
27. | Alberto Vegas Rodriguez, Nieves Velez de Mendizábal, Sandhya Girish, Iñaki F. Trocóniz, Justin S. Feigelman, Modeling the Interplay Between Viral and Immune Dynamics in HIV: A Review and Mrgsolve Implementation and Exploration, 2025, 18, 1752-8054, 10.1111/cts.70160 | |
28. |
Purnendu Sardar, Santosh Biswas, Krishna Pada Das, Saroj Kumar Sahani, Vikas Gupta,
Stability, sensitivity, and bifurcation analysis of a fractional-order HIV model of CD4+ T cells with memory and external virus transmission from macrophages,
2025,
140,
2190-5444,
10.1140/epjp/s13360-025-06081-x
|